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Abstract
The combination of targeted muscle reinnervation (TMR) and pattern classification of
electromyography (EMG) has shown great promise for multifunctional myoelectric prosthesis
control. In this study, we hypothesized that surface EMG recordings with high spatial resolution
over reinnervated muscles could capture focal muscle activity and improve the classification
accuracy of identifying intended movements. To test this hypothesis, TMR subjects with
transhumeral or shoulder disarticulation amputations were recruited. Spatial filters such as single
differential filters, double differential filters, and various two-dimensional, high-order spatial
filters were used, and the classification accuracies for fifteen different movements were calculated.
Compared with monopolar recordings, spatially localized EMG signals produced increased
accuracy in identifying the TMR patients’ movement intents, especially for hand movements.
When the number of EMG signals was constrained to 12, the double differential filters gave 5–
15% higher classification accuracies than the filters with lower spatial resolution, but resulted in
comparable accuracies to the filters with higher spatial resolution. These results suggest that
double differential EMG recordings may further improve the TMR-based neural interface for
robust, multifunctional control of artificial arms.
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INTRODUCTION
Electromyographic (EMG) signals recorded from the residual limb of individuals with arm
amputations can be effective neural control signals for powered prostheses.1 In the past 40
years, substantial research effort has been carried out in the field of myoelectric control, and
significant progress has been made.18 Myoelectric control has found widespread use for
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individuals with amputations or congenital upper limb deficiencies. Several myoelectric
control systems are now available and are capable of controlling a single device in a
prosthetic limb, such as a hand, an elbow, or a wrist.20 These systems typically extract
control information based on the amplitude or rate of change of the EMG signals, and are
directly controlled by these signals, either in proportional or on/off mode. However,
although these systems have been successful, they do not provide sufficient information to
reliably control more than one degree of freedom at a time.

Pattern recognition has been proposed as a potential method to increase the information
extracted from EMG signals and improve the dexterity of myoelectric control. The goal of
pattern recognition is to discriminate among desired classes of limb movement based on the
assumption that patterns of EMG signal at each location will be repeatable for a given
motion but different between motions.4,5 Advances in EMG feature extraction and classifier
design have resulted in high classification accuracies for different movement patterns.4,8

The steady progress of EMG signal processing technology suggests great promise for
multifunction prosthesis control using EMG information from residual muscles. However,
for patients with amputations above the elbow, the potential EMG recording sites are limited
while the number of functions to control is increased.11 To address this challenge, a novel
neural-machine interface based on targeted muscle reinnervation (TMR) has been developed
and applied to patients with transhumeral or higher-level amputations.13,16,17,21 TMR is a
surgical technique that transfers the nerves originally controlling the missing limb to
remaining muscles which are no longer biomechanically functional. After successful
reinnervation, the voluntary neural control signals propagate along the transferred nerves,
activate these muscles, and provide additional EMG recording sites for multifunction
prosthetic arm control. In previous studies, we used a high-density electrode array (up to 128
monopolar electrodes) to collect EMG signals from the reinnervated muscles of TMR
patients.21 Using an EMG pattern recognition (PR) algorithm, we found an average accuracy
of 96% for classifying intended movements of the elbow, wrist, thumb and fingers. A
classification accuracy of 90% could still be achieved when EMG signals were recorded by
only 12 bipolar electrodes.13 These results suggest that a clinically practical number of
EMG signals from TMR muscles contain tremendous neural control information which can
be successfully extracted by a PR algorithm. Therefore, TMR combined with EMG pattern
recognition opens up possibilities for further improving control dexterity for individuals
with transhumeral or higher-level amputations.

The majority of classification errors in previous studies were due to misclassification of
hand (thumb and finger) movements.13,21 This may be related to the high information
density (defined as the amount of information per muscle volume) in the reinnervated
muscle.15 The median, radial, and ulnar nerves in the brachial plexus consist of many
motoneurons that normally innervate dozens of muscles in the forearm and hand to control
the wrist, thumb, and fingers. When such a nerve is transferred to one muscle compartment,
all of the neural control information is mixed together and presented via surface EMG
within a limited muscle space, resulting in high information density. In order to clearly
separate the compound neural control sources and accurately identify the user’s movement
intentions, it may be necessary to use localized EMG recordings. Spatial filtering has shown
promise as one of the ways to improve the spatial resolution of EMG signals. One-
dimensional (1D) or two-dimensional (2D) high-pass spatial filters have been successfully
used with surface EMG signals to investigate single motor unit activities, 2,6 and to reduce
cross-talk in surface EMG signals. 19 In the present study, we hypothesized that using
spatial filters for more focal recording of TMR muscle activity would allow better control
source separation and increased classifier performance. Various spatial filters were applied
to high-density EMG signals and a reduced set of EMG signals recorded from TMR
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muscles. The classification performance of these spatial filters was compared, with the aim
of exploring an efficient and practical spatial filtering strategy for further improvement of
multifunctional myoelectric prosthesis control following TMR.

METHODS
Participants with TMR Surgeries

The procedures in this study were approved by the Northwestern University Institutional
Review Board (IRB), and written informed consent was obtained from all subjects. Three
subjects with successful TMR surgeries were recruited. The first subject was a 54-year-old
man with bilateral shoulder disarticulation amputations (subject SD). Four brachial plexus
nerve transfers had been performed on his left side.10,16 The musculocutaneous, median,
and radial nerves had been transferred to the upper, middle, and lower regions of the
pectoralis major muscle, respectively (Fig. 1a). The ulnar nerve had been transferred to the
pectoralis minor muscle, which was moved out to the lateral chest wall. TMR had also been
performed on a 23-year-old woman with a very short transhumeral amputation (subject
STH) (Fig. 1b).17 The ulnar nerve had been transferred to the medial region of the upper
pectoralis muscle, the musculocutaneous nerve had been transferred to the lateral region of
the upper pectoralis muscle, the median nerve had been transferred to the middle and lower
pectoralis muscles, and the distal radial nerve had been transferred to the serratus anterior
muscle. The third TMR subject was a 42-year-old male with a long transhumeral amputation
(subject LTH) (Fig. 1c). The median and distal radial nerves had been transferred to the
medial biceps and the brachialis muscles, respectively. The residual biceps and triceps
muscles were intact and could be used to control elbow motion.

Muscle reinnervation was observed 3–5 months after the surgery; it provided additional
EMG signals for intuitive prosthesis control. For example, when subject STH attempted to
close her missing hand, the efferent neural signals traveled along the median nerve and
activated the lower pectoralis muscle for contraction. When she attempted to open her hand,
the neural control signals propagated along the radial nerve and caused contraction of the
serratus muscle. The resulting EMG signals could be used to drive prosthetic hand closing
and opening.

Experimental Protocol and Data Collection
High-density surface EMG signals were recorded over reinnervated muscles and residual
biceps and triceps muscles, if present, for each subject.21 EMG signals were collected using
128 13-mm-diameter monopolar electrodes with a center-to-center distance of 15 mm, and a
128-channel Refa EMG recording system (TMS International BV, Amsterdam,
Netherlands). For each channel, the surface EMG signals were sampled at 2 kHz, with a
hardware low-pass filter setting the −3 dB point at 500 Hz. Before electrode placement, the
skin was shaved, lightly abraded, and cleaned with alcohol pads. A ground electrode was
placed on the bony area of the shoulder.

Each subject was comfortably seated and asked to follow a video demonstration and attempt
15 different movements with the amputated limb. The movements included elbow flexion/
extension, wrist flexion/extension, pronation/supination, ulnar/radial deviation, two hand-
opening patterns, and five functional hand-closing (grasping) patterns (Fig. 2). The two
hand-opening patterns involved finger abduction and finger adduction, respectively. The
five hand-closing patterns were power grip, prehensile (3-jaw chuck) grip, fine pinch grip,
key grip, and trigger grip. Note that this study included hand-grasp patterns in lieu of
individual finger movements because they are more functionally related to and easy-to-
realize in prosthetic hand control. Each trial contained 10 repetitions of the same movement.
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For each repetition, the subjects were instructed to attempt the movement with a comfortable
level of effort and to hold each contraction for approximately 4–5 s. There was a 5-s
relaxation period between repetitions, and subjects rested between trials to avoid muscle and
mental fatigue. The sequence of prompted movements was random.

EMG Analysis and Pattern Recognition
The raw EMG signals were filtered by a fifth-order Butterworth high-pass filter with a 5 Hz
cutoff frequency to remove movement artifacts. Then, the data recorded during the subjects’
movement attempts were applied for EMG pattern recognition.20

EMG pattern classification was conducted within sequential 200 ms analysis windows. In
each window, four time-domain features were extracted from each EMG signal. These time-
domain features included (1) the mean absolute value of the EMG signal, (2) the number of
zero crossings, (3) the number of slope sign changes, and (4) the waveform length4,14,21;
their mathematical definitions can be found elsewhere.4,14,21 A vector, f̄, composed of the
four features, was obtained for each signal, and a feature vector was formulated by F̄ = [f̄1,
f̄2, f̄3, …,f̄L]1×4L, where L denotes the total number of EMG signals. In this study, a linear
discriminant analysis (LDA) pattern classifier was used to classify the EMG signal features.
The LDA algorithm was chosen due to its simplicity, its comparable performance to other
more complex algorithms, such as the artificial neural network, hidden Markov model, and
Gaussian Mixed Model,4,5,9,12 and its previously demonstrated computational efficiency in
real-time prosthesis control.4 In discriminant analysis, the observed data is assigned to the
movement class with the highest posteriori probability (i.e. the class with maximum
probability given the observed feature vector F̄).3,13 The first half of the EMG data was used
to train the LDA classifier by estimating the mean and covariance matrices of the posteriori
probability for each movement class. The second half of the EMG data was used as a test set
to evaluate the classifier’s performance.13

The overall classification accuracy3 (CA) (Eq. 1) was used to measure the performance of
the classifier:

(1)

In addition, the confusion matrix (C), listing the test results between the targeted classes and
the estimated task classes, was computed as

(2)

where the element

(3)

The diagonal of the confusion matrix, aii, is the classification accuracy of task class i. Other
elements indicate the misclassification of EMG patterns.
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Spatial Filters Applied to the High-Density EMG Signals
Classification was also performed on the surface EMG signals processed by various high-
pass spatial filters (Table 1). The filters, listed in order of increasing spatial localization,
included one-dimensional (TSD, LSD, BipD, BipRD, BipT, BipL, DDT, and DDL) and
two-dimensional (LapD, IR, and IB2) filters. Each spatial filter corresponded to an electrode
configuration (Table 1) comprised of several neighboring monopolar electrodes with
different weights. These weight values can also be presented as a matrix (S) as in Table 1.

The spatially filtered signal was obtained by weighted summation of neighboring monopole
recordings. The filtering procedure applied to the high-density EMG signals was equivalent
to the two-dimensional (2D) convolution for each sample time. The high-density EMG
electrode array was first organized into a 2D electrode map based on the experimental setup.
At each sample time tj, a unfiltered, monoploar EMG map (a 2D image I[n1, n2, tj] as shown
in Fig. 3b) with size of N1 × N2 was obtained; the value of the pixel at location [na, nb] was
the MN-EMG signal reading from the corresponding monopolar electrode in the high-
density EMG array at time sample tj. Next, the spatial filter matrix (S in Table 1) of size M1
× M2 was applied to the MN-EMG map as (4)

(4)

The double asterisks (**) denote 2D convolution. Then, the spatially filtered EMG signal at
location [na, nb] of the high-density EMG array was reacquired by reading the associated
pixel values from the sequence of output images {Ic[na, nb, t1], Ic[na, nb, t2], … Ic[na, nb, tj],
… Ic[na, nb, tT]} along the time domain. Note that the edge electrodes (pixels) in the high-
density electrode array (map) were convoluted with zero padding, and were therefore
eliminated. Finally, the pattern recognition algorithm described in the previous section was
applied to the spatially filtered EMG signals. The classification performances derived from
different spatially filtered EMG signals were calculated.

Spatial Filters Applied to a Reduced Number of EMG Signals
The effect of spatial filtering on the classification performance was also investigated using a
clinically feasible number of EMG signals. Based on the number of electrodes that could
reasonably be embedded in a prosthetic socket, and the signal processing capabilities of
embedded processors, no more than 12 EMG signals were considered practical in this study.
13 Two methods were used to reduce the number of spatially filtered EMG signals based on
our previous study13: the sequential forward searching (SFS) method and clinical selection.
The SFS algorithm is an iterative searching procedure that selects the subset of EMG signals
that provides the highest classification accuracy. However, the SFS algorithm may result in
different EMG channels for different spatial filters and is not practical for clinical use.13 In
clinical selection, the subset of electrodes is chosen based on knowledge of the TMR surgery
scheme and outcome. The locations of clinically selected EMG recordings were the same for
all spatial filters. After fixing the number of EMG signals, we then evaluated classification
accuracy.

RESULTS
Spatial Filters Applied to the High-Density EMG Signals

The spatial filters resulted in localized recordings of muscle activity (Fig. 3). For example,
clear muscle activity was observed in the middle of the pectoralis muscle reinnervated by
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the median nerve when subject STH performed fine pinch grip (Fig. 3). Compared to the
unfiltered EMG (NM-EMG) map (Fig. 3b), the BipT-EMG map (Fig. 3c) provided greater
spatial resolution in the horizontal direction. The IB2-EMG map (Fig. 3d) showed highly
localized activation spots; it recorded more spatially selective muscle activity than the
unfiltered EMG and BipT-EMG.

The spatially filtered EMG signals led to more accurate classification than the unfiltered
EMG recordings (Fig. 4). In addition, classification accuracy as a result of using single
differential filters with short inter-pole distances (15 mm for BipT, and BipL), double
differential filters (DDL and DDT), and 2D filters (LapD, IR, and IB2) were comparable;
their variation was within 3% for subjects SD and LTH and within 5% for subject STH.

Spatial Filters Applied to a Reduced Number of EMG Channels
Using only one EMG signal gave low classification accuracy, regardless of the filter used.
Increasing the number of applied signals to 8 or greater dramatically improved the accuracy,
especially for the spatially localized EMG recordings (see Fig. 5 for an example). The
accuracies derived from 12 SFS-selected double differential or 2D spatially filtered EMG
signals were similar to those derived from the high-density signals. In addition, the double
differential filters and the 2D spatial filters outperformed other studied filters; they improved
the classification accuracy up to 9.6% over that derived from the clinically relevant single
differential filters (BipD, BipRD. BipT, and BipL). The classification performances of DDT,
DDL, and 2Dfilters were similar.

Fixing the number of SFS-selected EMG signals at 12, we compared the confusion matrices
derived from the TSD-EMG and from the DDT-EMG in Table 2. For the TSD-EMG, most
of the classification errors occurred between the hand patterns; the accuracy for classifying
the key grip, trigger grip, and hand open with fingers abduction was only 60–65% (Table 2).
The EMG signals with higher spatial resolutions such as DDT greatly improved the
accuracy of identifying the user’s intent to perform hand patterns. With the double
differential spatial filter the classification accuracy for each movement tested (see the
shaded diagonal cells of Table 2) ranged from 85 to 100%.

Using 12 clinically selected EMG signals, the double differential filters and the 2D filters
outperformed the other types of filters for all three subjects (Fig. 6). The EMG signal
locations were the same for all tested filters. In this case, the difference between the highest
and lowest accuracies was 20%, averaged over 3 subjects.

DISCUSSION
In the present study, we utilized various spatial filters to enhance the spatial selectivity of
EMG recordings and studied the effect of spatial filtering on the performance of EMG
pattern classification. When spatial filters were applied to high-density EMG recordings
from TMR muscles, classification accuracy was enhanced. When BipT, BipL, or higher-
order filters were applied, the classification accuracy for 15 movements was above 95% for
patients SD and LTH, and above 85% for patient STH. The results demonstrate once again
that tremendous neural control information was successfully transferred to TMR muscles.
Although the high-density monopolar EMG array should have been able to record most of
the spatial information in the surface EMG, the monopolar, TSD, LSD, BipRD, and BipD
filters produced lower classification accuracies than other high-order spatial filters. This
may be because the high-density EMG signals with lower spatial resolution contained
somewhat larger common-mode signal components, which reduced the classification
performance.

Huang et al. Page 6

Ann Biomed Eng. Author manuscript; available in PMC 2011 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



When the number of EMG signals was reduced, the type of spatial filter used considerably
influenced the classification accuracy: localized EMG recordings provided higher accuracy
than EMG signals with low spatial resolutions. This outcome is inconsistent with the results
of previous reports.7,9 Previous studies compared localized EMG recordings (targeted,
intramuscular EMG) to EMG signals with global information (untargeted, surface bipolar
EMG) and reported that the two measures provided comparable classification accuracies for
identifying user intent.7,9 They concluded that the EMG PR algorithm can extract
information from multi-channel EMG signals, regardless of whether recordings are localized
or global. This may be true for normally innervated muscles in able-bodied subjects or
subjects with transradial amputations, but does not appear to be true for reinnervated
muscles. Because of the high information density of EMG signals from TMR muscles,
especially those reinnervated by the median and radial nerves, wrist and hand movements
were heavily misclassified when EMG signals with lower spatial resolutions were used
(Table 2); in contrast, spatially localized EMG signals gave much more accurate
classifications of user intent, especially for hand movements. In addition, 12 EMG signals
can extract a similar amount of neural control information as highdensity EMG arrays. Thus,
the EMG recording system that provides greater spatial resolution has the potential to further
improve the TMR-based neural control interface for robust prosthesis control.

Although 2D spatial filtering provides high spatial resolution for EMG recordings and
improves classification accuracy, the design and construction of such a system are too
complicated to be practical. For example, one EMG electrode with inverse rectangle (IR)
filtering required 9 monopoles and at least 8 amplifiers. Twelve EMG recordings would
therefore need as many as 108 monopoles to be mounted on the socket and 96 amplifiers in
the EMG recording system. Hence, a trade-off is necessary to design a practical EMG
recording system with high spatial selectivity for reliable classification.

A double differential EMG system may offer an acceptable trade-off of increased accuracy
with a modest increase in electrode pole and amplifier number. The double differential
filters (DDL and DDT) provided better classification performance than the most clinically-
relevant single differential filters (LSD, TSD, BipT, BipL, BipD, and BipRD) (Fig. 5), while
the double differential filters produced equivalent classification performances to the filters
with higher orders and dimensions (LapD, IR, and IB2). Although one double differential
EMG electrode requires two pre-amplifiers and three contacts, as opposed to the one
amplifier and two contacts required for a bipolar EMG electrode, the complexity of design
and realization of a double differential recording system is moderate; in fact, the double
differential EMG recording system is commercially available (e.g. Delsys Inc, Boston, MA).
In addition, compared to single differential signals, fewer double differential EMG signals
were required to achieve a comparable classification performance. For example, in order to
produce 85% classification accuracy for 15 movements for subject SD (Fig. 5), 12 bipolar
EMG signals (24 monopoles) were necessary, while only 8 double differential EMG signals
(24 monopoles) were required. One of the direct benefits of using fewer EMG inputs is the
improved computational efficiency. For 12 inputs, the feature space dimension is 48 (four
time domain features per channel), but the dimension for 8 inputs is only 32. Reducing the
number of EMG inputs from 12 to 8, therefore, decreases the covariance matrix in the LDA
algorithm from 48 × 48 to 32 × 32, which reduces the computational burden on real-time
EMG pattern recognition. Furthermore, the locations of double differential electrodes can be
selected based on clinical knowledge of TMR surgery, as described by Huang et al.13 When
using 12 clinically selected double differential signals, the classification accuracies for the
three subjects ranged from 80 to 90%s. Therefore, the double differential EMG recording
system is both technically and clinically viable, and could be used to further improve the
accuracy of multifunctional prosthesis control.
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A limitation of this study was the availability of only three TMR subjects for testing. This
was because TMR is a novel and unique procedure which has only been applied to select
patients with transhumeral or higher-level amputations. However, the consistent results
among the tested subjects provide insight into further improving the accuracy of EMG PR-
based control by using double differential EMG recordings. Continuing efforts will include
the design of prosthetic sockets fit with the double differential EMG recording interface, and
evaluation of the reliability of this interface for real-time EMG PR-based prosthesis control
on amputee patients with TMR surgery.

CONCLUSION
Spatially selective EMG recording can measure more separable neural control information
from TMR muscles because of the high information density of these muscles. By
investigating the influence of various spatial filters on the performance of EMG pattern
classification, we found that double differential EMG recordings provided higher
classification accuracy than conventional bipolar EMG signals and were more clinically
practical than 2D spatial filters. Therefore, a TMR-based neural-machine interface may be
further improved by using double differential EMG electrodes for reliable multifunctional
prosthetic arm control.
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FIGURE 1.
Schematic description of targeted muscle reinnervation techniques on (a) a subject (SD)
with a shoulder disarticulation, (b) a subject (STH) with a short transhumeral amputation,
and (c) a subject (LTH) with a long transhumeral amputation.
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FIGURE 2.
Hand movements, including two hand-open patterns: (a) hand open with finger adduction,
(b) hand open with fingers abduction, and five functional hand grasping patterns: (c) power
grip, (d) prehensile grip, (e) fine pinch, (f) key grip, (g) trigger grip.
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FIGURE 3.
(a) HD EMG electrode placement on the STH subject; (b) map of the EMG root mean
square (RMS) using unfiltered monopolar EMG recordings when the subject performed
“fine pinch”; (c) map of the RMS of BipT-filtered EMG recordings; (d) map of the RMS of
IB2-filtered EMG recordings.
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FIGURE 4.
The influence of spatial filtering on the classification accuracy based on high-density EMG
recordings.
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FIGURE 5.
The influence of spatial filtering on the classification accuracy based on differing numbers
of EMG signals. Data shown are from subject SD. The spatial filters were grouped based on
their spatial resolution. The bar indicates the range of classification accuracy derived from a
group of spatial filters.
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FIGURE 6.
The influence of spatial filtering on the classification accuracy. Twelve clinically selected
EMG signals were used.
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