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Abstract
Severe pulmonary arterial hypertension (PAH) is characterized by clustered proliferation of
endothelial cells in the lumina of small size pulmonary arteries resulting in concentric obliteration
of the lumina and formation of complex vascular structures known as plexiform lesions. This
debilitating disease occurs more frequently in women, yet both animal studies in classical models
of PAH and limited clinical data suggest protective effects of estrogens: the estrogen paradox in
pulmonary hypertension. Little is known about the role of estrogens in PAH, but one line of
evidence strongly suggests that the vascular protective effects of 17β-estradiol (estradiol; E2) are
mediated largely by its downstream metabolites. Estradiol is metabolized to 2-hydroxyestradiol
(2HE) by CYP1A1/CYP1B1, and 2HE is converted to 2-methoxyestradiol (2ME) by catechol-O-
methyl transferase. 2ME is extensively metabolized to 2-methoxyestrone, a metabolite that lacks
biologic activity but which may be converted back to 2ME. 2ME has no estrogenic activity and its
effects are mediated by estrogen receptors-independent mechanism(s). Notably, in systemic and
pulmonary vascular endothelial cells, smooth muscle cells, and fibroblasts 2ME exerts stronger
anti-mitotic effects than E2 itself. E2 and 2ME, despite having similar effects on other
cardiovascular cells, have opposing effects on endothelial cells; that is, in endothelial cells, E2 is
pro-mitogenic, pro-angiogenic and anti- apoptotic, whereas 2ME is antimitogenic, anti-angiogenic
and pro-apoptotic. This may have significant ramifications in severe PAH that involves
uncontrolled proliferation of monoclonal, apoptosis resistant endothelial cells. Based on its
cellular effects, 2ME should be expected to attenuate the progression of disease and provide
protection in severe PAH. In contrast, E2, due to its mitogenic, angiogenic, and anti-apoptotic
effects (otherwise desirable in normal, quiescent endothelial cells), may even adversely affect
endothelial remodeling in PAH and this may be even more significant if the E2’s effects on
injured endothelium are not opposed by 2ME (e.g., in the event of reduced E2 conversion to 2ME
due to hypoxia, inflammation, drugs, environmental factors, or genetic polymorphism of
metabolizing enzymes). This review focuses on the effects of estrogens and their metabolites on
pulmonary vascular pathobiology and the development of experimental PAH, and offers potential
explanation for the estrogen paradox in PAH. Furthermore, we propose that unbalanced estradiol
metabolism may lead to the development of PAH. Recent animal data and studies in patients with
PAH support this concept.
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Pulmonary hypertension is not a disease per se but rather a heterogeneous group of clinical
entities with broad spectrum of histopathological changes, defined by a single hemodynamic
parameter, a mean pulmonary artery pressure exceeding the upper normal limit of 25mmHg
at rest (1). The current classification of pulmonary hypertension subtypes (2) includes six
large groups (Table 1). Among these groups, pulmonary arterial hypertension (PAH) is a
group of diverse diseases with several clinical, histopathological and prognostic features in
common. PAH is characterized by severe and progressive increase in pulmonary artery
pressure that frequently leads to right ventricular failure and premature death (3). In addition
to media hypertrophy and appearance of smooth muscle cells in normally non-muscular
arteries (neomuscularization), pulmonary vascular disease in severe PAH is characterized by
clustered proliferation of endothelial cells in the lumina of small size pulmonary arteries
resulting in concentric obliteration of the lumina and formation of complex vascular
structures known as plexiform lesions (4).

This debilitating disease occurs worldwide more frequently in women (5-7), yet animal
studies suggest that estrogens have favorable effects in experimental PAH; this is the
estrogen paradox in PAH. Little is known about the role of estrogens in PAH, and the role of
estrogens with respect to vascular homeostasis in cardiovascular disease, including PAH,
remains unclear. The effects of E2 on the structure and function of pulmonary vasculature
are complex and still not completely defined, and may vary depending on the targeted
vascular layer (media vs. intima) and the condition of the endothelium (intact/quiescent vs.
dysfunctional/proliferative) . The plausible effect of E2 on phenotypically modified
endothelial cells (the highly proliferative, angiogenic, apoptosis resistant ECs that are seen
in severe PAH), would be to adversely affect the progression of disease. This contrasts with
the recently identified effects of the estradiol metabolite 2-methoxyestradiol (infra vide).

The goal of this review is to provide insight into the effects of estradiol and its metabolites
in PAH. The apparent contradictions posed by the overall effects of estrogens in
experimental and human PAH are discussed in the light of the complexity of estradiol
metabolism, limitations of the experimental models used and potentially significant
influence that the delicate balance between estradiol and its metabolites may exert on
pulmonary vascular homeostasis.

Estrogens and Pulmonary Arterial Hypertension
Estrogens exhibit a multitude of cardiovascular effects through genomic pathway by
transcriptional activation of their cytosolic or membrane-bound receptors (ER) α and β.
However, building evidence indicates an alternative rapid nongenomic pathway that
involves membrane G-protein-coupled ER (8,9). The effects of estrogens on pulmonary
vasculature are well defined and are mediated through both non-genomic and genomic
mechanisms. Thus estradiol, via rapid, non-genomic mechanisms, increases prostacyclin
release and production of nitric oxide (10,11), and through estrogen receptor-dependent
mechanisms increases endothelial cells’ eNOS mRNA levels and eNOS activity (12).
Furthermore, ovariectomy augments hypoxia-induced increase in endothelin-1 (ET-1) and
prepro-ET1 mRNA levels, and E2 replacement reduces hypoxia-induced increase in
preproET-1 mRNA and ET-1 peptide expression (13). The later effect of E2 is mediated via
inhibition of hypoxia-induced increases in ET-1 promoter and estrogen response element-
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mediated reporter gene activity and involves a functional interaction between ER and HIF-
dependent pathways. Notably, several reports suggest that 2ME (a major non-estrogenic
metabolite of E2 with little or no affinity for estradiol receptors) is more potent that E2 itself
in increasing prostacyclin and NO synthesis and in inhibiting endothelin synthesis (infra
vide). In vitro, estradiol causes vasorelaxation of pulmonary artery under normoxic
conditions (14) and inhibits hypoxic pulmonary vasoconstriction (15). Importantly,
exogenous E2 rapidly attenuates pulmonary artery vasoreactivity and acute hypoxic
vasoconstriction, suggesting non-genomic mechanisms of E2-induced pulmonary
vasorelaxation (16).

In experimental PAH induced by pneumotoxin monocrotaline (MCT) or by exposure to
chronic hypoxia, 17β-estradiol (E2) has protective effects. When exposed to chronic
hypoxia, female rats, mice and swine develop less severe PAH than male animals and
female rats with intact ovaries develop more severe PAH than ovariectomized (OVX) rats,
with estradiol attenuating the severity of disease in OVX rats (17-20). Also, estradiol
improves pulmonary hemodynamics and vascular remodeling in perinatal PAH in lambs
(21), suggesting that estradiol may be protective in PAH. Similarly, in rats with
monocrotaline-induced PAH females develop less severe disease than males (22,23);
pretreatment of male rats with E2 attenuates development of PAH and prevents against
pulmonary vascular remodeling and right ventricular hypertrophy (24); and ovariectomy
(OVX) exacerbates disease, whereas treatment of OVX rats with E2 attenuates it (25).
Finally, in female and OVX rats with MCT-induced PAH, both selective estrogen receptor
modulator raloxifene and phytoestrogens attenuate PAH (26,27).

The apparent beneficial effects of estrogens in MCT- and hypoxia-induced PAH
paradoxically oppose the female preponderance of the disease. In both chronic hypoxia and
MCT models, the hallmark vascular change is medial thickening with little or no alteration
of endothelium (Table 2). This opposes the marked endothelial alterations seen in severe
PAH in humans. As described below, in pulmonary artery for E2 to inhibit medial
remodeling may require intact and quiescent endothelium, and therefore hypoxia- and MCT-
induced PAH may not be appropriate model for studying the effects of estrogens in PAH.
Our recent findings support this notion. In a rat model of occlusive/angioproliferative PAH
which shares many features of the human form of the disease including endothelial
disruption (28,29;Table 2), female rats develop more severe PAH than males, ovariectomy
delays the development of PAH, and E2 has no preventive or therapeutic effects on elevated
pulmonary artery pressure in OVX rats (30). However, in this model (similarly to humans)
females develop less severe right ventricular hypertrophy than males. Finally, in recently
developed models of PAH in mice in which disease is induced by consumption of
dexfenfluramine (31) or over-expression of serotonin transporter (32) female gender does
not provide protection, but rather is permissive in the development of PAH. These recent
findings (30-32) contradict earlier studies of protective effects of female gender and
estrogens in classical models of experimental PAH (17-27), and suggest that the classical
models of PAH (i.e., chronic hypoxia and monocrotaline) may not be appropriate for
evaluation of the effects of estrogens in PAH.

Human studies, like animal studies, are inconclusive and even contradictory. That is, PAH
mainly develops in young women and females are at higher risk of developing PAH (33,34),
yet observational studies suggest estradiol may be protective against development of PAH in
high altitude natives (35) and among patients with systemic sclerosis (36,37). In contrast, a
recent study suggests that higher penetration of disease in women with a familial form of
PAH is due to altered E2 metabolism (38). Thus, women diagnosed with familial PAH who
have a bone morphogenic protein receptor type 2 mutation (BMPR2) have lower 2-
hydroxyestradiol /16α–hydroxyestrone urine level ratios than healthy women with the
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BMPR2 mutation and never diagnosed with familial PAH (39). Furthermore, female gender
is associated with increased risk of portopulmonary hypertension in patients with advanced
liver disease (39). Also, independently of gender, in patients with advanced liver disease,
genetic variation in aromatase (the rate-limiting enzyme in the conversion of androgens to
estrogens), which leads to elevated plasma estradiol levels, is associated with increased risk
of portopulmonary hypertension (40). Finally, the high prevalence of prolonged exposure to
exogenous estrogens in both premenopausal and postmenopausal women with PAH suggests
that estrogens may contribute to disease pathogenesis or susceptibility in PAH (41). The
above discussion underscores the need for further investigation of the role of estradiol
metabolism in PAH.

Estradiol Metabolism and Pulmonary Arterial Hypertension
The human body produces three estrogenic steroids: 17-β estradiol (estradiol), estrone and
estriol, with estradiol being the most important and estrone and estriol contributing only
marginally to the total estrogenic activity in premenopausal women. Biosynthetically,
estrogens arise from androstenedione or testosterone by aromatization of the A ring (Figure
1). Androstenedione is produced by both ovaries and adrenal glands in premenopausal
women and primarily from adrenal gland in postmenopausal women. Androstenedione and
its metabolic precursor dehydroepiandrosterone (DHEA), the most abundant circulating
steroids, can be converted to estrogens in a number of extragonadal tissues. Circulating
androstenedione is converted to estrone in peripheral tissues. Aromatase in adipose tissue
and skin fibroblasts is chiefly responsible for peripheral aromatization of androstenedione to
estrone, a weak estrogen. Although only small quantities of estrogens are produced by
individual adipocyte or skin fibroblasts, because of their relative abundance, these cells
contribute to circulating estradiol levels. Within the same tissue, estrogenically weak estrone
is further converted to 17β-estradiol (E2) by type-1 17β-hydroxysteroid dehydrogenase
(17β-HSD-1). Both enzymes are present not only in ovaries, but also in many other tissues.
Thus, E2, the biologically most active estrogen, in addition to direct secretion from the
ovary in reproductive-age women, is also produced in estrogen targeted physiologic tissues
(breast, brain, skin, adipocytes, vascular wall) or pathologic tissues (breast cancer,
endometriosis). Enzymes responsible for E2 synthesis are also present in cardiovascular
cells, i.e., endothelial and vascular smooth muscle cells (VSMCs) and cardiac fibroblasts
and myocytes (42,43); suggesting that local synthesis of estradiol may be important in the
cardiovascular system. Significant quantities of circulating androstenedione can also be
converted to testosterone. In peripheral tissues, testosterone behaves as a pro-hormone and is
converted into its active metabolites, 17β-estradiol and dihydrotestosterone (DHT), the most
potent estrogenic and androgenic hormone, respectively.

In both in men and women, E2 metabolism occurs primarily by oxidation and this oxidative
metabolism of E2 largely determines the nature of its biological effects (44), with dozen of
E2 metabolites found to be biologically active. The first step is the conversion of E2 to less
estrogenic estrone (E1) by oxidation at C17 position by 17 β -hydroxysteroid-dehydrogenase
(17β-HSD), a process that is reversible and favors formation of E1. The reverse reduction
may occur, albeit more slowly. Further metabolism includes the metabolic pathways, i.e.,
oxidation at C16, C4 and C2 position, resulting in production of biologically active “bad”
and “good” metabolites. In this regard, oxidative hydroxylation of the D ring at C16 is a
major metabolic pathway, the 16-hydroxylation pathway, which leads to the production of
estriol (16α–hydroxyestradiol) and 16α-hydroxyestrone. Estriol has less estrogenic activity
than E2. However, 16α-hydroxyestrone has estrogenic effects comparable to those of to E2,
with significant pro-inflammatory, pro-mitogenic and pro-angiogenic properties.
Furthermore, in contrast to E2, 16α-hydroxyestrone exhibits low binding affinity for sex
hormone binding globulin, and can covalently bind to estrogen receptors, causing prolonged
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hyper-estrogenic stimulus in targeted tissue, including proliferation (45,46). The C4
hydroxylation, although a minor metabolic pathway, leads to formation of 4-
hydroxyestradiol, a catechol estrogen with estrogenic and carcinogenic activity.

The other major metabolic pathway includes hydroxylation at C2 position. This 2-
hydroxylation pathway is the dominant pathway for E2 hydroxylation (47). In contrast to C4
and C16 hydroxylation, C2 hydroxylation is a direct process that involves no unstable
intermediates (48) and leads to formation of non-estrogenic metabolites. E2 is metabolized
to 2-hydroxyestradiol (2HE) by CYP1A1/CYP1B1. 2HE has little estrogenic activity and is
quickly cleared from the plasma (t/2=90′; 49) by prompt conversion (i.e., O-methylation by
catechol-O-methyltransferase) to 2-methoxyestradiol (2ME), a metabolite with no estrogenic
activity (50,51). Importantly, the CYP-450 isoforms largely responsible for 2-hydroxylation
of E2 (i.e., CYP1A1/2 CYP1B1) are expressed in cardiovascular cells, and conversion of
2HE to 2ME takes place in both endothelial cells and VSMCs (44,52-54).

2-Methoxyestradiol is extensively metabolized by type-2 17β-hydroxysteroid dehydrogenase
(17βHSD-2) to 2-methoxyestrone (2ME1), a metabolite largely lacking antiproliferative
activity. Importantly, over-expression and increased activity of 17βHSD-2 abolish the anti-
mitogenic effects of 2ME in tumor cells (55). 2ME1 has little or no antimitogenic effect in
cardiovascular cells, but may be converted back to 2ME by 17βHSD type-1 and thereby
exhibit cardiovascular effects. All-trans retinoic acid (atRA) increases 17βHSD type-1
expression and activity (56,57), and would thereby be expected to increase the conversion of
2ME1 to 2ME. Our preliminary studies confirm the importance of this metabolic conversion
in experimental PAH. In monocrotaline pulmonary hypertensive rats, preventive treatment
with 2ME1 attenuates development of PAH, right ventricular hypertrophy, and pulmonary
vascular remodeling (58;Table 3), suggesting that in vivo significant conversion of 2ME1
back to 2ME takes place in PAH (56). Furthermore, in male rats with MCT-induced PAH
treated with atRA, 2ME or their combination, 2ME and atRA have synergistic effects in
ameliorating PAH and vascular remodeling (59). These studies strongly suggest that
2ME-2ME1 inter-conversion takes place in vivo and that the 17β-hydroxysteroid
dehydrogenase pathway may play a significant role in the development of PAH.

Limited data exists regarding plasma levels of estradiol and its metabolites in PAH.
Importantly, in patients with liver disease, variation in the genes encoding for high activity
of aromatase (the rate-limiting enzyme in the conversion of androgens to estrogens) and
increased E2 plasma levels are associated with increased risk of portopulmonary
hypertension (40). Typical plasma 2ME levels in PAH patients are unknown, but in healthy
pre-menopausal women, we recently detected plasma concentrations of 2ME 2-3 fold higher
(60) than average menstrual cycle E2 plasma levels (61). A recent study suggests reduced
activity of the 2-hydroxylation pathway and reduced 2-hydroxyestradiol/16α-
hydroxyestrone ratios in urine in women with familial PAH (38), and it is plausible to
expect reduced 2ME plasma levels in PAH.

Hypoxia, and oxidative stress in general, play significant roles in experimental and human
PAH (62), and both hypoxia and oxidative stress down-regulate expression of CYP1A1/2
(63,64), key enzymes controlling the 2-hydroxylation pathway. Hypoxia not only affects E2
metabolism, but also has significant influence on pulmonary vascular remodeling,
stimulating proliferation of pulmonary ECs, VSMCs, and adventitial fibroblasts (65), and
hypoxia and E2 have synergistic mitogenic effects in endothelial cells (66).

Inflammation is also considered to be an important component in the pathobiology of
various types of human PAH because the mediators of inflammation cause vasoconstriction
and inflammatory factors/cells may contribute to vascular remodeling (67,68). Both elevated
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levels of pro-inflammatory cytokines (69) and the presence of inflammatory cells around
plexiform lesions, including macrophages and T and B lymphocytes, have been reported in
patients with PAH (70). Inflammatory cells such as macrophages and lymphocytes and pro-
inflammatory cytokines such as TNFα, and IL-6 strongly induce aromatase activity (71-73)
and peripheral E2 synthesis (74). Notably, estriol (16α-hydroxyestradiol; E3) strongly
stimulates the expression of TNFα and IL-6 (75), and thus the shift toward the 16α-
hydroxylation pathway should be expected to increase peripheral E2 synthesis. In contrast,
2ME inhibits both basal and TNFα stimulated aromatase activity (76) and thereby may
reduce extragonadal synthesis of E2; elevated aromatase activity and plasma E2 levels are
associated with increased risk of PAH in patient with portopulmonary PAH (40). Recent
studies indicate that in two common inflammatory autoimmune diseases, rheumatoid
arthritis (RA) and systemic lupus erythematosus (SLE; a disease with female
preponderance), inflamed tissue in both female and male patients hosts significant peripheral
conversion of upstream androgenic precursors (androstenedione and testosterone) to
estrogens (estradiol and estrone; 71,77,78). Furthermore, a shift in E2 metabolism toward
the 16-hydroxylation pathway and production of mitogenic, angiogenic and pro-
inflammatory metabolites estriol and 16α-estrone have been reported in patients with RA or
SLE (77,78). The fact that the changes are detected in both genders and in two different
immunologic diseases (TH1 vs. TH2) suggests that increased peripheral E2 production and
altered E2 metabolism is not gender or disease specific, but rather occurs in a pro-
inflammatory environment. The effects of inflammation on E2 metabolism in PAH are
unknown. Nonetheless, similarly to the case in other autoimmune inflammatory diseases
with female preponderance (RA and SLE), it is plausible that in the pro-inflammatory
environment observed in PAH, alterations in E2 metabolism toward increased production of
estrogenic, pro-inflammatory, angiogenic and mitogenic metabolites may take place, and
that this may adversely affect the pathobiology of severe PAH. Based on the cellular effects
of E2 and 2ME discussed below, we propose that conditions leading to unbalanced E2
metabolism (hypoxia, oxidative stress, inflammation, drugs, genetic polymorphism of
metabolizing enzymes), i.e., increased E2 and decreased 2ME, may have adverse effects on
pulmonary vascular remodeling and progression of disease in severe PAH.

Estradiol Metabolites and Vascular Pathobiology in PAH
A severe form of PAH in humans is characterized by clustered proliferation of endothelial
cells (ECs) in the lumina of small size pulmonary arteries resulting in concentric obliteration
of the lumina and the formation of complex vascular structures known as plexiform lesions
(79). Compared with normal ECs, the endothelial cells in affected vessels show reduced
prostacyclin and nitric oxide synthesis (80,81) and over-expression of endothelin-1 (82).
Three-dimensional analysis of vascular lesions reveals the existence of two EC phenotypes
in severe PAH: (i) normal quiescent, apoptosis-sensitive ECs located in the peripheral areas
that are negative for phosphorylated MAPK and have a high expression of cell cycle
inhibitory protein p27kip1 (a marker of low growth potential), and (ii) highly proliferative,
apoptosis-resistant cells in the central core of the vascular lesion that have elevated MAPK
activity and increased expression of HIF1-α, VEGF protein and VEGF-2 receptor and low
expression of p27kip1 (4,83). Thus, the tumor-like proliferation of ECs may be the
underlying process in severe PAH (84). Therefore, it is conceivable that agents that reverse
the above alterations and have strong anti-proliferative, anti-angiogenic, and pro-apoptotic
effects would be effective in the treatment of severe PAH. The published data suggest that
this may be the case with 2-methoxyestradiol.

Cumulating evidence suggests that E2 and its downstream metabolites may differ
significantly in regard to their antimitogenic effects in cell lines involved in pulmonary
vascular remodeling and fibrosis. Both the antimitogenic effects of E2 on proliferation of
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various types of animal and human vascular smooth muscle cells (VSMCs) and the
beneficial effects of E2 on vascular remodeling in systemic circulation are well documented
(85,86). However, data on the effects of E2 on pulmonary artery vascular smooth muscle
cells (PASMCs) are limited, and it seems that the effects of E2 on PASMCs may differ from
those in systemic VSMCs. In this regard, Farhat et al. (87) have reported that E2 dose-
dependently stimulates thymidine incorporation in rat PASMCs; furthermore, in canine
pulmonary arterial segments, E2 tends to inhibit PASMCs proliferation in segments with
intact endothelium, but significantly stimulates thymidine incorporation in segments
stripped of endothelium (87). It is possible that E2 may have different anti-remodeling
effects on systemic and pulmonary blood vessels of different phylogenetic origin.
Additionally, our own recent study in human PASMCs indicates that 2ME exhibits
concentration-dependent antigrowth effects whereas E2 has only mild antimitogenic effects
and only at micro molar (pharmacological) concentrations (88). Therefore, it is plausible
that, in contrast to the well described inhibitory effects of E2 on pulmonary vascular
remodeling in classical models of PAH (infra vide; Table 3), in PAH patients with severely
altered endothelium, E2 may have no effect on media remodeling or, as described below,
may even adversely affect endothelial remodeling.

In human pulmonary artery endothelial cells (hPAECs), E2 stimulates proliferation at
physiological concentrations (1–10 nM), has no effects at high physiological concentrations
(100 nM), and inhibits EC growth at pharmacological concentrations (1 μM and 10 μM; 89).
This is consistent with the previous report of biphasic effects of E2 on growth of human
umbilical vein ECs (90). E2, via estrogen receptors, promotes the phosphorylation of p42/44
and p38 MAPK and downregulates cell cycle inhibitor p27Kip1, stimulates migration and
proliferation of ECs, induces the synthesis of VEGF and HIF-1α expression, and protects
ECs against apoptosis (91-94). The antigrowth effects of E2 observed at higher
concentrations may be explained by E2 conversion to 2ME, as both enzymes critical to this
conversion (CYP1A1 and COMT) are present in ECs. Further studies should test this
possibility. In contrast to E2, 2ME at physiological concentrations (1– 10 nM) had no effects
on hPAEC growth (88,110), but significant though mild stimulatory effects on human
umbilical vein ECs (90). It is not clear whether this discrepancy is due to different
experimental conditions or to the different EC type examined. In this regard, at 100 nM
concentrations, 2ME stimulates the growth of porcine vascular ECs, but has antimitogenic
effects in rabbit vascular endothelial cells (95).

Previous studies of cellular growth in fibroblasts from various origins reveal both
stimulatory and inhibitory properties of E2 (96,97). The variable effects of E2 may reflect
the phenotypic heterogeneity among fibroblasts, including their differentiation into
myofibroblasts. In fetal lung fibroblasts, E2 produces an antimitogenic effect only at micro
molar concentrations (98), whereas in our recent study in human lung fibroblasts (hLFs), E2
had no effects on hLFs growth in concentrations up to 10 μM, while 2ME concentration-
dependently (10nM-10uM) inhibited proliferation (88). Importantly, in all three types of
cells involved in pulmonary vascular remodeling (hPAECs, hPASMCs and hLFs), the
synthetic estradiol analog 2-ethoxyestradiol (2EE) is ten times more potent than 2ME in
inhibiting growth (89). 2EE also inhibits vascular remodeling in MCT-induced PAH (89),
suggesting that anti-proliferative agents, including synthetic analogs of estradiol metabolites,
may be protective in PAH.

2ME is extensively metabolized by 17βHSD-2 to 2ME1, a metabolite largely considered to
be biologically inactive. Indeed, recently we confirmed that in hPASMCs and human lung
fibroblast only at high pharmacological concentration (10μM) 2ME1 has mild (−10%) anti-
mitogenic effects (58). However, in the presence of retinoic acid, a type-2 17βHSD-2
inducer, 2ME1 strongly and concentration-dependently (10nM-10μM) inhibits growth in
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both types of cells (58), indicating that 2ME– 2ME1 inter-conversion takes place in cells
involved in vascular remodeling in PAH. The fact that very fast cellular uptake and high
(micromolar) intracellular plasma concentrations of 2ME have been reported (99), suggests
that 2ME disposition, i.e., 2ME2-2ME1 inter-conversion may play critical role in the
biological and pharmacological effects of 2ME in PAH.

The first important aspect of the cellular effects of 2ME is that this major non-estrogenic
metabolite of estradiol may modify many of the previously described alterations seen in
humans with severe PAH, including levels of prostacyclin, endothelin and nitric oxide, three
targets for currently approved therapies for PAH. In this regard, 2ME is markedly more
potent, and 2HE somewhat more potent, than E2 itself in increasing prostacyclin synthesis
and release (100,101) and in inhibiting endothelin synthesis and MAPK activity in
endothelial cells (102), and 2ME is more potent than E2 in stimulating both basal and
ionophore induced-NO release from aortic endothelium (103). The order of potency
(2ME>2HE>E2) for inhibition of endothelin synthesis and MAPK activity is opposite the
order of potency for binding to or activation of estrogen receptors, suggesting the
involvement of estrogen receptor-independent mechanisms. At the present in is not clear
whether stimulatory effects of E2 on prostacyclin and NO synthesis/release and inhibitory
effects of E2 on endothelin system are mediated in part by its downstream metabolite 2ME.
Importantly, 2ME inhibits cell growth and induces apoptosis in actively growing, but not in
quiescent, endothelial cells (104,105). Furthermore, in a rat model of endothelial injury, 2-
ME up-regulates p27Kip1, a key cell cycle inhibitor and a marker of low growth potential
(106). 2ME also inhibits the synthesis of hypoxia–inducible factor-1α (HIF-1α 107,108), a
transcription factor which regulates more than forty genes and their respective protein
products, including those that play a key role in vascular reactivity and remodeling,
angiogenesis, and cell proliferation (109). The significance of HIF-1α is evident (i) in severe
PAH in humans where HIF-1α is over-expressed in obliterative endothelial lesions (4); (ii)
in MCT- and chronic hypoxia-induced PAH, where a similar time dependent increase in
HIF-1α levels correlates with the development of PAH and vascular remodeling (110; and
(iii) in mice where heterozygous deficiency of HIF-1α and HIF-2α protects against
development of PAH (111,112).

The second important aspect of the cellular effects of 2ME is that at the endothelium level,
2ME may behave as a biological antagonist to E2. First, contrary to the case in other
cardiovascular cells, E2 and 2ME have opposing effects on endothelial cells, a pivotal cell
type in the pathobiology of PAH. Second, at physiological concentrations, 2ME interferes
with non-genomic, ERα-mediated action of E2. Thus, in human leiomyoma cells, over-
expression of COMT inhibits E2-induced proliferation, ERα signaling and HIF-1α
expression (113), and importantly, the same effects are produced by 2ME. Similarly, in
breast cancer cells, physiological concentrations (10-50nM) of 2ME inhibit the E2-induced
growth and prevent E2-induced Akt phosphorylation (114). Therefore, it is plausible that in
endothelium 2ME antagonizes the effects of E2.

Based on its cellular effects, as a unique endogenous molecule, 2ME may be capable of
correcting key alterations in pulmonary vasculature seen in severe PAH, and therefore
should be expected to provide protection in severe PAH. Indeed, our previous studies
unequivocally confirm that 2ME and its metabolic precursors and analogs are effective in
treatment and prevention of experimental PAH in rats. Thus, in male rats, 2ME, its
metabolic precursor 2HE, and/or its synthetic analog 2-ethoxyestradiol attenuate MCT-,
hypoxia-, and α-naphthylthiourea-induced PAH (89,115-119). Furthermore, in studies in
ovariectomized female rats with MCT-induced PH and bleomycin-induced pulmonary
fibrosis and PAH, 2ME mediates the protective effects of E2 (89,120). Also, in a model of
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occlusive angioproliferative PAH, 2ME, but not E2, has preventive and therapeutic effects
in intact and OVX female rats (30).

The effects of progestins and androgens in experimental PAH
The effects of progestins in experimental PAH have been poorly studied and the effects of
progesterone in patients with PAH are unknown. This is surprising, as progesterone
receptors are expressed in intact human endothelial cells (ECs) and in modified ECs within
plexiform lesions from patients with PAH (121,122); natural progesterone inhibits
proliferation of ECs and VSMCs (123-126); and progesterone exerts vasodilatatory
properties in various vascular beds (127,128). With this mind, we recently examined the
effects of natural progesterone and synthetic progestins medroxyprogesterone and tibolone
on the development of MCT-induced PAH in ovariectomized female rats. Progesterone
attenuated development of PAH and right ventricular hypertrophy and inhibited pulmonary
vascular remodeling (129). In a separate study, medroxyprogesterone showed effects similar
to progesterone, and notably, tibolone, a combined progestin/estrogen compound, prevented
development of PAH and RV hypertrophy and eliminated MCT-induced late (35 days post-
administration) mortality (130). These studies are limited by the fact that they were
conducted in estradiol (E2) deficient animals, and therefore, it is unclear whether
progesterone would demonstrate the same effects on PAH development in the presence of
E2, given the significant and complex receptor-level interaction between the two
compounds. Further studies are warranted to investigate more fully the role of progesterone
in PAH and how its interaction with E2 influences its effects.

There are no data on the effects of testosterone in PAH and limited data concerning its
effects on pulmonary circulation. Testosterone induces vasodilation in the isolated rat
pulmonary vasculature most likely via calcium antagonistic effects (131), and it has been
confirmed that in isolated human pulmonary arteries, these vasodilatory effects are
independent of gender (132). In rodents, testosterone is an even more potent pulmonary
vasodilator than estradiol (133). Interestingly, recent studies suggest that
dehydroepiandrostendione (DHEA), which serves as a circulating precursor for both
estradiol and testosterone, has significant effects in experimental PAH. DHEA protects
against development of PAH and reverses PAH associated with chronic hypoxia (134-136),
and these effects are associated with increased expression and function of pulmonary artery
Ca++ activated K+ channels (135) and upregulated soluble guanylate cyclase (136).
Furthermore, DHEA reverses PAH in male rats with PAH induced by MCT and unilateral
pneumectomy (which exhibits neointimal proliferation) and also in a model of occlusive/
angioproliferative PAH (SU5416+hypoxia; 137,138); treatment with DHEA is associated
with increased plasma levels of both E2 and testosterone. The fact that DHEA and its
sulfated ester DHEAS have the highest level of all circulating steroids indicates that
interconversion of circulating steroid hormones (Figure 1) may serve as the mediator of the
female predominance of human PAH, but data regarding the effects of DHEA in female
animal models and patients with PAH are lacking.

Hypothesis
We previously proposed (115) that the apparent contradictions posed by the overall effects
of estrogens in both experimental and human PAH—the estrogen paradox in PAH—may be
explained by the complexity of estradiol metabolism and the influential balance between
estradiol and its metabolites on pulmonary vascular homeostasis (Figure 1). We further
propose that in PAH, 2ME present in injured endothelium acts as biological antagonist of
E2, and inhibits the mitogenic, angiogenic, and anti-apoptotic effects of E2 ( effects
otherwise desirable in normal, quiescent endothelial cells). The adverse vascular effects of
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E2 in PAH may be even more significant if they are not opposed by 2ME (e.g., in the event
of reduced E2 conversion to 2ME due to hypoxia, inflammation, drugs, environmental
factors or genetic polymorphism of metabolizing enzymes). Both local conversion of
estradiol to 2-methoxyestradiol and in situ 2ME disposition (i.e., 2ME -2ME1 inter-
conversion by 17β-HSD) may have a beneficial impact on vascular pathobiology in PAH.
Therefore, we hypothesize that unbalanced estradiol metabolism (i.e., a shift toward the 16-
hydroxylation pathway and/or reduced activity of the 2-hydroxylation pathway,
corresponding to elevated E2 and decreased 2ME levels) increases the risk of PAH and/or
exacerbates the progression of disease.

Future directions
The female preponderance of PAH is well documented, yet our understanding of the role of
estrogens in development and progression of PAH are quite limited. Further studies of
estradiol metabolism and in-depth investigation of the vascular effects of the more than
dozen biologically active metabolites of E2 in PAH are required. Preclinical studies should
include newer animal models of PAH with significant pulmonary endothelial injury and
with genetically or pharmacologically altered E2 metabolism. The highly selective and
sensitive liquid chromatography-mass spectrometry methods rapidly becoming available for
simultaneous quantification of multiple estradiol metabolites should foster further
investigation and elucidation of the roles of E2 and its metabolites in PAH.

The effects of 2ME in patients with PAH are unknown. However, in several clinical studies
investigating the potential antitumor effects of 2ME, high doses of 2ME were well tolerated
in patients with solid malignancies (156). Likewise, in a phase I clinical trial in healthy
volunteers, we recently detected no estrogenic or other adverse effects from a
subcutaneously injected long-acting formulation of 2ME in doses up to 10 mg/kg (157).
Both agents with strong anti-proliferative, anti-angiogenic and pro-apoptotic effects, such as
2-methoxyestradiol, and interventions that increase the bioavailability of endogenous 2ME
potentially could be effective in the treatment of severe PAH. In this regard, a dozen 2ME
analogs and inhibitors of 17β-HSD (which may improve 2ME disposition) have been
synthesized and are available for pharmacological evaluation, including investigation of
potential therapeutic effects in PAH.

Finally, our knowledge about the effects of progestins and androgens in PAH are scant at
best. Progestins and androgens may also have significant influence on vascular
pathobiology; because of their significant multilevel interactions with estrogens, further
studies in both animals and humans are needed to fully understand the effects of sex steroid
interplay on the development and progression of PAH.
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Figure 1.
Estradiol metabolism and metabolic inter-connections of estrogens, progestins and
androgens, and their gonadal and/or adrenal precursors (* - Studied in experimental PAH;
See Table 1); Figure 1A - Oxidative metabolism of E2 mainly occurs at the C2, C4 and C16
positions and leads to formation of metabolites with different and often contrary biological
effects.
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Figure 2. The potential role of estradiol metabolism in PAH
(A) Activities of 2-hydroxylation, 16α-hydroxylation and 17β–HSD pathways determine the
overall biological effects of E2 in PAH. (B) In endothelial cells, 2-methoxyestradiol (2ME)
is a more potent modulator of prostacyclin, endothelin and nitric oxide synthesis/release than
estradiol (E2); 2ME and E2 have opposite effects on endothelial pathobiology in PAH (2HE,
2-Hydroxyestradiol; 2ME1, 2-Methoxyestrone; E3, Estriol; 16αE1 , 16α–Estrone).
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Table 1

Updated Clinical Classification of Pulmonary Hypertension (Dana Point 2008) 2

1. Pulmonary arterial hypertension (PAH)

1.1.Idiopathic PAH

1.2.Heritable

1.2.1. BMPR2

1.2.2. ALK1, endoglin (with or without hereditary hemorrhagic telangiectasia)

1.2.3. Unknown

1.3. Drug- and toxin-induced

1.4. Associated with

1.4.1. Connective tissue diseases

1.4.2. HIV infection

1.4.3. Portal hypertension

1.4.4. Congenital heart diseases

1.4.5. Schistosomiasis

1.4.6. Chronic hemolytic anemia

1.5 Persistent pulmonary hypertension of the newborn

1″. Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary hemangiomatosis (PCH)

2. Pulmonary hypertension owing to left heart disease

2.1. Systolic dysfunction

2.2. Diastolic dysfunction

2.3. Valvular disease

3. Pulmonary hypertension owing to lung diseases and/or hypoxia

3.1. Chronic obstructive pulmonary disease

3.2. Interstitial lung disease

3.3. Other pulmonary diseases with mixed restrictive and obstructive pattern

3.4. Sleep-disordered breathing

3.5. Alveolar hypoventilation disorders

3.6. Chronic exposure to high altitude

3.7. Developmental abnormalities

4. Chronic thromboembolic pulmonary hypertension (CTEPH)

5. Pulmonary hypertension with unclear multifactorial mechanisms

5.1. Hematologic disorders: myeloproliferative disorders, splenectomy

5.2. Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis: lymphangioleiomyomatosis, neurofibromatosis,
vasculitis

5.3. Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders

5.4. Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on dialysis
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Table 2

Rodent Models of Pulmonary Arterial Hypertension

Experimental Model Species Clinical and histopathological features

Classical models of PAH

Monocrotaline (MCT) 141-143 Rats
(Mice)

In rats, initial mild endothelial injury and early influx of
mononuclear inflammatory cells and vascular
inflammation (Day 3-7), significant media remodeling
and adventitia widening (Week 1-2) and low survival
rate (Week 5 post MCT). No neointimal occlusive
lesions. In mice less predictable effects.

Chronic Hypoxia 143-146 Rat
Mice

In mice minimal vascular remodeling with mild
neomuscularization and media thickening. In rats,
more pronounced media remodeling but no intimal
injury; younger animals more sensitive; distinct
difference in gene expression induced by hypoxia
between mice and rats. Animals partially or fully
recover after re-exposure to normoxia.

New models of “human-like” PAH

VEGF antagonist SU5416 +
Chronic Hypoxia 28,29,140 Rat

Development of severe and persistent PAH. Disease
continues to progress after removing animals from
hypoxic environment; precapillary occlusive
endothelial proliferation and formation of plexiform
lesions.

Monocrotalin + Unilateral
Pneumonectomy 147-149 Rat

Media hypertrophy and formation of occlusive
neointimal lesions. Younger rats develop perivasular
proliferative lesions positive for VEGF receptor 2 and
α–SM actin.

Genetically modified models of PAH

- Vasoactive intestinal peptide
KO (VIP −/−) mouse150
- Overexpression of IL6 151
- Overexpression of S100A4
/Mits1 153,152
- Heterozygous BMPR2-mutant
mice154

Mice
Develop PAH spontaneously or under hypoxia; not
fully characterized models; neointimal injury and/or
plexiform lesions present in some but not all models.

Endothelin B receptor deficient
rat +MCT155 Rats Occlusive neointimal lesions develop in distal

pulmonary arteries
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Table 3

The Effects of Gender and Sex Steroid Hormones and Their Metabolites and Analogs in Experimental
Pulmonary Hypertension

Animal Model Intervention
Treatment

Effects Refernce

Monocrotaline Gender effects Female rats develop less severe
PAH

Kiyamate et al 199222
Kiyamate et al 199423

Monocrotaline Pretreatment with E2
in male rats

Protection against pulmonary
vascular remodeling and right
ventricular hypertrophy

Fargan et al. 199324

Monocrotaline E2 treatment in OVX
rats

Ovariectomy exacerbates and
estradiol attenuates RV hypertrophy

Ahn et al. 200325

Monocrotaline Raloxifen in intact
females (F) and OVX
rats

Prevents development of PAH in F
and OVX rats.
More effectively inhibits RV
hypertrophy and vascular remodeling
in OVX than F rats.

Nishida et al. 200926

Monocrotaline Phytoestrogens Attenuates development of PAH Homma et al. 200627

Monocrotaline 2-methoxyestradiol Preventive and therapeutic effects in
male rat

Tofovic et al. 2005115
Tofovic et al. 2010118

Monocrotaline 2-hydroxyestradiol Preventive effects in male rats Tofovic et al. 2005115

Monocrotaline 2-methoxyestradiol in
ovariectomized rats

Ovariectomy exacerbates PAH,
whereas 2ME attenuate PAH in OVX
rats

Tofovic et al. 2006120

Monocrotaline 2-ethoxyestradiol Attenuates development of PAH and
vascular remodeling

Tofovic et al. 200889

Monocrotaline 2Methoxyestradiol +/−
retinoic acid

Synergistic effects of 2ME with
retinoic acid on amelioration of PAH

Tofovic et al. 200859

Monocrotaline 2-methoxyestrone Attenuates development of PAH Tofovic et al. 200958

Monocrotaline 2-methoxyestradiol +/−
sildenafil or bosentan

Synergistic effects of 2ME with
bosentan or sildenafil on amelioration
of PAH and vascular remodeling

Tofovic et al.
2010a119

Hypoxia Gender, Age Female rats develop less severe RV
hypertrophy and vascular
remodeling; ovariectomy
exacerbates PAH; younger animals
more sensitive to hypoxia

Smith et al 197417
Rabinovitch et al

1981182

Resta et al 200119

Hypoxia Preventive and
therapeutic effects of 2-
methoxyestradiol in
male rats

Reduces PAH, RV hypetrophy and
vascular remodeling

Tofovic et al. 2006116

Hypoxia DHEA or DHEAS in
male rats

Inhibits and reverses PAH Hampl et al. 2003134
Bonett et al. 2003136

Oka 2007136

Bleomyci-
ninduced PAH
and pulmonary
Fibrosis

OVX, 2ME Ovariectomy exacerbates disease,
whereas 2ME attenuate pulmonary
fibrosis and PAH in OVX rats

Tofovic et al. 200988

Perinatal PAH in
lamb

In utero estradiol
treatment

Reduces pulmonary vascular
resistance to normoxia and hypoxia
and inhibits vascular remodeling

Parker et al. 200021

α-naphthyl-
thiourea-induced
PAH

2ME Decreases pleural effusion, reduces
acute mortality and attenuates PAH
in male rats

Tofovic et al. 2005117

SERT Mice Over-expression of
serotonin transporter

Only female SERT mice develop
PAH

Dempsie et al.
2009a32
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Animal Model Intervention
Treatment

Effects Refernce

Exposed to hypoxia, wild type
females develop less severe PAH
than wild type male mice whereas
hypoxic females SERT mice develop
more severe PAH than male SERT
mice.

Dexfenfluramine
induced PAH

Gender effects Only female mice develop PAH Dempsie te al.
2009b31

Monocrotaline Progesterone in OVX
rats

Attenuates the development of PAH Tofovic et al 2009129

Monocrotaline Medroxyprogesterone
in OVX rats

Attenuates the development of PAH Jones et al. 2006130

Monocrotaline Tibolone Prevents against development of
PAH

Jones et al. 2006130

Monocrotaline
and unilateral
pneumectomy

DHEA Reverses the development of PAH Homma et al 2008137

Occlusive-Angio-
proliferative PAH
in rats

DHEA Attenuates established severe PAH Alzoubi et al.
2010138

Occlusive-Angio-
proliferative PAH
in rats

Gender effects Females protected against RV
hypertrophy; Variable effects of
female gender on PAH

Sweeney et al.
2009139

Occlusive angio-
proliferative PAH
in rats

Gender effects
Ovariectomy
Estradiol
2-Methoxyestradiol

Females develop more severe PAH,
but less RV hypertrophy than males;
OVX does not exacerbate PAH; E2
and 2ME have similar effects in
attenuating RV hypertrophy; 2ME,
but not E2, has
preventive/therapeutic effects

Tofovic et al. 200930
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