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Abstract
Concentric tube robots are a subset of continuum robots constructed by combining pre-curved
elastic tubes. As the tubes are rotated and translated with respect to each other, their curvatures
interact elastically, enabling control of the robot's tip configuration as well as the curvature along
its length. This technology is projected to be useful in many types of minimally invasive medical
procedures. Because these robots are flexible by design, they deflect considerably when applying
forces to the external environment. Thus, in contrast to rigid-link robots, their kinematic and static
force models are coupled. This paper derives a multi-tube quasistatic model that relates tube
rotations and translations together with externally applied loads to robot shape and tip
configuration. The model can be applied in robot design, procedure planning as well as control.
For validation, the multi-tube model is compared experimentally to a computationally-efficient
single-tube approximate model.

I. Introduction
The goal of minimally invasive surgery (MIS) is to interact with tissue deep inside the body
while minimizing collateral damage to surrounding tissues. In contrast to open surgery in
which access is gained by making large incisions, MIS involves entering the body through
small incisions and, whenever possible, following natural passages through the tissues to
reach the surgical site. Manual and robotic catheters are successful examples of an MIS
instrument technology which have been specifically developed for procedures inside the
vasculature [1],[2].

There are many medical procedures that could benefit from an instrument technology with
the ability of catheters to follow complex curves, but which require much more tip stiffness
than that of a catheter. These include structural repairs inside the heart and tissue removal
inside the brain.

Few instrument technologies exist, however, that possess significant tip stiffness in
combination with the ability to assume 3D curves inside the body. Conventional surgical
robots, for example, possess high stiffness, but consist of straight shafts comparable to
traditional laparoscopic tools [3]. To address this shortcoming, bending snake-like robotic
extensions have been proposed and constructed for mounting at the tip of the straight shaft
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[4]. A novel, alternate approach consists of a robotic sheath that can be extended along a 3D
curve [5].

Concentric tube robots offer a good compromise between shape control and stiffness. As
illustrated by the example of Fig. 1, they can be constructed to possess a full six degrees of
freedom at their tip while also enabling control of curvature along their length. Furthermore,
they can be constructed with diameters comparable to catheters and lengths sufficient to
reach anywhere inside the body while achieving a tip stiffness several orders of magnitude
greater than that of a catheter. The lumen of the innermost tube can house additional tubes
and wires for controlling articulated tip-mounted tools.

Concentric tube robots, like steerable catheters [1],[2] and snake-like multi-backbone
devices [4], are continuum robots. In comparison to traditional robot arms, this class of
robots lacks distinct links and joints. Continuum robots possess the shape of a smooth curve
whose curvature can be controlled by adjusting the internal deformation of mechanically
coupled elastic components of the body.

Consequently, the kinematic modeling of continuum robots cannot be formulated solely in
terms of constrained motion between rigid bodies, but must also incorporate deformation
modeling of the elastic components [1],[4],[6]-[9]. For concentric tube robots, the
deformation is that of the individual tubes [6]-[9].

Owing to both the complexity of the modeling problem as well as to the desire to derive
numerically efficient models for real-time control, a succession of kinematic models of
increasing complexity have been proposed over the last few years as described in [8]-[9].
While providing significantly improved accuracy over earlier models, these new models are
considerably more complex. They consist of second-order differential equations with split
boundary conditions. To achieve computational efficiency, these equations can be pre-
computed over the workspace and stored either in the form of a functional approximation or
as a lookup table [8]. The inverse kinematic problem can be solved efficiently by root
finding on the approximate forward solution [8]. Alternately, an inverse functional
approximation or lookup table can be similarly constructed.

While the kinematic models of [8]-[9] assume that there is no external loading applied to the
robot (see [10] for an exception), applications in minimally invasive surgery can be expected
to involve loads applied along the robot's length as well as at its tip. Unlike robots whose
links can be approximated as rigid bodies, however, the kinematic and static force models of
continuum robots cannot be decoupled.

Thus, when considering the important case of external loads applied to the robot, the model
for implementing position, force or impedance control takes the form of a coupled 3D beam-
bending problem in which the kinematic input variables (tube rotations and displacements at
the proximal end) enter the problem as a subset of the boundary conditions. The remaining
boundary conditions are comprised of point forces and torques applied to the distal ends of
the tubes. Contact along the robot's length (e.g., with tissue) generates additional distributed
and point loads.

In contrast to the models of [8]-[9], the inclusion of external loading significantly increases
the number of state variables that must be integrated along the lengths of the tubes. As an
alternative to this full-order model, a computationally-efficient approximate model that can
be applied to all types of continuum robots has been proposed and successfully implemented
for concentric-tube robot stiffness control [11]-[13]. In this approach, the continuum robot is
modeled as a single Cosserat rod with properties along its length corresponding to the
composite stiffnesses and initial curvatures of the unloaded robot.
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The contributions of this paper are the derivation of a multi-tube quasistatic model as well as
a computational and experimental comparison of the multi-tube model with the single-tube
model of [11]-[13]. The paper is arranged as follows. Section II derives the multi-tube
externally-loaded model. Section III presents the simplified single-tube approximate model.
Section IV provides an experimental comparison of the models. Conclusions are presented
in Section V.

II. Quasistatic Multi-Tube Model
The multi-tube model derived here can be interpreted as an extension of the unloaded model
presented in [8]. It includes bending and torsion for an arbitrary number of tubes whose
curvature and stiffness can vary with arc length. Effects that are neglected include shear of
the cross section, axial elongation, nonlinear constitutive behavior and friction between the
tubes. Note that these effects are neglected, but are not necessarily all negligible.

In the remainder of the paper, subscript indices i = 1, 2,…, n are used to refer to individual
tubes with tube 1 being outermost and tube n being innermost. Arc length, s, is measured
such that s = 0 at the proximal end of the tubes. The total length of each tube is designated
by Li.

As illustrated in Fig. 2, for two tubes, material coordinate frames for each cross section can
be defined as a function of arc length s along tube i by defining a single frame at the
proximal end, Fi (0) , such that its z axis is tangent to the tube's centerline. Under the
unrestrictive assumption that the tubes do not possess initial material torsion, the frame, Fi
(s), is obtained by sliding Fi (0) along the tube centerline without rotation about its z axis
(i.e., a Bishop frame [14]). As the tubes move, bend and twist, these material frames act as
body frames tracking the displacements of their cross sections. It is also useful to define a
reference frame, F0 (s) , which displaces with the cross sections, but does not rotate about its
z axis under tube torsion.

As the ith tube's coordinate frame Fi (s) slides down its centerline, it experiences a body-
frame angular rate of change per unit arc length given by

(1)

in which (uix , uiy) are the components of curvature due to bending and uiz is the curvature
component due to torsion. A circumflex on a curvature component is used to designate the
initial pre-curvature of a tube.

The kinematic input variables consist of the rotation and translation of each tube about and
along the common centerline of the combined tubes. The rotation angle, θi (s), is defined as
the z -axis rotation angle from frame F0 (s) to frame Fi (s). The translation variable, li, is
defined as the arc length distance from frame F0 (0) to the initially coincident frame Fi (0) .
In the rest of the paper, all vector quantities associated with tube i , e.g., ui (s) , are written
with respect to frame Fi (s). Vectors associated with the robot, e.g., net bending moment, are
written with respect to frame F0 (s) .

As shown in the figure, insertion of one tube inside the other causes each to bend and twist
along their length. The application of externally applied wrenches generates additional
bending and twisting of the tubes.
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A. Derivation of Multi-tube Model
The quasistatic model including external loading can be derived by combining three
equations – a constitutive model relating bending moments to changes in curvature of
individual tubes, the equilibrium of bending moments and shear forces on the cross section
of the assembled tubes, and a compatibility equation relating the individual curvatures of the
assembled tubes. Additional equations are needed to compute the net shear force and
bending moment on the robot as a function of arc length.

The constitutive model and compatibility equations are independent of the external loading
and so are identical to those of the unloaded kinematic model presented in [8]. The
equilibrium equation of [8], however, must be modified to include the net bending moment
arising from external loads. Furthermore, to compute net bending moment, new differential
equations must be introduced to compute both it and net shear force. Each is described
below.

(1) Constitutive Model—When a tube with initial curvature ûi (s) is deformed to a
different curvature ui (s) , a bending moment is generated. Assuming linear elastic behavior,
the bending moment vector mi (s) at any point s along tube i is given by

(2)

Given the coordinate frame convention described above, all vectors are expressed with
respect to frame Fi (s) , and Ki is the frame-invariant stiffness tensor given by

(3)

in which Ei is the modulus of elasticity, Ii is the area moment of inertia, Ji is the polar
moment of inertia and Gi is the shear modulus of tube i.

(2) Compatibility of Deformations—Assuming that the clearance between each pair of
adjacent tubes is just sufficient to enable relative motion, all tubes must conform to the same
final x-y (bending) curvature. Each tube is free, however, to twist independently about its z
axis. The z component of curvature, ui (s)|z , equates to the rate of change of twist angle with
respect to arc length, θ ̇i,

(4)

The resulting bending curvatures can be equated when written in the same frame.
Expressing tube curvatures in terms of the robot frame curvature, θ0, results in

(5)

in which Rz(θi)∈SO(3) is a rotation about the z axiz by angle θiez = [0,0,1]T.

(3) Equilibrium of Bending Moments—On each cross section, the bending moments in
each tube must sum to the robot's net bending moment, m0(s), generated by the external
loading.
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(6)

As in (5), Rz(θi) is used to transform tube bending moments from frame Fi(s) to frame F0(s).

Combining (2) and (6) expresses net bending moment in terms of tube curvatures,

(7)

Solving (5) and (7) for u0(s) provides an expression for robot curvature in terms of initial
tube curvatures and net bending moment,

(8)

Since frame F0(s) by definition does not rotate about its z axis, u0|z = 0, and so this equation
can written in two parts as

(9)

(10)

Equations (5) and (9) enable the computation of the x and y curvatures of all tubes using

(11)

An expression is also needed to compute the z curvature of all tubes, uiz = θ ̇i, i = 1, …, n.
Such an expression can be obtained from the equilibrium equation of the special Cosserat
rod model [15]-[17]. Setting time dependent terms to zero, the body-frame equilibrium
equations for a curved rod undergoing distributed loading of τ ∈ ℝ3 torque per unit length
and f ∈ ℝ3 force per unit length can be applied to each tube

(12)

Derivatives are with respect to arc length along the rod, s, and mi,ni ∈ ℝ3 are the bending
moment and shear force vectors acting on the tube's cross section. Here, and in the
remainder of the paper, the square brackets on the vectors ui and vi denote the skew-
symmetric form

Lock et al. Page 5

Rep U S. Author manuscript; available in PMC 2011 December 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13

Consistent with the previous notation, ui(s),vi(s) ∈ ℝ3 are the angular and linear strain rates
per unit arc length, respectively, experienced by the tube's cross section. Thus, as described
previously, ui(s) has the units of curvature. Similarly, the x and y components of vi(s) are the
shear strain components of the cross section while the z component is viz = 1 + εiz in which
εiz is the longitudinal strain. Given the assumptions of negligible shear and longitudinal
strain,

(14)

It can be helpful to note that ui(s) and vi(s) are analogous to body-frame angular and linear
velocities if time is substituted for arc length. Wrenches applied at either end of the rod enter
the equations as boundary conditions.

Since tube interaction is limited to distributed forces, τi(s) = 0 in (12) and, for each tube, it
reduces to

(15)

To eliminate moments from these equations, we can use the constitutive model for moments
(2) and its derivative to arrive at

(16)

Equations (4) and (16) are a set of second order differential equations for the tubes' twist
angles, θi, that must be integrated using the algebraic equations (9) and (11). These
equations are identical to those describing the unloaded kinematic model except that (9) now
includes the net bending moment on the tubes, m0(s) [8].

(4) Net Bending Moment and Shear Force—While (11) provides the z component of
m0(s), it is the x and y components that are needed for (9). To compute net bending moment
as a function of arc length, the equilibrium special Cosserat model (12) can be applied again,
but this time to the collection of tubes.

(17)

Since net bending moment on the robot's cross section evolves together with net shear force,
n0(s), both must be simultaneously integrated. Here τ0(s) and f0(s) are the externally applied
distributed torque and force per unit length of the robot as shown in Fig. 3.

Robot curvature, u0(s), is defined by (8) and since (14) applies to all tubes comprising the
robot,
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(18)

Equations (4),(9)-(11),(16)-(18) form a set of equations in the state variables {θi(s),θ ̇j,
(s)m0(s),n0(s)}, i = 1, …n; j = 2, …,n. Observe that θ ̇1,(s) = u1z(s) can be computed
algebraically from (10).

The boundary conditions for the state variables are split between the proximal and distal
ends of the robot.

(19)

The x and y components of ui(L) can be computed from (9) and (11). While (10) evaluated at
s = L provides an expression for the weighted sum of uiz(L), i = 1,…,n, it is insufficient to
solve for the individual values of uiz(L). This can be resolved by assuming that the total
external twisting moment is applied to a single tube, say tube j. The resulting values for
uiz(L) are given by

(20)

Physically, this situation corresponds to tube j extending slightly beyond the other tubes so
that it comprises the tip of the robot.

There is, in fact, no reason that the tubes must be of the same length. The equations above
apply to any telescoping arrangement of tubes in which the stiffness and pre-curvature of
each tube can be an arbitrary function of arc length. This includes discontinuities in both
stiffness and pre-curvature. Consequently, there is no need to subdivide the domain during
integration over a telescoping arrangement of tubes. Distal to the physical end of each tube,
its stiffness and curvature can be defined as zero.

B. Numerical Solution of Multi-tube Model
When solving the multi-tube equations given by (4),(9)-(11), (16)-(18) together with
boundary conditions defined by (19) and (20), three issues must be considered. First, the
boundary conditions are split between the ends of the tubes. Second, integration of (v0(s) ∈
ℝ3, u0(s) ∈ so(3)) to obtain the robot coordinate frame, F0 (s), must be performed such that
it evolves on SE(3) . Thirdly, while the external loading in these equations is expressed in
the body coordinate frame, it is often convenient to express external loads with respect to a
different frame. Each of these issues is addressed in the paragraphs below.

(1) Split Boundary Conditions—The problem of split boundary conditions is one that
has been addressed with the unloaded kinematic equations. In fact, the unloaded equations
can be recovered by setting the external loading to zero [8].

(21)
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While such equations can be solved by a variety of standard means, one approach is to pose
the forward kinematics as a root finding problem in which guesses of θi(L) are used to
integrate from s = L → 0 until the desire values of θi (0) are obtained.

(2) Integration on SE(3)—Integrating the unloaded kinematics required integrating tube
curvatures with respect to arc length. Analogous to integrating body frame twist velocity,
numerical integration of ui and vi must preserve the group structure of SE(3). A variety of
numerical integration methods are available for this purpose [16],[18],[19].

(3) External-Load Coordinate Frame—It is often desirable to express the loading in
different coordinates than the body frame coordinates of (19) and (20). In this case,
however, the boundary condition is a function of the shape of the robot. For example,
suppose it is desired to produce a tip wrench that is specified with respect to the base frame
of the robot, F0 (0) . Then the body-frame tip wrench, written with respect to frame F0 ( L)
is related to the desired world frame tip wrench, written with respect to frame F0 (0) , by

(22)

in which R0L and p0L describe the orientation and position of frame F0 (L) with respect to
frame F0 (0) . In this case, the equations must be solved iteratively with respect to both tip
wrench and actuator positions.

III. Approximate Single-Tube Model
In contrast to the model presented above, references [11]-[13] propose an approach in which
the load-deflected shape of a continuum robot is computed as the sequence of two
transformations. The first employs an unloaded kinematic model to compute the robot
configuration. This configuration together with the external loading are the inputs to a
second transformation that computes the deflected shape by modeling the robot as a single
rod with its stiffness given by the composite stiffness of the robot's elements. While
approximate since it ignores internal displacements arising from loading, its solution takes
the form of an initial value problem and so can be computed efficiently.

The equations to be solved are a subset of those for the multi-tube model and consist of (2),
(17), (18) which are repeated here for clarity.

(23)

(24)

(25)

As before, m0(s) and n0(s) are the net bending moment and shear force on the robot as
functions of arc length. Robot curvature, u0(s), described in coordinate frame F0(s), is
algebraically related to m0(s). The composite robot stiffness, K0(s), is defined as the
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effective bending and torsional stiffness of the robot cross section as a function of arc
length.

The initial robot curvature, û0(s), is obtained as the output of the unloaded forward
kinematic model. The boundary conditions for these equations are given by a subset of (19)
consisting of the applied tip force and bending moment.

(26)

Since the boundary conditions are all defined at the distal end of the robot, they can be
solved as an initial value problem by integrating from the tip back to the base.

The solution is, however, subject to the conditions described in sections II.B.2 and II.B.3
above. Namely, the equations must be integrated on SE(3) . Furthermore, if the tip loading is
not defined with respect to the body frame then the initial value problem must be solved
iteratively to account for the rotation of the body tip frame in response to deflection. In real-
time use, the number of iterations can be minimized by using the tip frame rotation from the
preceding time step as the initial guess.

A. Comparison with Multi-tube Model
The computational costs of the models can be assessed by considering the total number of
state variables and the locations of the boundary conditions as summarized in Table 1. While
not included in the table, it is also necessary for both models to simultaneously integrate
(v0(s),u0(s)) to obtain the coordinate frame F0(s).

Exclusive of F0(s), the total number of state variables is 2n+5 for the multi-tube model.
Since each tube of a robot contributes two degrees of freedom corresponding to its rotation
and translation, it requires three tubes to produce a robot with six degrees of freedom. For
such a robot, solution of the multi-tube model involves integrating eleven state variables
with respect to arc length using split boundary conditions. The single-tube model possesses
six states regardless of the number of tubes and all boundary conditions are at the distal end.

Since computation of the unloaded kinematic model involves those variables that are
omitted from the single-tube model, it is tempting to argue that sequential solution of the
unloaded kinematic model followed by the single-tube model of loading deflection is of the
same computational complexity as the multi-tube model. This is not the case, however, for
two reasons. First, solving two sets of decoupled equations is simpler than solving a single
coupled set. Secondly, it has been shown that the unloaded kinematic model can be
accurately represented by an algebraic functional representation [8] and so can be
implemented without any on-line integration.

IV. Experimental Model Evaluation
To compare the models, experiments were performed to measure the deflection and twisting
of a pair of NiTi tubes experiencing a tip force. The tubes are shown disassembled in Fig. 4.
Each tube is glued into a collar as shown and mounted in the motor drive system of Fig. 5.
Motor positioning accuracy is better than 0.1 degrees. As shown in Fig. 4, the outer tube
includes a straight section at its proximal end to accommodate the 18 mm length of the inner
tube's collar. To account for the twisting that will occur in the straight section, the motor
angles are given in terms of the tube angles by
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(27)

As the tubes are rotated from the aligned configuration shown in Fig. 4 and Fig. 5, their
combined curvature varies from its maximum value (1/241 mm−1) to approximately zero
when θ2(0)–θ1(0) = π.

Tube parameters are shown in Table 2. Equation (9) requires values for both the bending
and torsional stiffnesses of the tubes as defined by (3). The quantities Ii, Ji can be calculated
from the tube cross sections and values of Ei,Gi are available in the literature. The
combination of tube diameter tolerances and variation in moduli arising during shape
setting, however, leads to large variations in estimated stiffness.

To avoid this issue, stiffnesses were estimated as follows. First, the stiffness ratio kx1,y1/
kx2,y2 was computed from (9) by measuring the pre-curvature of each tube and the combined
curvature for θ2(0) − θ1(0) = π. Second, the combined tubes with θ2(0) = θ1(0) were
deflected in the plane of the curvature using a 200 g mass and the resultant displacement
measured. Treating the pair as a single tube, (17) was used to iteratively estimate the
combined stiffness (k1x,1y + k2x,2y) from the measured deflection. The individual stiffnesses
were calculated from these two measurements. The ratio of bending to torsional stiffness
was calculated using the standard value of Poisson's ratio, ν = 0.3 , for NiTi.

(28)

A. Experimental Procedure
Gravity loading was used to generate tip forces on the robot in the three coordinate
directions shown in Fig. 5. Since the forces are applied in the world frame (via gravity), the
resultant tip frame forces generally contain x, y and z components. Note that gravity
deflection due to robot mass (< 0.3mm) was within the measurement error of the camera
system and was therefore neglected.

For each tip load, the tubes were rotated with respect to each other through a full rotation.
For every 10 degrees of relative rotation, tip position and tip rotation angle were recorded. In
this way, measurements were recorded as the curvature of the robot varied from its
maximum to its minimum (approximately straight) and back to its maximum. This was
performed for both directions of relative rotation.

Measurements of tip position were made using a stereo camera measurement system (Vision
Appliance, Dalsa, Inc.) that determines points in world space to within ±0.5 mm and relative
points to within ±0.2 mm. To measure tip rotation angle, a circular graduated disk was
attached over the last 2 mm of the outer tube. As shown in Fig. 6, a pointer attached to a
tapered dowel was inserted into the end of the inner tube and zeroed for the configuration in
which the curvature of the tubes is aligned. The error in measuring tip angle was estimated
to be ±2 degrees. Care was taken to ensure that the disk and pointer did not interfere with
attachment of the mass.

B. Experimental Results
The multi-tube model predicts that the individual tubes will twist in response to external
loading. This effect was observed experimentally and can be seen by comparing Fig. 7 and
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Fig. 8. In the unloaded case of Fig. 7, torsional twisting of the tubes causes the tip twist
angle to lag twist at the motor for this range of relative angles. This occurs since smaller
twist angles correspond to a lower energy state. The application of a tip force in the –y
direction, however, acts to straighten the tube pair and so produce a corresponding increase
in twist angle at the tip for nonzero twist angles at the motors. The maximum difference
between the experimental data of Fig. 7 and Fig. 8 is about 15 degrees at αm = 180 deg. Note
that it is this relative twisting in response to load that the single-tube model neglects.

Model error is summarized in Table 3 for tip gravity loads of 0, 100 and 200 grams applied
in the three coordinate directions of Fig. 5. Since deflection of the robot due to its own
weight is negligible, model error for zero tip load does not vary with coordinate direction.

In comparison to the unloaded model, tip loading increases the mean tip error by more than
50% from 1.91 mm to about 2.98 mm. Standard deviation increases by a factor of 6.8 from
0.29 mm to 1.97 mm, and maximum tip position error increases by a factor of 3.3 from 2.6
mm to 8.54 mm.

Perhaps most surprising, the mean error for the single-tube model is only 0.3 mm larger than
that of the multi-tube model. The differences between the standard deviation and maximum
errors for the two models are even smaller. Furthermore, the directionality of tip position
error was determined to be similar for the two models by plotting the data sets in three
dimensional space. As an example, Fig. 9 provides a planar view of a subset of the data
corresponding to a load of 200 g applied in the negative y direction.

V. Conclusions
Understanding and predicting the deformation of concentric tube robots in response to
environmental contact is important for design, planning and real-time control. The work
presented here provides a multi-tube quasistatic model incorporating concentrated as well as
distributed forces and torques. A comparison with a simplified single-tube model is also
included. Experiments show that the uncalibrated multi-tube model has a mean error of less
than 4mm for the tubes presented. It is important to note that much of the error can be
attributed to specific subsets of configurations, suggesting that the model omits some
important phenomena. Surprisingly, the single-tube model showed similar tip error and may
be more appropriate for real-time control applications.
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Fig. 1.
Concentric tube robot comprised of four telescoping sections that can be rotated and
translated with respect to each other.
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Fig. 2.
Tube coordinate frames are denoted Fi (s). The relative z-axis twist angle between tube
frame F0(s) and frame Fi (s) is θi (s).
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Fig. 3.
External loading on robot consists of distributed forces, f0(s), and distributed moments, τ0(s),
as well as concentrated forces, n0(L), and concentrated moments, m0(L).
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Fig. 4.
Individual tubes comprising variable curvature tube pair.
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Fig. 5.
Tube pair mounted in drive system. Double exposure shows tubes in unloaded and gravity-
loaded configurations. Tip-mounted disk for measuring relative tube twist is also shown.
Orientation of coordinate frame F0(0) is labeled.
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Fig. 6.
Disk and pointer for measuring relative angle at tip.
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Fig. 7.
Relative tube twist angle, α = θ2 − θ1, at the tip, α(L), versus the motor, αm, for the case of
no external loading using the torsionally-rigid model of [6] and the torsionally-compliant
model of [8].
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Fig. 8.
Relative tube twist angle, α = θ2 − θ 1, at the tip, α(L) , versus the motor, αm, for a 200 gram
gravity load in the -y direction of Fig. 5 (in the plane of robot curvature).
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Fig. 9.
Tip position in the x-y plane for robot loaded with 200 g in the −y direction. Data points
correspond to unloaded robot curvature varying from the configuration of Fig. 5 to zero and
then to the configuration in which robot is curved downward. Diamonds are measured
positions; circles are the multi-tube model predictions; squares are the single-tube model
predictions. Associated positions are connected by lines.
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Table 1

State variables used by Multi-tube and Single-tube models.

State variable
Boundary
Coandition

Multi-tube
Model

Single-tube
Model

θi(s), i = 1, …, n Base n -

θ ̇j(s), j = 2, …, n Tip n−1 -

m0 (s) ∈ ℝ3 Tip 3 3

n0(s) ∈ ℝ3 Tip 3 3

Total number 2n+5 6
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Table 2

Properties of Tubes Used in Experiments.

Tube 1 Tube 2

OD (mm) 2.77±0.01 2.41±0.01

ID (mm) 2.55±0.01 1.97±0.01

kx,y=EI (N·m2) - Calculated 3.34×10−2 3.67×10−2

kx,y=EI (N·m2) - Measured 2.85×10−2 3.75×10−2

Length (mm) 150 150

Pre-curvature ûy (mm−1) (ûx = ûz = 0) 1/233 1/248
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