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OBJECTIVE—Genome-wide association studies have identified
gene regions associated with the development of type 1 diabetes.
The aim of this study was to determine whether these associa-
tions are with the development of autoimmunity and/or pro-
gression to diabetes.

RESEARCH DESIGN AND METHODS—Children (n = 1,650)
of parents with type 1 diabetes were prospectively followed
from birth (median follow-up 10.20 years) for the development
of islet autoantibodies, thyroid peroxidase antibodies, tissue trans-
glutaminase antibodies, and diabetes. Genotyping for single-
nucleotide polymorphisms of the PTPN22, ERBB3, PTPN2,
KIAA0350, CD25, and IFIH1 genes was performed using the
MassARRAY system with iPLEX chemistry.

RESULTS—Islet autoantibodies developed in 137 children and
diabetes developed in 47 children. Type 1 diabetes risk was
associated with the IFIH1 rs2111485 single-nucleotide polymor-
phism (hazard ratio 2.08; 95% CI 1.16–3.74; P = 0.014). None of the
other genes were significantly associated with diabetes develop-
ment in this cohort. IFIH1 genotypes did not associate with the
development of islet autoantibodies (P = 0.80) or autoantibodies
against thyroid peroxidase (P = 0.55) and tissue transglutaminase
(P = 0.66). Islet autoantibody–positive children with the IFIH1
rs2111485 GG genotype had a faster progression to diabetes
(31% within 5 years) than children with the type 1 diabetes pro-
tective GA or AA genotypes (11% within 5 years; P = 0.006).

CONCLUSIONS—The findings indicate that IFIH1 genotypes
influence progression from autoimmunity to diabetes develop-
ment, consistent with the notion that protective genotypes down-
regulate responses to environmental insults after initiation of
autoimmunity. Diabetes 60:685–690, 2011

G
enome-wide association studies have identified
a number of gene regions associated with type
1 diabetes (1). Candidate genes, along with
potential mechanisms of action in disease

pathogenesis, have been proposed for many of these sus-
ceptibility regions (2). In defining mechanisms, it is nec-
essary to consider that type 1 diabetes has a preclinical

period in which there is autoimmunity against pancreatic
b-cell antigens (3). This period is variable and is identified
by the presence of persistent islet autoantibodies. Some,
but not all, islet autoantibody–positive subjects progress
to diabetes (4). For most type 1 diabetes gene associations,
it is unknown whether there is an association with the
development of autoantibodies or progression to clinical
disease after initiation of autoimmunity. Analysis of cohorts
in which both the development of islet autoimmunity and
progression to diabetes is studied would be informative in
determining which stage of diabetes pathogenesis is influ-
enced by the genetic associations.

Here, we have examined the association of single-
nucleotide polymorphisms (SNPs) within six type 1
diabetes–associated gene regions with initiation of autoim-
munity and development of diabetes in a cohort of pro-
spectively followed first-degree relatives of patients with
type 1 diabetes. Unlike HLA class II genes, which strongly
associate with the development of islet autoimmunity (5–7),
we found that polymorphisms within the IFIH1 gene were
associated with progression to diabetes, but not the de-
velopment of autoimmunity. The findings are consistent
with IFIH1 gene–associated modification of the response
to environmental factors that affect the progression from
autoimmunity to diabetes.

RESEARCH DESIGN AND METHODS

Cohort. The BABYDIAB study examined the natural history of islet autoim-
munity in children of patients with type 1 diabetes (8). Families were eligible if
one or both parents had type 1 diabetes. Recruitment began in 1989 and ended
in 2000. Venous blood samples were obtained from children at study visits
scheduled at age 9 months and 2, 5, 8, 11, 14, 17, and 20 years. Islet auto-
antibodies were measured in all collected samples. If children had a positive
autoantibody result, visit frequencies and islet autoantibody measurements
were subsequently performed at 6- to 12-month intervals. The study was co-
ordinated centrally from Munich and conducted from this site by directly
contacting the participating families and their family pediatrician. The
BABYDIAB cohort contains 1,650 offspring followed from birth to last sample
for a median of 8.8 years (range 0.75–20.1). The cumulative dropout rate was
20.9% by age 8 years. Written informed consent was provided by participating
families. BABYDIAB was approved by the Bavarian ethical committee
(Bayerische Landesärztekammer number 95357).
Follow-up for diabetes. Families were asked to report the occurrence of
symptoms of diabetes. In children with islet autoantibodies, a yearly oral
glucose tolerance test was performed. Diabetes onset was defined according to
American Diabetes Association criteria, which include unequivocal hypergly-
cemia with acute metabolic decompensation or the observation (on at least two
occasions) of a 2-h plasma glucose.200 mg/dL after an oral glucose challenge,
or a random blood glucose .200 mg/dL if accompanied by unequivocal
symptoms. Since 1997, fasting blood glucose .126 mg/dL on two occasions
was added to the diabetes diagnosis criteria.
Autoantibody measurements. Insulin autoantibodies (IAAs), GAD auto-
antibodies (GADAs), IA-2A autoantibodies (IA-2As), and ZnT8 autoantibodies
(ZnT8As) were measured by radiobinding assays as previously described (8,9).
The upper limits of normal were determined using QQ plots and corresponded
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to the 99th percentile of control children. Performances in the Diabetes Au-
toantibody Standardization Program are shown as laboratory 121 in published
reports (10,11). Offspring were considered islet autoantibody positive when
two consecutive samples collected after birth were positive.

Thyroid peroxidase antibodies (TPOAs) were measured by radiobinding
assay according to the manufacturer’s instructions (CentAK anti-TPO; Medipan,
Dahlewitz/Berlin, Germany) as previously described (12). Samples were TPOA
positive if levels were .50 units/mL, as suggested by the manufacturer and
confirmed using QQ plot analysis.

IgA antibodies to tissue transglutaminase autoantibodies (tTGAs) were mea-
sured by ELISA according to the manufacturer’s instructions (Eurospital, Trieste,
Italy) and by radiobinding assay with [35S]methionine-labeled in vitro transcribed/
translated recombinant human tissue transglutaminase as previously described
(13). Positive thresholds were determined using QQ plots and corresponded to
the 95th percentile of control children without diabetes or celiac disease for the
ELISA and the 99th percentile of control samples for the radiobinding assay.
Samples were positive if they were above thresholds in both assays.
Genotyping. HLA-DRB1, HLA-DQA1, and HLA-DQB1 alleles were typed using
PCR-amplified DNA and nonradioactive sequence-specific oligonucleotide
probes as described previously (5). Classification into high-risk HLA genotypes
was based on The Environmental Determinants of Diabetes in the Young
(TEDDY) study inclusion genotypes for first-degree relatives (14): DR4-DQA1*
030X-DQB1*0302@/DR3-DQA1*0501-DQB1*0201; DR4-DQA1*030X-DQB1*0302@/
DR4-DQA1*030X-DQB1*0302@; DR4-DQA1*030X-DQB1*0302@/DR8- DQA1*0401-
DQB1*0402, DR3-DQA1*0501-DQB1*0201/DR3-DQA1*0501-DQB1*0201; DR4-
DQA1*030X-DQB1*0302@/DR4-DQA1*030X-DQB1*020X; DR4-DQA1*030X-DQB1*
0302@/DR1-DQA1*0101-DQB1*0501; DR4-DQA1*030X-DQB1*0302@/DR13-DQA1*
0102-DQB1*0604, DR4-DQA1*030X-DQB1*0302/DR4-DQA1*030X-DQB1*0304,
DR4-DQA1*030X-DQB1*0302@/DR9-DQA1*0303-DQB1*0303; DR3-DQA1*0501-
DQB1*0201/DR9-DQA1*030X-DQB1*0303, where @ includes DQB1*0302 and
*0304.

Additional genes were selected from associations reported in 2007 (1).
Tested were the originally described PTPN2 rs1893217 and CD25 rs11594656
SNPs (1) and, to facilitate typing in the multiplex method, the proxy SNPs
PTPN22 rs6679677, ERBB3 rs705704, KIAA0350 rs12935413, and IFIH1
rs2111485. SNP genotyping was performed with the MassARRAY system
using iPLEX chemistry (Sequenom, San Diego, CA) as previously described
(15). Reproducibility was assessed by duplicate genotyping in 16.3% of sam-
ples (discordance rate ,0.5%). SNPs were tested for deviation from Hardy-
Weinberg equilibrium by x2 or Fisher exact test. DNA samples for genotyping
were available from 1,350 children.
Statistical analysis. The study design was a priori established to exam-
ine overall genotype association with diabetes and subsequently examine

relationships to islet autoantibodies and progression to diabetes only in di-
abetes-associated genes. The probability of diabetes and autoantibodies was
estimated by Kaplan-Meier analysis. Hazards ratios (HRs) were determined
using Cox proportional hazards model (with and without adjustment for HLA
risk genotype). Within islet autoantibody–positive children, Kaplan-Meier
analysis was used to calculate the probability of progression to diabetes where
follow-up time was calculated from the age when autoantibodies were first
detected to the age of type 1 diabetes diagnosis, or last contact. Statistical
analysis was performed using the Statistical Package for the Social Sciences
(SPSS 18.0; SPSS, Chicago, IL).

RESULTS

IFIH1 SNP rs2111485 was associated with diabetes de-
velopment in the BABYDIAB cohort (HR 2.08; 95% CI 1.16–
3.74; P = 0.014; Table 1). The probability of type 1 diabetes
was 5% (95% CI 3.2–6.8) by age 15 years for children with
GG genotypes and 2% (95% CI 0.8–3.2) for children with
GA or AA genotypes (P = 0.004; Fig. 1A). The association
remained when adjusted for HLA genotypes (HR 1.98; 95%
CI 1.01–3.56; P = 0.023; Table 1), and IFIH1 genotypes
were able to stratify diabetes risk in children with high-risk
HLA genotypes (Fig. 1B). No significant association with
diabetes development could be observed for SNPs in the
other five gene regions (Table 1).

To determine whether the association with diabetes
observed in the cohort was at the stage of autoimmunity
development or the progression to clinical diabetes, we
examined IFIH1 associations with islet autoantibody de-
velopment. No IFIH1-associated difference in the devel-
opment of autoantibodies was observed (P = 0.80; Fig. 2A).
Autoantibody appearance curves were similar between
susceptible and protective IFIH1 genotypes for IAAs (P =
0.44), GADAs (P = 0.24), and ZnT8As (P = 0.20) and
slightly, but not significantly, higher for susceptible geno-
types for the later marker IA-2A (P = 0.06). Moreover, no
significant difference between IFIH1 genotypes was found
for the probability of developing autoantibodies to thyroid

TABLE 1
Gene associations with development of type 1 diabetes in the BABYDIAB cohort

Gene, SNP n† Genotype

Frequency (%)

HR* (P)Total cohort Type 1 diabetes No diabetes

ERBB3 rs705704 1,350 AA 11.0 14.9 10.8 1.46 (0.65–3.3)
0.20 (0.16)AG 48.8 51.1 48.7

GG 40.2 34.0 40.4
PTNP2 rs1893217 1,347 CC 2.9 2.1 2.9 0.76 (0.10–5.5)

0.96 (0.96)CT 26.8 27.7 26.8
TT 70.3 70.2 70.3

IFIH1 rs2111485 1,337 GG 40.6 59.6 39.9 2.08 (1.16–3.74)
0.014 (0.023)GA 47.1 29.8 47.7

AA 12.3 10.6 12.4
PTPN22 rs6679677 1,345 AA 2.0 2.1 2.0 1.16 (0.16–8.4)

0.54 (0.64)CA 25.4 34.0 25.1
CC 72.6 63.8 72.6

CD25 rs11594656 1,333 TT 54.9 63.0 54.6 1.34 (0.74–2.5)
0.47 (0.49)TA 38.9 32.6 39.1

AA 6.2 4.3 6.3
KIAA0350 rs12935413 1,350 GG 43.9 46.8 43.7 1.07 (0.60–1.9)

0.96 (0.99)GA 45.7 42.6 45.8
AA 10.4 10.6 10.4

*HRs (95% CI) are shown for the homozygous expected susceptible genotype vs. other genotypes; P value is for diabetes development using
Cox proportional hazards model across all genotypes; P values shown in parentheses are adjusted for HLA DRB1-DQB1 “risk” or “other”
genotype on the basis of TEDDY risk genotypes (14). Genotypes are shown with the expected type 1 diabetes susceptible genotype first.
†Number with successful genotype.
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autoantigens and transglutaminase antigen (P = 0.55 and
0.66; Fig. 2F and G).

Among 137 islet autoantibody–positive children, 47 de-
veloped diabetes (median, 4.66 years after their first islet
autoantibody–positive sample). In contrast to the lack of
association with islet autoantibody development, a signifi-
cant association of the IFIH1 GG genotype with pro-
gression from islet autoantibody positivity to diabetes was
observed (31 vs. 11% within 5 years; P = 0.006; Fig. 3). This
remained significant (HR 1.9; P = 0.05) after adjustment for
islet autoantibody status of the child as single or multiple
and HLA genotype.

DISCUSSION

Understanding the mode of action of genes influencing the
development of type 1 diabetes requires knowledge as to
whether genes influence the development of islet autoim-
munity and/or progression from autoimmunity to diabetes.
Here we have examined association in a cohort of genet-
ically at-risk children who were followed from birth for
both development of islet autoantibodies and diabetes. An
association of the IFIH1 gene with diabetes development
in this cohort allowed us to determine at what stage the
gene is likely to influence diabetes development. Unlike
HLA class II genes, which strongly influence the risk for
developing islet autoantibodies (5–7), association of the
IFIH1 gene was restricted to the progression to diabetes
after development of islet autoimmunity. In view of the
involvement of the IFIH1 gene in responses to virus in-
fection (16,17), the findings are consistent with a role of
infection in determining the progression to diabetes after
islet autoimmunity has been initiated.

The findings are from a unique cohort characterized by
a family history of type 1 diabetes, perspective follow-up
from birth with relatively frequent testing for islet auto-
antibody development, monitoring for diabetes develop-
ment, and testing and monitoring for the development of
thyroid- and celiac disease–associated autoimmunity up to
age 20 years. To minimize the number of comparisons, we
chose association with diabetes as the outcome and se-
lected genes that showed association both alone and to-
gether with HLA genotypes in a multiple Cox proportional
hazards model. The disadvantage of this approach is that
modest numbers developed diabetes, allowing us to iden-
tify only moderate to strong genetic associations. Thus, the
findings from our study are not informative for SNPs in the
five gene regions, where we found no association with type
1 diabetes. A potential caveat is that not all islet auto-
antibodies may be specific for type 1 diabetes (18). The
findings were, however, significant for the IFIH1 SNP after
adjustment for multiple islet autoantibodies, which is
a specific characteristic of type 1 diabetes. Finally, be-
cause our study is in subjects with a type 1 diabetes family
history, we cannot make conclusions for case subjects
without a family history. Analyses in the Finnish Diabetes
Prediction and Prevention (DIPP) study (6) and the mul-
ticenter TEDDY study (14) are informative in this respect.

The IFIH1 gene encodes helicase C domain 1, which
mediates induction of the interferon response to viral RNA
(16,17). The association of IFIH1 polymorphisms in-
cluding rare variants with type 1 diabetes (19,20) has been
noteworthy because of their link to the inflammatory re-
sponse caused by infectious agents, including entero-
viruses. Viral infection is hypothesized to cause islet

FIG. 1. Cumulative risk for the development of type 1 diabetes by IFIH1 genotypes. A: Children are grouped with respect to IFIH1 SNP rs2111485
genotype into those carrying GG genotype (——) and the GA or AA genotype (- - - -). B: Children are grouped by IFIH1 genotypes after strati-
fication of HLA genotypes (solid and dashed lines are children with TEDDY HLA risk genotypes, and the dotted and dot-dashed lines represent
children with low-risk HLA genotypes). P values are provided for comparison of IFIH1 GG vs. GA and AA genotypes in the total cohort (A) and for
high-risk (P = 0.03) and low-risk (P = 0.06) genotypes. Follow-up (x-axis) is from birth. Numbers below the x-axis indicate the number of diabetes-
free children remaining on follow-up.
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FIG. 2. Cumulative risk for the development of autoantibodies. Cumulative risk is shown for at least one islet autoantibody (A), IAAs (B), GADAs
(C), IA-2As (D), ZnT8As (E), TPOAs (F), and tTGAs (G) by IFIH1 genotypes. Children are grouped with respect to IFIH1 SNP rs2111485 ge-
notype into those carrying the GG genotype (——) and the GA or AA genotype (- - - -). Follow-up (x-axis) is from birth. Numbers below the x-axis
indicate the number of autoantibody-negative children remaining on follow-up with respect to age.
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autoimmunity and/or influence progression to diabetes
(21–23). Data in humans are inconclusive, whereas data
from the murine models lean toward effects at the pro-
gression stage (24). Our study provides unique insight into
this debate. First, a common polymorphism of the IFIH1
gene had an odds ratio for diabetes development of around
2 in our cohort, potentially implying relatively strong
effects in children with a type 1 diabetes family history.
Second, we found no association with the initiation of
autoimmunity, as defined by the development of islet
autoantibodies, and the development of thyroid- or celiac
disease–associated autoantibodies. Examining individual
islet autoantibodies found no association with the de-
velopment of IAAs or GADAs, which appear early in the
disease process, and borderline association with IA-2As,
which in our cohort appear later than IAAs or GADAs.
Of interest, the development of all these autoantibodies
is strongly influenced by the HLA class II genotype
(5–7,10,11), whereas progression to diabetes after the
appearance of islet autoantibodies is only minimally as-
sociated with HLA class II (6,25). In contrast, we ob-
served a strong effect of the IFIH1 genotype on the rate
of progression to disease from first islet autoantibody
detection.

With respect to pathogenesis, our findings would be
consistent, with infection playing a more prominent role in
diabetes development after the onset of islet autoimmunity
than during initiation of autoimmunity. The findings also
have potential implications for type 1 diabetes prevention.
They suggest that intervention in autoantibody-positive
children to delay or prevent the onset of type 1 diabetes is
possible and furthermore suggest that interference with
host response to infection may be a means to achieve
successful intervention.
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