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Abstract
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring
psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes
many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic
cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly
inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-
MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline
reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to
the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-
DMT and bufotenine act agonistically on serotonergic systems and may result in
hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important
contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause
considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its
interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on
biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition,
the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-
MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT
intoxication are discussed.
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INTRODUCTION
Indolealkylamine drugs consist of many antimigraine triptans (e.g. sumatriptan, naratriptan
and almotriptan) and psychedelic substances of abuse (e.g., 5-methoxy-N,N-
dimethyltryptamine or 5-MeO-DMT) [1]. 5-MeO-DMT was initially isolated from the bark
of Dictyoloma incanescens D.C. [2]. It is a major active ingredient of South American
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Virola snuffs and Ayahuasca beverage [3-5]. 5-MeO-DMT also represents the active
constituent of the venom of Colorado River Bufo alvarius toads, and it accounts for 15% of
the dry weight of parotoid and tibial glands [6]. In addition, 5-MeO-DMT may be
synthesized in human pineal and retina, and has been identified in human body fluids
including urine, blood, and cerebrospinal fluid [7-11]. 5-MeO-DMT is regarded as an
endogenous psychotoxin, and elevated concentrations of 5-MeO-DMT and its analogs in
body fluids might be associated with psychotic disorders such as schizophrenic psychosis
[12-19].

5-MeO-DMT is a potent, fast-acting hallucinogen with short duration in humans. Following
different administration routes, e.g., inhalation (~6-20 mg), intravenous injection (~0.7-3.1
mg), sublingual or intranasal insufflation (~10 mg), and oral administration (~30 mg; with
MAO inhibitor), 5-MeO-DMT produces psychedelic effects in human subjects [20]. 5-MeO-
DMT also induces various physiological and behavioral changes in animal models [21-24].
5-MeO-DMT has high affinity for the serotonin 5-HT1A receptor, and it is 4- to 10-fold
more potent than N,N-dimethyltryptamine (DMT) in human subjects [25,26]. Unlike its
chemically and pharmacologically related drugs, such as 5-hydroxy-N,N-dimethyltryptamine
(bufotenine), DMT, 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DiPT) and α-
methyltryptamine (AMT) that all have been Schedule I controlled drugs for years, 5-MeO-
DMT was not a federally controlled substance in United States until August 2009 when the
Drug Enforcement Administration issued a notice intending to place 5-MeO-DMT into
Schedule I of the Controlled Substances Act [20]. By contrast, 5-MeO-DMT had been a
controlled substance in many European countries including the United Kingdom.

As a tryptamine derivative, 5-MeO-DMT is mainly inactivated through a deamination
pathway mediated by monoamine oxidase A (MAO-A), and it is O-demethylated by
cytochrome P450 2D6 (CYP2D6) enzyme to produce an active metabolite, bufotenine
[27,28], which binds to the 5-HT2A receptor with much higher affinity than 5-MeO-DMT
itself [29-31]. Concurrent use of 5-MeO-DMT with an MAO inhibitor (MAOI), or plant
preparations (e.g., ayahuasca) or Syrian rue (Peganum harmala) seeds containing an MAOI
(e.g., harmaline) [4,32,33], often leads to an enhanced and prolonged drug effect or more
severe toxicity. Mechanistically, both MAOI and 5-MeO-DMT act agonistically on
serotonergic systems that readily causes hyperserotonergic effects or serotonin toxicity
[34-36]. In addition, MAOI increases exposure to the parent drug 5-MeO-DMT and the
active metabolite bufotenine through the inhibition of deamination metabolism [37]. Such
complex pharmacokinetic and pharmacodynamic interactions may even cause fatal toxicity
[38,39]. This review, therefore, aims to introduce the current understanding of 5-MeO-DMT
biotransformation, pharmacokinetics and pharmacological actions, as well as drug-drug
interactions (DDI) between 5-MeO-DMT and the MAOI, harmaline, and potential impact of
CYP2D6 genetics.

PHARMACO/TOXICOLOGICAL EFFECTS AND DRUG ACTIONS OF 5-MEO-
DMT

5-MeO-DMT is psychoactive in humans following inhalation of the vapor [20]. Human self-
experiments have revealed that 5-MeO-DMT causes visionary and auditory changes, and
distorts the perception of time. The effects start at 3-4 min, peak about 35-40 min, and end
around 60-70 min after insufflation [3]. However, oral ingestion of 30-35 mg of 5-MeO-
DMT produces either no psychoactive effect at all [40] or only one-third of the potency as
that generated from intranasal or sublingual ingestion, or oral administration of
pharmahuasca that contains both 5-MeO-DMT and the MAOI, harmaline [3,26].
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The toxicity of 5-MeO-DMT was firstly reported as a lethal syndrome called “staggers” in
sheep after grazing on Phalaris tuberose, a plant containing 5-MeO-DMT [41]. Studies with
mouse, rat, sheep, and monkey models revealed remarkable ataxia, mydriasis, head nodding,
tremor, convulsion and shivering after administration of 5-MeO-DMT. Sheep was found to
be the most susceptible to 5-MeO-DMT, and exhibited stringy salivation, tachycardia, and
respiratory failure when exposed to 1 mg/kg of 5-MeO-DMT. The LD50 values of 5-MeO-
DMT in mice ranged from 48 to 278 mg/kg for different administration routes [12,21].

The 5-HT2A receptor subtype has been shown to play a major role in the stimulus effects of
indolealkylamine and phenethylamine hallucinogens, while the 5-HT2C receptor acts as a
modulator [42-44]. However, the 5-HT2A receptor appears to be less important for the
stimulus control of 5-MeO-DMT, and the potencies of drugs in substituting 5-MeO-DMT-
induced stimulus effect are correlated well with their affinities with the 5-HT1A receptor
[29]. In addition, the discriminative stimuli induced by 5-MeO-DMT are attenuated by 5-
HT1A antagonists including TVX Q7821, WAY-100635 and pindolol [29,45,46], supporting
the conclusion that 5-MeO-DMT induces stimulus control mainly via 5-HT1A receptor.
Nevertheless, a partial generalization of 5-MeO-DMT-induced stimulus by (−)-1-(2,5-
dimethoxy-4-methylphenyl)-2-aminopropane [(−)-DOM] suggests that, besides the 5-HT1A
receptor, the 5-HT2A receptor may also contribute to 5-MeO-DMT-mediated stimulus
complex [45]. Interestingly, other structurally-related tryptamines including DMT and 5-
MeO-DiPT also exhibit considerable binding affinities toward 5-HT1A receptor, as well as
partial or full agonistic activities against 5-HT2A receptor [46-49].

Besides drug-induced discriminative stimulus control, 5-MeO-DMT provokes a variety of
other behavioral effects in animal models, such as head shaking, forepaw treading, flat-body
posture, straub tail, and hindlimb abduction [50-55] that are shared with many other
hallucinogens including lysergic acid diethylamide (LSD), DOM and 1-(2,5-dimethoxy-4-
iodophenyl-2-aminopropane (DOI) [24,56-58]. The similar effects of 5-MeO-DMT and 8-
hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT), a 5-HT1A receptor agonist, on
forepaw treading behavior in rats support the action of 5-MeO-DMT on postsynaptic 5-
HT1A receptor [51,54]. In mice, 5-MeO-DMT induces head-twitch and head-weaving
responses via the activation of 5-HT2A and 5-HT1A receptors, respectively [50,59]. Among a
series of methylated serotonin derivatives, 5-MeO-DMT has been identified as one of the
most potent agents to induce “sham rage” responses in cats [12]. 5-MeO-DMT also
decreases locomotor activity and investigatory behavior in rats that can be attenuated by
WAY-100635, a selective 5-HT1A/7 antagonist but not by the 5-HT2A-selective antagonist,
M100907, suggesting the involvement of the 5-HT1A receptor [55]. Pretreatment with
MAOI significantly modifies the locomotor activity induced by 5-MeO-DMT to a biphasic
effect in rats, which may involve the activation of 5-HT2A receptor [60]. In addition, 5-
MeO-DMT induces body temperature change in rats, causing hypothermia at low doses
(0.5-1.0 mg/kg) and hyperthermia at high dose (3-10 mg/kg). The hyperthermic effect may
be completely attenuated or even converted into hypothermia by the 5-HT2A antagonist,
ketanserin. Chronic treatment with MAOI nialamide not only diminishes the hypothermic
effect but also attenuates the hyperthermic response [61,62].

5-MeO-DMT indeed binds to the 5-HT1A receptor subtype with much higher affinity (Ki, <
10 nM) than 5-HT2 receptor (>1000 nM) [29]. Studies using rat brain synaptosomes [63]
show that 5-MeO-DMT also inhibits 5-HT re-uptake with an IC50 value comparable to other
psychostimulants such as cocaine and methamphetamine, whereas it has little effect on
dopamine re-uptake or the release of monoamine neurotransmitters. Furthermore, 5-MeO-
DMT is the most potent tryptamine in stimulating G protein binding, with an EC50 value
around 100 nM, which is approximately 115% of the maximum activation of 5-HT itself
[64]. In addition, 5-MeO-DMT and other endogenous hallucinogens (e.g., DMT and
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bufotenine) are thought to act as ligands for the recently discovered trace amine receptors
that may be involved in sensory perception [65].

BIOTRANSFORMATION OF 5-MEO-DMT
Similar to tryptamine, DMT and bufotenine [66-69], 5-MeO-DMT primarily undergoes
MAO-A-mediated deamination (Fig. 1). Other metabolic pathways reported for 5-MeO-
DMT include O-demethylation, N-demethylation and N-oxygenation. After intraperitoneal
(i.p.) administration of 14C-labeled 5-MeO-DMT, 5-methoxyindoleacetic acid (5-MIAA)
was identified as the major metabolite (54%) in rat urine, followed by 5-hydroxy-N,N-
dimethyltryptamine glucuronide (23%), 5-hydroxyindoleacetic acid (5-HIAA, 14%), and
bufotenine (9%) [70]. Because 5-HIAA cannot be transformed from 5-MIAA but from
bufotenine, the 5-HIAA radioactivity may be attributed to consequential O-demethylation
and deamination, suggesting that oxidative deamination and O-demethylation are the two
major biotransformation pathways for 5-MeO-DMT in rats. 5-MeO-DMT was also found to
be N-oxidized in rats [71-74]. In rat models, though the role of N-oxidation is uncertain,
deaminated and O-demethylated metabolites were found in all studies. Our studies
[27,28,37,75] using human liver microsomes, hepatocytes and recombinant enzymes, as well
as wild-type and CYP2D6-humanized mouse models, support the conclusion that 5-MeO-
DMT is mainly inactivated through an MAO-A-catalyzed deamination pathway in humans
although some 5-MeO-DMT is O-demethylated to bufotenine.

It is noteworthy that bufotenine, the O-demethylated product of 5-MeO-DMT, is also a
hallucinogenic compound co-existing with 5-MeO-DMT in many plants and toad species
[4-6,76]. Bufotenine exhibits about 5- to 10-fold higher affinity to the 5-HT2A receptor than
5-MeO-DMT in vitro, and about 3-fold higher potency than 5-MeO-DMT when they are
present at similar level in brain [31,77,78]. Although the psychoactivity of bufotenine had
been questioned due to its lower ability to cross blood-brain barrier (BBB), bufotenine does
produce psychoactive effects in humans after intravenous injection or intranasal and
sublingual administration [76,79,80]. Thus, the production of bufotenine from 5-MeO-DMT
may be viewed as an activation process similar to the production of serotonin from 5-
methoxytryptamine [81]. Indeed, severe toxicity or even lethality associated with the use of
bufotenine has been documented [82,83], and bufotenine has been a Schedule I controlled
substance in United State for decades.

The production of bufotenine from 5-MeO-DMT is predominately mediated by human
CYP2D6 (Fig. 1), which is well known for its genetic polymorphism and clinical importance
[28,84-87]. This biotransformation was initially discovered using recombinant CYP2D6
enzyme [27]. Our recent studies [37] indicate that 5-MeO-DMT O-demethylation is
significantly correlated with bufuralol 1′-hydroxylation and CYP2D6 content in human liver
microsomes when the deamination pathway is blocked by an MAO inhibitor. In addition, the
CYP2D6.10 allelic isoform has much lower enzymatic activity in catalyzing 5-MeO-DMT
O-demethylation than wild-type CYP2D6.1 enzyme, suggesting that subjects carrying the
CYP2D6*10 allelic variant may produce less bufotenine from 5-MeO-DMT. Given the
important role for CYP2D6 in 5-MeO-DMT O-demethylation activation, elucidation of the
formation of bufotenine would be necessary to understand 5-MeO-DMT pharmacokinetics
and risk of intoxication.

PHARMACOKINETICS OF 5-MEO-DMT
After i.p. administration, 5-MeO-DMT reaches the maximum drug concentration (Cmax) at
around 5-7 min and is then eliminated with a terminal half-life (t1/2) of 12-19 min in mice
[75]. The fast absorption and short t1/2 are also true for 5-MeO-DMT in rats [72]. 5-MeO-
DMT is predominantly eliminated through MAO-A-mediated metabolism, as supported by
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the low urinary recovery and biliary excretion of the parent compound [70,71] and an over
4-fold increase in systemic exposure to 5-MeO-DMT when co-administered with an MAOI
[37]. 5-MeO-DMT also shows a relatively high oil/water partition coefficient (3.30) [88],
suggesting that 5-MeO-DMT may easily penetrate various lipoprotein barriers including the
BBB. Indeed, 5-MeO-DMT significantly accumulates in many organs (e.g., liver, kidney
and brain) in different animal models (e.g., mouse, rat and rabbit) [72,73,89]. The brain
concentration of 5-MeO-DMT is about 1.7-fold higher than that in blood at 45 min after i.p.
administration [72], and the drug is widely distributed in different rat brain regions including
cortex, thalamus, hippocampus, basal ganglia, medulla, pons and cerebellum [90]. Our
unpublished results also support the idea that 5-MeO-DMT is readily distributed and
accumulated in mouse cortex, hippocampus, hypothalamus, and striatum after i.p
administration.

As mentioned above, monitoring bufotenine formation may provide improved understanding
of the complex pharmacological and toxicological effects of 5-MeO-DMT because
bufotenine is the active metabolite of 5-MeO-DMT, and has a higher binding affinity for the
5-HT2A receptor than 5-MeO-DMT does. Bufotenine is also rapidly eliminated from the
body. In healthy volunteers receiving an intravenous infusion of 14C-labeled bufotenine,
nearly all the radioactivity is recovered in the first 12 hr urine sample [91]. Furthermore,
only 1-6% of total recovered radioactivity is identified as unchanged bufotenine, while the
deaminated metabolite 5-HIAA accounts for 68-74% of radioactivity. Compared to 5-MeO-
DMT, bufotenine has a poor partition coefficient and shows a low penetration across the
BBB but a high accumulation in rat lungs after subcutaneous injection [68,88].

Bufotenine is readily detected in mouse blood samples, following the administration of a
lower dose of 5-MeO-DMT (2 mg/kg, i.p.) [37,75]. Bufotenine reaches the Cmax at around
13 min, and is eliminated with an apparent half-life of about 25 min. The systemic exposure
(AUC) to bufotenine appears to be less than 10% of that of the parent 5-MeO-DMT in mice
[37,75]. Considering the low systemic exposure to bufotenine produced from 5-MeO-DMT
and the low BBB penetration for bufotenine, the peripheral bufotenine produced from 5-
MeO-DMT may not be able to cross the BBB and thus maintain sufficient concentration in
brain to exert neurotoxicity. In addition, our unpublished findings indicate that bufotenine
may not be extensively produced from 5-MeO-DMT within mouse brain. Therefore, it is
likely that only peripherally-generated bufotenine contributes to the apparent activity of 5-
MeO-DMT.

DRUG INTERACTIONS BETWEEN 5-MEO-DMT AND MAOI HARMALINE
DDI may be arisen when subjects are exposed to polypharmacy [36,92-95]. At the
pharmacokinetic level, a perpetrator drug alters the absorption, disposition, metabolism, or
excretion of the victim drug, which may be translated into a significant change in drug
efficacy and/or toxicity. The metabolic DDI is often observed because metabolism
represents the major route of drug elimination. At the pharmacodynamic level, concurrent
drugs both act on the common targets, leading to synergistic or antagonistic responses. It
should be noted that some drugs may interact at both pharmacokinetic and
pharmacodynamic levels, and lead to severe or even fatal toxicity. This may be true for the
concomitant use of 5-MeO-DMT and harmaline or another MAOI. By inhibiting MAO-A-
mediated 5-HT degradation, MAOI itself promotes serotonergic transmission (Fig. 2).
Furthermore, harmaline is also a 5-HT agonist [96,97] that could potentiate serotonergic
actions of 5-MeO-DMT. In addition, harmaline reduces 5-MeO-DMT deamination
metabolism, leading to an increased and prolonged exposure to 5-MeO-DMT, as well as the
psychoactive metabolite bufotenine that depends upon CYP2D6 status. Indeed, cases of

Shen et al. Page 5

Curr Drug Metab. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



severe and lethal intoxication due to the combined use of a tryptamine (e.g., 5-MeO-DMT or
5-MeO-DiPT) and an MAOI drug (e.g., harmaline) have been reported [38,39,98,99].

Pharmacokinetic and Pharmacodynamic Interactions
The pharmacokinetics of 5-MeO-DMT can be significantly altered by a co-administered
MAOI. Co-incubation of 5-MeO-DMT with harmaline in human hepatocytes completely
blocks the depletion of 5-MeO-DMT, and reduces the in vitro intrinsic clearance (CLint) by
over 24-fold [37]. In rats, pretreatment with iproniazid significantly increases 5-MeO-DMT
levels in urine, blood, and other tissues [71,72]. In mice, pretreatment with harmaline
decreases the clearance of 5-MeO-DMT by 4.4-fold, leading to a 4.4-fold higher systemic
exposure to 5-MeO-DMT (Fig. 3) [37]. The concomitant administration of harmaline not
only affects the pharmacokinetics of 5-MeO-DMT, but also influences formation of the
active metabolite bufotenine (Fig. 3). When deamination metabolism is inhibited, more 5-
MeO-DMT is diverted to other metabolic pathways including O-demethylation with
increased production of bufotenine. In human CYP2D6 extensive metabolizer hepatocytes,
bufotenine formation is significantly increased when 5-MeO-DMT is co-incubated with
harmaline [37]. Since bufotenine is also mainly inactivated through the MAO-A-mediated
deamination pathway [91], MAOI may not only increase bufotenine production but also
reduce its elimination. As a result, the Cmax and AUC of bufotenine are increased to 2.6- and
6-fold, respectively, in mice after harmaline pretreatment [37].

Besides the impact on 5-MeO-DMT pharmacokinetics, harmaline acts on serotonergic
systems and exhibits a variety of neuropharmacological activities. Harmaline is one of the
most potent inhibitors of MAO-A [100], and it may interact with 5-HT, dopamine, gamma-
amino-butyric acid (GABA), and N-methyl-d-aspartate (NMDA) receptors [101-105]. The
pharmacokinetic and dynamic interactions of harmaline and 5-MeO-DMT are manifested by
a remarkable change in drug responses. For instance, pretreatment with harmaline and
clorgyline in rats significantly modifies 5-MeO-DMT-induced locomotor activity to a
biphasic effect, of which the late hyperactivity is attenuated by MDL 11939, a selective 5-
HT2A antagonist, suggesting the important contribution of the 5-HT2A receptor to the
hyperactivity induced by combined use of 5-MeO-DMT and MAOI [60]. Studies in our
laboratory indicate that harmaline enhances the hyperthermic effect of 5-MeO-DMT and
potentiates stimulus control in mice (unpublished data). Anecdotal reports by human self-
experimenters suggest an enhancement of the psychedelic effects of 5-MeO-DMT when
combined with harmaline or harmine [3,40]. For instance, 10 mg of 5-MeO-DMT
administrated intranasally or sublingually causes significant visionary response, whereas the
same dose of oral 5-MeO-DMT does not show any effects in humans, which is probably due
to the extensive first-pass metabolism by MAO-A. However, when used with harmaline, the
same oral dose 5-MeO-DMT (10 mg) shows nearly equal intensity of psychedelic effects as
10 mg of 5-MeO-DMT itself dosed intranasally or sublingually [3]. These findings indicate
that 5-MeO-DMT pharmacological and toxicological effects are generally potentiated by a
concurrent MAOI because of pharmacokinetic and dynamic interactions.

The Impact of CYP2D6 Genetic Polymorphism
CYP2D6 is an important P450 enzyme that has more than 90 allelic variants, leading to
considerable interindividual variability in metabolism of some CYP2D6 substrate drugs
including therapeutic agents and drugs of abuse [1,106-108]. Because 5-MeO-DMT O-
demethylation is dependent upon CYP2D6 [27], the impact of CYP2D6 phenotype/genotype
on the production of bufotenine from 5-MeO-DMT has been examined [37]. The blockage
of MAO activity results in a strong correlation between 5-MeO-DMT O-demethylation and
CYP2D6 activity in human liver microsomes. As expected, the CYP2D6.1, CYP2D6.2 and
CYP2D6.10 allelic isoforms shows variable catalytic activities in producing bufotenine from
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5-MeO-DMT, and human CYP2D6 poor hepatocytes lacking CYP2D6 activity do not
produce any bufotenine. In addition, CYP2D6-humanized (Tg-CYP2D6) mice [109] show a
significantly higher systemic exposure (AUC) to the active metabolite bufotenine than wild-
type mice treated i.p. with 20 mg/kg of 5-MeO-DMT. It should be noted that the Tg-
CYP2D6 and wild-type control mice are useful animal models in delineating the impact of
CYP2D6 on drug metabolism and pharmacokinetics [28,110,111]. Therefore, it is expected
that subjects with regular or increased CYP2D6 activity would be exposed to both the
substrate drug 5-MeO-DMT and the active metabolite bufotenine, and thus might have more
complex drug effects [37].

Harmaline co-administered with 5-MeO-DMT is also metabolized by CYP2D6 [112], and
the effects of CYP2D6 status on harmaline metabolism, pharmacokinetics and
pharmacodynamics have been defined separately [113]. Depletion of harmaline is 2.5 times
slower in human CYP2D6 poor metabolizer hepatocytes than that in CYP2D6 extensive
metabolizer hepatocytes. Further studies using Tg-CYP2D6 and wild-type mouse models
reveal that wild-type mice have a longer and higher exposure to harmaline, as well as a more
severe hypothermia (Fig. 4). In addition, wild-type mice lacking CYP2D6 activity are more
sensitive to harmaline in marble-burying test [113]. Therefore, a lower exposure to
harmaline in Tg-CYP2D6 mice might counteract the effect of CYP2D6 on 5-MeO-DMT O-
demethylation. Indeed, levels of bufotenine formed from 5-MeO-DMT do not differ
significantly between wild-type and Tg-CYP2D6 mice after co-administration of harmaline
[37], which may be due to the low dose (2 mg/kg, i.p.) of 5-MeO-DMT used in the study
and the significant contribution of mouse P450s to 5-MeO-DMT O-demethylation [27,28].
Nevertheless, systemic exposure to bufotenine is about 24% of that to 5-MeO-DMT in Tg-
CYP2D6 mice, whereas it is 15% in wild-type mice, indicating the impact of CYP2D6 status
on harmaline-5-MeO-DMT pharmacokinetic drug interaction.

CONCLUSIONS
5-MeO-DMT represents a natural psychoactive tryptamine indolealkylamine drug of abuse.
As a fast-acting drug, 5-MeO-DMT induces many physiological and behavioral changes in
humans and animal models, such as visionary and auditory distortion, hyperthermia, head-
twitch, and stimulus control, which involve the actions of 5-HT receptors. It is readily
inactivated through the MAO-A-mediated deamination pathway, while a small portion is
transformed to the active metabolite bufotenine by polymorphic CYP2D6. Receptor binding
studies have revealed that 5-MeO-DMT is more selective for the 5-HT1A receptor, while
bufotenine mainly acts as a 5-HT2A agonist. The apparent non-selectivity of 5-MeO-DMT
may be attributed, at least in part, to bufotenine produced from 5-MeO-DMT, which is
dependent on CYP2D6 enzymatic activity.

5-MeO-DMT is often co-abused with an MAOI such as harmaline to enhance hallucinations.
There are two levels of interactions between harmaline and 5-MeO-DMT, pharmacokinetic
and pharmacodynamic. When deamination metabolism is inhibited by harmaline, the
systemic and cerebral exposure to 5-MeO-DMT, as well as to the metabolite bufotenine, is
sharply elevated and prolonged. Meanwhile, harmaline and 5-MeO-DMT both act
agonistically on the serotonergic systems. As a result, coadministration of harmaline
potentiates 5-MeO-DMT drug responses and sometimes leads to severe or fatal serotonin
toxicity in animal models. Several cases of intoxication or even death have also been
reported in humans associated with the abuse of 5-MeO-DMT and harmaline. In addition,
depending upon the dose combination, an influence of CYP2D6 genotype/phenotype on
harmaline-5-MeO-DMT DDI may be seen, despite the fact that the CYP2D6 enzyme
inactivates harmaline whereas it activates 5-MeO-DMT. Therefore, CYP2D6 may serve as a
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marker for bufotenine production during pharmacokinetic interaction between 5-MeO-DMT
and harmaline.
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ABBREVIATIONS

5-MeO-DMT 5-methoxy-N,N-dimethyltryptamine

Bufotenine 5-hydroxy-N,N-dimethyltryptamine

CYP2D6 cytochrome P450 2D6
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MAOI monoamine oxidase inhibitor

DDI drug-drug interaction

Serotonin 5-HT

DMT N,N-dimethyltryptamine

5-MeO-DiPT 5-methoxy-N,N-diisopropyltryptamine

BBB blood-brain barrier
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Figure 1.
5-MeO-DMT biotransformation and the metabolic interactions with harmaline. O-
demethylation of 5-MeO-DMT by CYP2D6 produces an active metabolite bufotenine. Both
5-MeO-DMT and bufotenine are readily deaminated by MAO-A to indoleacetic acid
derivatives. The MAOI harmaline, which is inactivated by CYP2D6, blocks the deamination
metabolism of 5-MeO-DMT and bufotenine.
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Figure 2.
Hyperserotonergic effects may be induced when harmaline blocks 5-HT degradation, and
the concurrent 5-MeO-DMT activates 5-HT receptors within the synaptic cleft, beside their
pharmacokinetic interactions.
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Figure 3.
Harmaline (5 mg/kg, i.p.) co-administered with 5-MeO-DMT (2 mg/kg, i.p.) markedly alters
blood concentrations of the parent drug 5-MeO-DMT (A), the active metabolite bufotenine
(B), and the ratio of their systemic exposures (C) in wild-type and/or Tg-CYP2D6 mouse
models [37].
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Figure 4.
Studies using wild-type and Tg-CYP2D6 mouse model demonstrate that CYP2D6 status has
significant impact on harmaline pharmacokinetics (A) and harmaline-induced hypothermia
(B) [113].
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