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Abstract
We present a novel nonparametric method for bioassay and benchmark analysis in risk
assessment, which averages isotonic MLEs based on disjoint subgroups of dosages. The
asymptotic theory for the methodology is derived, showing that the MISEs (mean integrated
squared error) of the estimates of both the dose-response curve F and its inverse F−1 achieve the

optimal rate O(N−4/5). Also, we compute the asymptotic distribution of the estimate  of the
effective dosage ζp = F−1 (p) which is shown to have an optimally small asymptotic variance.
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1. Introduction
The efficient estimation of effective dosage is an old but still very important problem in
biology and medicine. In addition, concerns about the impact of pollutants in the
environment have added a great sense of urgency to the development of good methods for
the estimation of benchmarks in risk assessment (See, e.g., Piegorsch and Bailer (2005)).
We present in this article the asymptotic theory of a new method. In a companion study
based on extensive simulation and data analysis, to be presented elsewhere, it is shown that
the method performs remarkably well even with small and moderate sample sizes
(Bhattacharya and Lin (2010)).

Consider quantal dose-response experiments in bioassay where the response of a subject to a
drug or a chemical agent is measured in a binary scale, 1 for response and 0 for non-
response. Given a dosage x of the substance, let F(x) be the probability of response. The
function  is called the dose-response curve, and it is assumed to be monotone
increasing. The effective dosage for a targeted response (probability) p is defined as the ‘p-
th quantile’ ζp or EDp,

(1.1)

For the data, suppose that ni subjects are given a dosage xi (i = 1, . . . , m), where x1 < . . . <

xm, with the total number of observations . One may assume, without loss of
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generality, that 0 = x1 < . . . < xm = 1. The number of responses observed at dosage xi is ri (i
= 1, . . . , m). The likelihood function for the estimation of F(xi), 1 ≤ i ≤ m, is

(1.2)

The maximum likelihood estimator (MLE) of (p1, . . . , pm), under the monotonicity
constraint, is given in Ayer et al.(1955) by the following PAV, or pool-adjacent-violators
algorithm (Also see Barlow et al.(1972), p.73, and Cran (1980)):

(1.3)

Bhattacharya and Kong (2007) proposed an estimate  of F(x), the dose-response curve,
by taking  to be  at xi and by linear interpolation in the interval (xi, xi+1):

 is a continuous function whose inverse is the estimate of EDp as given by:

(1.4)

if  and, more generally, by .

From now on, we will assume, for simplicity, that there are m equidistant dosages and the
same number n of i.i.d. 0 − 1 valued observations at each dosage. Assume n → ∞, m → ∞
and

(1.5)

 in Theorems 2.1, 2.2, 2.3 part (b), and  in
Theorem 2.3, part (c). Here  means that the ratio of the two sides are
bounded away from zero and infinity.

Let  denote the observed proportion of 1's at dosage xi. Divide the observed proportions
and dosages into r groups, and consider the following application of the PAV algorithm to
each of the r groups of levels below:
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(1.6)

Note that Group 2 through Group r − 1 each has s(n) + 2 levels, while Groups 1 and r each
has s(n) + 1 levels. Also, except for the smallest and the largest levels (with proportions 
and , the sets of levels covered by them are disjoint. Together, they comprise all the
different m = rs(n) dosages.

By linear interpolation, each Group j (j = 1, . . . , r) provides an estimate  of the dose-

response curve F on [0, 1], and an estimate  of F−1. Note that while F−1 is defined on

[F(0), F(1)],  and  below are defined on . Compute

(1.7)

and choose the values of r for which the bootstrap estimates of the MISEs of  and  are
the smallest. These we call the NAM estimates of F and F−1.

Among kernel based nonparametric methods for quantal bioassay, one may mention Müller
and Schmitt (1988), Park and Park (2006), Dette et al. (2005) and Dette and Scheder (2010).
A description of these methods may be found in the last two articles.

Remark 1.1. For the purpose of asymptotics, one may take the r groups in (1.6) to be
disjoint, omitting  from Group 1,  and  from Groups 2 through r − 1, and  from
Group r. As is shown in Bhattacharya and Kong (2007), outside a set Bn of negligible
probability, . Given x ∈ (0, 1), if m, n are sufficiently large, and

 (see (2.2)), x belongs to the domain of , even if the curve  is
constructed with common points removed. Outside Bn, the curves so obtained would
coincide, on their respective domains, with the curves constructed after adjoining the end

points. On the other hand, for relatively small sample sizes one needs to construct  with
the groupings (1.6), so that each has domain [0, 1].

We now provide a summary of the rest of the article. The asymptotic theory of the NAM is
derived in Section 2. Theorem 2.1 proves that the estimate of the dose-response curve has a
MISE attaining the optimal rate O(N−4/5) under the assumptions that f = F′ is strictly
positive, F″ is bounded and m = o(n3/2/(log n)5/2). Theorem 2.2 provides the same optimal

MISE rate for the estimate  of the quantile curve of interest, under the additional

restriction . Theorem 2.3 shows that ζp is asymptotically Normal around 

with an asymptotic variance , under the same broad assumptions as in

Theorem 2.1. However, for asymptotic Normality of  around ζp, one needs the restriction

m = o(n2/3). For larger m, a bias correction of  is thus called for. It will be shown in a
companion paper (Bhattacharya and Lin (2010)), by extensive simulation and data analysis,
that the method proposed here performs quite favorably in comparison with other leading

Bhattacharya and Lin Page 3

Stat Probab Lett. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nonparametric methods, including the new method due to Dette et al. (2005) and Dette and
Scheder (2010)

2. Asymptotic Behavior
Let  denote the sample proportion of responses to the dosage xi (i = 1, . . . , m). For
simplicity, we assume in this section that ni = n for all i and that xi+1 − xi = 1/m for i =
1, . . . , m − 1. Let N = mn denote the total number of observations.

Theorem 2.1. Assume that the dose-response function F on [0, 1] is twice differentiable, f =
F′ has a positive lower bound θ and that F″ is bounded.

(a) The mean integrated squared error (MISE) of  has the asymptotically optimal rate
O(N−4/5) as N → ∞, if r = O(1), .

(b) If m/n1/4 → ∞, m = o(n3/2/(log n)5/2), then also the MISE of  is O(N−4/5), with a choice

of r satisfying .

Proof. (a) It follows from Bernstein's inequality, as in the proof of Theorem 1 in
Bhattacharya and Kong (2007), that there exist appropriate positive constants c, c′ such that
for n > 1,

(2.1)

It follows that if

(2.2)

then

(2.3)

for some c″ > 0. Let Bn denote the union of the two sets within parentheses in (2.1) and
(2.3). It is shown in Bhattacharya and Kong (2007), and simple to check using (2.1) to (2.3),
that, on , .

Let x ∈ [xi, xi+1]. By linearity of  on [xi, xi+1],

(2.4)

Also, for some x* ∈ [xi, xi+1],

(2.5)
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where ε(x) = F′(x*) − F′(x**) for some x*, x** lying in [xi, xi+1], and M = sup{|F″(x)| : 0 ≤ x
≤ 1}. Thus, noting that F,  are bounded by one,

(2.6)

and

(2.7)

From (2.4) and (2.5),

(2.8)

and, by subtracting (2.7) from (2.8) one gets

(2.9)

Hence

(2.10)

From (2.7) and (2.10) one obtains, on integration,

(2.11)

If , then the MISE attains its optimal rate (noting that mn = N, or n5/4 = O(N)),

.

(b) First observe that the r groups in ((1.6)) are essentially disjoint. Inclusion of (x1, ) and

(xm, ) in each group ensures that  (j = 1, . . . , r) is defined on all of [0, 1]. Note the strict
inequality ,  on , since the assumption m = o(n3/2/(log n)5/2) implies that (2.2)
holds with m/r in place of m.

If one has m/n1/4 → ∞, then using r essentially disjoint groups, and averaging, one has (See
(2.7), (2.10))

(2.12)
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The optimal choice of r is given by the relation  or, , yielding the

optimal rate: .

We now turn to the estimation of the curve F−1.

Theorem 2.2. Assume the hypothesis of Theorem 2.1.

(a) If m = O(n1/4) then, with r = 1, , one has .

(b) If m/n1/4 → ∞, but , then , with .

Proof. (a) For m = O(n1/4), one may consider r = 1 in (1.7). Then . Let p ∈ [pi, pi+1],
so that x = F−1(p) ∈ [xi, xi+1]. Then, on ,

(2.13)

First, consider, for an appropriate positive constant c1,

(2.14)

say. Then on , F(x) and  belong to . Using (2.13), the linearity of  on
 and (2.8), and writing

(2.15)

on , we get the following relation, noting that  is bounded by 1:

(2.16)

Here

(2.17)

Note that, on , , say, , so that
 for all sufficiently large n.

The expectation of (2.16) equals
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(2.18)

Now Eεn,3 is the sum of the following:

(2.19)

(2.20)

(2.21)

For the first relation in (2.21), use , and Eδn = 0. Hence the
bias (of  as an estimator of F−1(p)) is

(2.22)

Subtracting (2.18) from (2.16), one obtains

(2.23)

noting that  for some constant c‴. The term Op(N−2) is bounded by
civ1Bn, for some constant civ. Therefore,

(2.24)

It is relatively simple to check that the contribution from , 1 ≤ i ≤ m−1, to  is
negligible compare to that from . It is useful, however, to show that for
all p ∈ [0, 1], one has on , the relation

(2.25)
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where εn,4 = Op(1/m). Indeed,  on , for some cv > 0. To establish (2.25), note
first that if  then, although  (since x ∈ [xi, xi+1]), it may
happen that F(x) belongs to  or . On , there is no other possibility.

Now if , e.g., then, recalling that x = F−1(p),

(2.26)

in view of the linearity of  on both  and , but with different slopes (given
in curly brackets). But the second slope differs from the first by an amount εn,4 which is
easily shown to be no more than cv/m on . The MISE of  is then given by

(2.27)

Once again, the optimal choice of m is , and then the MISE has the optimal rate

(2.28)

(b) Next consider the case m/n1/4 → ∞, i.e., n = o(N4/5). Since , it is of
larger order than N−4/5, and hence the estimation is suboptimal. In this case, again consider r

groups of essentially disjoint equidistant dosages. Then the average  has bias
and variance (See (2.22) and (2.24)) given by

(2.29)

(2.30)

Assume that m is not very large, i.e., . Then the optimal choice of r is ,
since the term m/(rn) in (2.29) is not of larger order than (r/m)2, and one equates the orders

of 1/(rn) and (r/m)4 to get the optimal r. This yields the optimal MISE of , namely,

. □

Finally, we arrive at the asymptotic distribution of .

Theorem 2.3. Let p ∈ (0, 1). In addition to the hypothesis of Theorem 2.1, assume m/n1/4 →
∞. Then the following hold.

(a) With r = 1, , if m < (2/(cθ))(n/log n)1/2, then
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(2.31)

where

(2.32)

lies in [1/2,1], and x = F−1(p) = ζp.

(b) If m = o(n3/2/log5/2 n), then with ,

(2.33)

Here  is the average of the r quantities , 1 ≤ j ≤ r, of the form (2.32), one for each
subgroup with m/r dosages at a distance of r/m from each other.

(c) If m = o(n2/3/log log n), then with ,

(2.34)

Proof. (a) It follows from (2.16) (and (2.25)) that for p ∈ [pi, pi+1) one has, outside Bn,

(2.35)

Multiplying the two sides by , and noting that , the desired
Normal approximation holds.

(b) By (2.23), one has, outside Bn,

(2.36)

Using the analog of (2.36) for , one may apply Lyapunov's central limit
theorem (See, e.g., Bhattacharya and Waymire (2007), p.103) to the r summands

), 1 ≤ j ≤ r, and with m/r for m, to get the desired result. Note that
the summands have zero means, variances bounded away from zero and infinity, and
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bounded third moments, since  as m =

o(n3/2/log5/2 n), which also ensures that  (See (2.2), (2.3)).

(c) One has (See (2.22))

(2.37)

since , and .

Hence subtracting the bias from , (2.34) follows from (2.33).

Remark 2.1. Note that (2.33) implies that, with , the asymptotic variance of 
is O(N−4/5).

Remark 2.2. Theorems 2.1-2.3 easily extend to the case of non-equal sample sizes ni, 1 ≤ i
≤ m, and non-equidistant dosages x1 < . . . < xm, provided (1) the ratio of min{ni : 1 ≤ i ≤ m}
to max{ni : 1 ≤ i ≤ m} is bounded away from zero, and (2) the ratio of min{xi+1 − xi : 1 ≤ i ≤
m − 1} to max{xi+1 − xi : 1 ≤ i ≤ m − 1} is bounded away from zero.
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