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Abstract: Diffuse optical imaging is a non-invasive technique for 
measuring changes in blood oxygenation in the brain. This technique is 
based on the temporally and spatially resolved recording of optical 
absorption in tissue within the near-infrared range of light. Optical imaging 
can be used to study functional brain activity similar to functional MRI. 
However, group level comparisons of brain activity from diffuse optical 
data are difficult due to registration of optical sensors between subjects. In 
addition, optical signals are sensitive to inter-subject differences in cranial 
anatomy and the specific arrangement of optical sensors relative to the 
underlying functional region. These factors can give rise to partial volume 
errors and loss of sensitivity and therefore must be accounted for in 
combining data from multiple subjects. In this work, we describe an image 
reconstruction approach using a parametric Bayesian model that 
simultaneously reconstructs group-level images of brain activity in the 
context of a random-effects analysis. Using this model, we demonstrate that 
localization accuracy and the statistical effects size of group-level 
reconstructions can be improved when compared to individualized 
reconstructions. In this model, we use the Restricted Maximum Likelihood 
(ReML) method to optimize a Bayesian random-effects model. 
©2010 Optical Society of America 
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1. Introduction 

Diffuse optical imaging (DOI) is a non-invasive technology that uses low-levels of non-
ionizing light in the range of 650-900nm to record changes in the optical absorption and 
scattering of tissue (reviewed in [1]). Optical imaging can be used to record human brain 
activity using a spatially arranged grid light emitters and sensors arranged on the surface of 
the scalp as shown in Fig. 1. Each of these measurement combinations records light 
transmitted from the source position, through the head, and exiting beneath a detector 
position. Due to the high scattering properties of biological tissue, which result in a diffuse 
nature of migrating photons of light, each of these measurement pairs is sensitive to optical 
absorption changes within a diffuse volume of tissue lying between the source and detector 
position. Based on previous simulation studies, at a typical source-detector distance of around 
3cm, diffuse optics can be used to sample down to about 3-5mm of the outer surface of the 
brain [2,3]. During functional activation studies, an optical probe like the one shown in Fig. 1 
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is positioned over the suspected region of brain activity. Stimulus evoked changes in blood 
flow to the brain result in changes in optical absorption due to oxy- and deoxy-hemoglobin, 
hereafter termed HbO2 and Hb respectively. This results in a change in the signal in the 
measurements over this area of the brain, which can be converted to hemoglobin changes by 
the modified Beer-Lambert relationship [4] for each channel as seen in Fig. 1. As compared 
with functional MRI (fMRI), DOI is less costly, portable, and allows for a wider range of 
experimental scenarios because it does not require a dedicated scanner nor require the subject 
to lie supine. Moreover, optical imaging has the ability to resolve changes in both oxy- and 
deoxy-hemoglobin within the brain using multiple wavelengths of light, which can potentially 
lead to the ability to discriminate blood flow and oxygen metabolism changes [5]. Over the 
last several years, DOI has been used to explore brain activity in a variety of experimental 
conditions including infant development [6], mobility and balance [7], cognitive [8,9], and 
sensor-motor [10] systems to name only a few. 

 
Fig. 1. Example of optical head cap and evoked response signals. An example of the optical 
imaging head cap is shown on the left. This cap contains light sources and detectors connected 
via fiber optics. Each of the nearest-neighbor measurement pairs records changes in the optical 
absorption of the tissue in between the two positions. During functional studies, the 
arrangement of sensors can be used to estimate the spatial distribution of oxy- (HbO2), deoxy- 
(Hb), and total-hemoglobin (HbT) at each position. The image on the right shows an example 
data set showing activation in the frontal portion of the probe. 

One of the current challenges to optical imaging studies is the reconstruction of accurate 
images of the changes in brain activity. As reviewed in [1], optical imaging represents a 
generally underdetermined inverse problem, in which the image of interest has many more 
unknown parameters then measurements. This is also an ill-posed inverse problem, which 
means that a single unique solution cannot be obtained. Many methods based on 
regularization [1,11] and Bayesian models [12–14] have been proposed to improve the 
constraints on the optical inverse problem. To date however, these proposals have focused on 
improvement of images from a single imaging session or subject. Group-level analysis— the 
estimation of average brain activity image from a group of more than one subject or session, 
poses additional difficulties. Namely, since the optical inverse model for a single subject’s 
data is ill-posed, a solution needs to be selected that is consistent with both that single data set 
and with the images from other members of the group. Since the image reconstruction of any 
one subject’s data can yield a nearly infinite variety of admissible solutions to the inverse 
problem by virtue of its ill-posed nature, the reconstruction of individual solutions followed 
by averaging across subjects will compound the errors introduced by reconstruction and will 
lead to loss in group-level statistical effects due to inconsistencies between reconstructions. 

To date, most of the group-level analysis in optical imaging is done either based on 
selection and averaging of regions-of-interest or based on direct averaging in the native 
measurement space (e.g. optical source-detector pairings) and requires careful reproducible 
placement of the optical probe. For example, some groups record optical positions relative to 
the international 10-20 system. The limitation of region-of-interest or per channel approaches 
is that it should be restricted to analysis within a specific group of subjects. This approach 
may lead to false results, for example, in the case of comparisons between two age groups or 
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genders where brain anatomy may systematically differ. Region-of-interest analysis will also 
not suffice to capture differences in the location or extent of the brain activity. For example, 
due to the nature of the optical measurement model (forward model), an observed smaller 
change in optical signal could mean that there was either a lesser hemoglobin change or that 
the activation was deeper from the surface. In the same manner, the same optical signal could 
result if the location of the activity was more diffuse. Thus, region-of-interest based group 
analysis can be used to indicate that two groups are different, but cannot be used to elicit the 
exact nature of this difference— magnitude of change, location of signal, or anatomical 
differences between subjects (e.g. systematic errors in the placement of the optical probe). 

In this work, we propose a random-effects model for simultaneously reconstructing optical 
images from multiple subjects to estimate group-level statistics. The key feature of this model 
is not to necessarily reconstruct a more accurate group-level image (although we will show 
that this does occur), but rather to directly test the null hypothesis that two groups of subjects 
can be modeled by the same image of brain activity. In other words, we can reject the 
hypothesis that two groups of subjects are identical if and only if no solution to the inverse 
problem can be found that matches all the data from both subjects. If a solution does exist, this 
solution is not unique as per the ill-posed nature of the inverse problem and therefore we still 
can’t uniquely say precisely how two groups are different in terms of a completely accurate 
reconstruction model. However, because forward model used in the image reconstruction 
accounts for both differences in subject anatomy and differences in the positioning of optical 
sensors between subjects, this model does allow us to (at least to the accuracy of our forward 
model) rule out that such differences are due to systematic anatomical or probe differences. 

In our random-effects model, each subject is approximated as a perturbation (random-
effect) from the group image. We will then concatenate all the subjects’ data into a larger 
inverse model to be solved. The image reconstruction model that we will use is based on the 
cortical surface approximation method, which we recently described in [15]. In this method, 
brain activity is estimated directly on the surface of the cortex. This surface is generated using 
the FreeSurfer program [16,17], which creates an inflated and anatomically registered 
representation of the surface of brain. This surface registration is a necessary requirement of 
our current model since it allows registration of the parameter (image) space between 
subjects. In comparison, volumetric registration as done in similar fMRI models would 
require masking of the superficial skin and cerebral spinal fluid (CSF) layers. In the context of 
our group reconstruction model, this could mean that a brain voxel from one subject might 
align in volume space with a CSF voxel in a second subject. Thus, the edges of the brain in 
the reconstruction would be distorted, which is where optical measurements are most sensitive 
to brain activity. In fMRI, this is not as detrimental of an issue as it is for optical data. Using 
the proposed surface based method, optical image reconstruction in the space of this inter-
subject registered surface provides a means to perform group-level averaging while 
accounting for both differences in the anatomy of the brain and placement of the optical 
sensors between subjects. Subsequent to our random-effects model, we will also describe an 
adaptation of our original surface model [18] to model systemic physiology. In order to solve 
the group-level inverse problem, we describe a Bayesian inversion of this random-effects 
model, which uses Restricted Maximum Likelihood (ReML) [19] to optimize the use of prior 
information in the reconstruction model. Recently, we described the application of ReML 
methods to optical imaging [14]. 

In this work, we will present three numerical examples to demonstrate the utility of this 
model. In the first example, we will present the case of estimating functional activities of a 
single subject with data simulating the imperfect placement of the optical probe over multiple 
sessions. This example will allow us to examine how the group-analysis model is affected by 
the sensitivity profile of a nearest-neighbor optical probe while simplifying the problem by 
keeping the subject anatomy the same (within-subject averaging). In the second example, we 
consider the case of optical imaging across multiple subjects, where now in addition to 
variations in the optical probe sensitivity, additional errors are introduced by differences in 
brain anatomy from one subject to another. The final example will compare two subject 
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populations where in addition to the issues of varying probe locations and brain anatomies, 
each group has a different average functional activity. Here, we will assess the ability of our 
model to detect differences in brain activity between two groups of subjects. 

Theory 

The theory and implementation of diffuse optical imaging is the subject of several recent 
reviews [1,20–22]. In this section, we will first briefly describe the optical forward model and 
review our cortical-surface model that we have previously described in [18]. We will then 
describe the implementation of our random-effect group model. 

Optical forward model 

Diffuse optical imaging is a non-invasive technology that measures changes in the absorption 
and scattering of tissue between a pair of light emitters and detectors placed on the surface of 
the scalp. At each of these emitter positions, light is sent into the tissue at two or more 
wavelengths. Due to the highly scattering nature of biological tissue, this light spreads as it 
enters the tissue. The propagation of light through tissue is often approximated by a diffusion-
based random walk of the photons of light and can be modeled through Monte Carlo or finite 
elements methods. The ensemble path of the light depends on the structure of the underlying 
layers of the tissue, which for the head is the scalp, skull, cerebral spinal fluid, and gray/white 
matter brain tissue, which defines the volume sampled by each optical emitter and detector 
combination. During brain activity, regional changes in blood flow alter the concentration of 
blood and in turn change the absorption of the tissue. For the typically small changes in 
absorption associated with brain activity (and neglecting scattering changes that are assumed 
to be even smaller), the change in optical absorption (optical density; OD) at a given 
wavelength is approximated by a first-order linear expression given by 

 ( ) ( )
2 2, , 2 ,[ ] [ ]i j i j HbO HbO Hb Hb i jOD A HbO Hbλ λ λ λ λε ω ε ω υ ∆ = ⋅ ∆ + + ∆ + +    (1) 

where Ai,j is the optical measurement (forward) model obtained from estimation of the 
diffusion of photons through the tissue and describes the summation of absorption values 
along the diffuse path traveled by the light going from a particular light emitter to a detector 
pair (i,j), HbO2 and Hb are respectively the levels of oxy- and deoxy-hemoglobin, εHbX is the 
molar extinction coefficient for HbO2 and Hb at a particular wavelength. For reasons that 
should be clear shortly, we have defined two random noise terms in this expression; υ is 
additive measurement space noise (e.g. instrument noise on a detector) and ωX is an additive 
physiological noise in HbO2 and Hb. For our model, the measurement noise (υ) will be 
assumed to be a zero-mean normally distributed random variable with independence between 
optical channels and wavelengths. The physiological noise (ω) will also be assumed zero-
mean, but is not necessarily independent between HbO2 and Hb. For a given optical probe 
arrangement which consists of several source-detector pairs, the set of linear equations 
corresponding to all pairs at all wavelengths can be concatenated into a single linear 
expression of the form 

 ( )Y H β ω υ= ⋅ + +   (2) 

where the measurement contains all wavelengths and measurement pairs 

 

1
{ , }

2
{ , }

i j

i j

OD
Y OD

λ

λ

 ∆
 ≡ ∆ 
  

  (3) 

and the parameters of interest model oxy- and deoxy-hemoglobin changes 
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β
∆ 

≡  ∆ 
  (4) 

Both the oxy- and deoxy-hemoglobin terms are actually vectors representing the change at 
each point (voxel) in the image. The forward operator H is created from the concatenation of 
all the individual source-detector measurement expressions and encapsulates both the forward 
model projection from the volume underneath the optical probe to the set of measurement 
channels and the modified Beer-Lambert relationship (conversion of hemoglobin changes to 
absorption changes at multiple wavelengths). Note that Eq. (2) is the typical optical forward 
model with the exception of the explicit distinction of the two noise terms. 

 
Fig. 2. Schematic of analysis route. The figure above schematically illustrates the steps in the 
construction of the surface-wavelet model. This model was previously described in [18]. Using 
a structural MRI, the brain is segmented and then inflated into a spherical representation using 
the Massachusetts General Hospital’s FreeSurfer tools (www.nmr.mgh.harvard.edu). The 
cortical surface of the registered brain is used to generate a set of two-dimensional wavelets 
that depict textures (e.g. brain activity images) on the surface. The segmented brain is also used 
to construct the optical forward model. 

Surface-based image reconstruction 

In a recent publication, we described an approximation to the optical inverse problem, which 
modeled brain activity on the surface of the cortex using available structural magnetic 
resonance imaging (MRI) information [18]. In this approach, rather than modeling the 
changes in oxy- and deoxy-hemoglobin over the three-dimensional volume of the brain, we 
instead modeled the values at the two-dimensional surface boundary of the brain cortex. In 
that work, we numerically showed that this approach produced fairly accurate recovery of 
brain signals (generated from a proper volumetric simulation of activation) and we 
experimentally demonstrated that this approach produced images consistent with functional 
MRI in two separate experiments (visual stimulation and a frontal cortex task). 

A schematic of the surface-reconstruction model is presented in Fig. 2. In brief, structural 
MRI for a given subject was first segmented using the Massachusetts General Hospital’s 
FreeSurfer [16,17] and MNE software (www.nmr.mgh.harvard.edu) into skin, skull, cerebral 
spinal fluid, and gray/white brain regions. The FreeSurfer program was then used to perform a 
tessellation of the cortical surface and an expansion (non-linear morphing) of the surface to a 
spherical representation [17]. Important to this current work, this spherical surface is 
registered across subjects such that the same location on the sphere (surface coordinate) 
corresponds to the same anatomical area in each subject [17]. We described how we then 
constructed a basis set for image reconstruction using a set of spherical wavelets. This could 
be thought of as an extension of a typical wavelet representation of a two-dimensional image, 
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but in our case that two-dimensional image is wrapped around a closed folded surface, which 
has no edges. In brief, this wavelet basis was based on the work by Schröder and Sweldens 
[23] which describes the construction of the spherical wavelets from multiple resolution mesh 
obtained via recursive subdivision of an icosahedron approximating a sphere. The mesh is 
created by repeatedly subdividing an initial mesh such that each resolves into four “child” 
triangles at each new subdivision level. This is accomplished by defining a midpoint at each 
edge, followed by connecting the new midpoint together, leading to a higher resolution mesh. 
With each additional wavelet level, the model is able to depict higher resolution details. The 
point-spread function for levels 3-6 of this cortical model is shown in Fig. 3. The surface 
wavelet basis is used to reparameterize the image of oxy- and deoxy-hemoglobin at the 
surface of the brain cortex [18]. Substituting this change of basis into Eq. (2) gives 

 ( )1
, ,brain brain W brain W brainY H W β ω υ−= ⋅ + +   (5) 

where the subscript w denotes the parameters and noise in the wavelet domain. Hbrain is a 
subset of the original forward model corresponding to only the columns containing the nodes 
on the surface of the brain. 

 ,W brain brain brainWβ β= ⋅   (6) 
The matrix operators Wbrain and Wbrain

−1 are the forward (analysis) and inverse (synthesis) 
wavelet operators for the brain respectively. In the original work, we used a truncated wavelet 
basis, which acted like a spatial smoothing operator. In this work, we will be using the full 
(square) wavelet matrix and use the ReML method to impose spatial smoothing priors. 

Model of systemic physiology 

Our original cortical surface model only described brain activation. However, optical data is 
often (always) contaminated by systemic physiology from the scalp. To extend our original 
model, we propose to add a second layer corresponding to the surface of the scalp. In the same 
way that the surface of the brain was represented by the spherical wavelet basis, we can define 
a second surface corresponding to the extracted surface of the scalp. The purpose of this layer 
is to model the superficial noise in the optical signal due to systemic physiology. To avoid 
boundary effects to the forward model, we used the outer surface of the skull rather than the 
skin itself and used the MNE software to extract this boundary from the same anatomical MRI 
that was used for the cortical surface extraction and inflation. A schematic of the nested two-
layer model is shown in Fig. 3. 

In comparison to the brain surface, which was inflated and registered across subjects, the 
skin layer is subject-specific. The complete two-layered forward model in the wavelet domain 
for a single subject is given by 

 , ,1 1

, ,

W brain W brain
brain brain skin skin

W skin W skin

Y H W H W
β ω

υ
β ω

− − + 
 = ⋅ ⋅ ⋅ +   + 

  (7) 

Note that our model contains four sources of physiological noise (ω) corresponding to 
oxy- and deoxy-hemoglobin in the skin and brain layers in addition to a measurement noise 
(υ) term per channel and per wavelength of light measured. Since we have transformed the 
parameter space, the wavelet domain physiological noise is given by 

 T
W W Wω ω= ⋅ ⋅   (8) 
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Fig. 3. Multiple resolution surface meshes for head and brain. In this work, a two-layered 
nested model was used to depict signals originating in the brain and the scalp. Both layers were 
modeled using a spherical wavelet basis, which is constructed from repeated subdivision of an 
icosohedral mesh as described in [18]. In panel A, we show the mesh generated for the surface 
of the brain. The first column shows the mesh at four levels (3-6) of the model and the second 
column shows the blurring of a 2cm object on the surface of the brain. Panel B shows the mesh 
(levels 1-4) and smoothing effect of a 2cm object on the surface of the skin. 

Group-level random-effects model 

The conventional approach to the optical inverse model would involve the inversion of Eq. (2) 
to create an image of brain activity for each subject. An averaging of the resulting images 
across the subjects or groups would typically follow the inverse of each individual subject’s 
model. This approach is currently used in analysis models for MEG and EEG [24]. The 
difficulty with this approach for optical data is because each of these inverse models is ill-
posed (which means that there is no unique solution), the solution to one particular subject 
might be different from a second subject. However, this does not imply that the brain activity 
of the two subjects were actually different from each other. This leads to a high false 
discovery rate of inter-subject differences. Since the models are ill-posed, there are infinite 
equally valid solutions that explain the data. For this reason, group-level statistics for optical 
imaging are difficult and lead to a loss of statistical power when performed this way. The goal 
of our proposed model was to create a group-analysis inverse model that attempts to find a 
solution to the larger inverse model that is consistent with all subjects’ data. In other words, 
our null hypothesis might be that two subjects (subject A and subject B) are not significantly 
different from each other. Thus, we will setup a single inverse model to address whether 
subject A and B can be modeled by the same inverse solution. Note, this does not require us to 
get the inverse solution correct, since the larger inverse model is still under-determined and 
ill-posed. Rather this states that if any solution exists that can explain both sets of data, then 
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we cannot reject the null hypothesis. To do this, we will now describe a random-effects group 
analysis model for optical imaging. 

In the random-effects model, the image for each subject is treated as a perturbation 
(random effect) from a group image. That is 

 , , ,
Subject Group Subject

W brain W brain W brainβ β β= + ∆   (9) 

where ΔβSubject is assumed to be a zero-mean random variable. Our reconstruction model 
allows us to define a common parameter space across all the subjects by virtue of the 
anatomical registration of the MRI brains. Our surface brain model uses the FreeSurfer 
program to register the cortical surface of all the subjects and to create a mesh of the surface 
such that any node on the surface (entry of β) corresponds to the same anatomy across all the 
subjects. For example, the precentral gyrus is represented by the same entry in the parameter 
space for all subjects despite the fact that the physical dimensions, location, and folding of the 
brain may differ between subjects. We assume that structural anatomy and functional anatomy 
correspond to each other, which is also the basis of group analysis of functional MRI data in 
the FreeSurfer model. This registration is true of the brain parameters but not the skin 
parameters since the skin surface is generated differently and in general, the systemic 
physiology will differ between subjects. This feature of the model allows us to write Eq. (9). 

The random-effects model is created by concatenating the measurement models from each 
subject and is given by the expression 
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            



 

 (10) 

where we have used the variable HW to denote the wavelet domain forward operator (HW = 
H·W−1). In this example, Eq. (10) specifically describes the condition in which we have two 
subjects, however, this model can be easily generalized. The reconstruction of group average 
is given directly by the first set of entries in the parameter vector ( ,

Group
W brainβ ) whereas the 

individual subjects are recovered by the sum of the group image and the specific perturbation 
term (e.g. , , ,

SubjectA Group SubjectA
W brain W brain W brainβ β β= + ∆ ). Differences in the two subjects can be tested via a t-

test of the difference in the two perturbation terms (e.g. ( ), , 0SubjectA SubjectB
W brain W brainp β β∆ −∆ ≠ . 

In itself, the random-effects model does not help us to solve the inverse model. In fact, 
given the definition of the random-effect model in Eq. (10), we have succeeded in making the 
problem even more ill-posed since by adding the group term, we now have (N + 1) sets of 
parameters where N is the number of subjects. However, by placing the model in this 
framework we will soon demonstrate that we are able to make use of a Bayesian formulation 
and restricted maximum likelihood (ReML) methods as means to solve this model. Using the 
ReML model [14], we can estimate the covariance of the various noise terms. Specifically, the 
covariance of the random-effect is assumed to be zero-mean random variable. Through the 
ReML optimized weighted-least squares expression, non-zero values for the group parameters 
are more favored then non-zero random effects; meaning that when possible the model will 
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load weight into the joint-group image over placing an equal weigh onto each of the 
individual subject perturbation images. For example in the case that two subjects are identical 
( , ,

SubjectA SubjectB
W brain W brainβ β= ), loading of the group variable ( , 0Group

W brainβ ≠  and , , 0SubjectA SubjectB
W brain W brainβ β∆ = ∆ = ) 

is more favorable then placing loads on the random perturbations (e.g. , 0Group
W brainβ = and 

, 0SubjectA
W brainβ∆ ≠ and , 0SubjectB

W brainβ∆ ≠ ). 
As written in Eq. (10), this model would describe a one-level statistical test in which the 

subject label (in this case “A” and “B”) is controlled for. By extension of this model, 
additional levels can be introduced, for example in the two level model consisting of four 
subjects (A, B, C, and D) with two subjects in each of two groups (I,II) a two-level model is 
constructed such that: 

 

SubjectA Overall GroupI SubjectA

SubjectB Overall GroupI SubjectB

SubjectC Overall GroupII SubjectC

SubjectD Overall GroupII SubjectD

β β β β

β β β β

β β β β

β β β β

= + ∆ + ∆

= + ∆ + ∆

= + ∆ + ∆

= + ∆ + ∆

  (11) 

which would have a forward model of the form (ignoring skin models for simplicity): 

 

Overall

GroupI
SubjectA A A A

GroupII
SubjectB B B B

SubjectA
SubjectC C C C

SubjectB
SubjectD D D D

SubjectC

SubjectD

Y H H H
Y H H H
Y H H H
Y H H H

β
β
β
β
β
β
β

 
 ∆      ∆        = ⋅ ∆      ∆            ∆ 
 ∆ 

  (12) 

Similarly, group-level fixed or mixed-effects models can be created by dropping off the 
columns corresponding to specific random-effects (effectively setting a specific 0β∆ =  at the 
subject or group level) 

Restricted Maximum Likelihood (ReML) estimate of the inverse solution 

In order to solve the group-level model, we will use a method called Restricted Maximum 
Likelihood (ReML) which is an approach used to optimize Bayesian inverse models. This 
approach has been described in numerous texts in the context of fMRI analysis (reviewed in 
[24]) and the inverse problem for magneto- and electro-encephalography (MEG/EEG) [25]. 
Recently, we described the application of this model to diffuse optical imaging [14]. In this 
section, we will briefly describe the concept of ReML and refer to previous work for more 
detailed mathematical treatment. 

In a Bayesian framework, the weighted least-squares cost function is given by the 
expression 

 
{ }

11

2 2
0

ˆarg min   
PN

CC
Y Y

β
β β −−

− + −   (13) 

where ˆY Y− is the residual error of the model and 0β β− is the difference between the 
estimate of the model parameters and some a priori expectation of the parameters. We have 
used the notation 1

2 1T
C

X X C X−
−≡ , which is the weighted L2 norm. In lay terms, the 

Bayesian interpretation of Eq. (13) is that CN should be the covariance of the measurement 
error (e.g. υ from Eq. (2) and CP is the covariance of the intrinsic uncertainty in the parameters 
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(e.g. ω from Eq. (2). Thus, Eq. (13) describes a weighted distance measure, which combines 
both actual measurements and prior expectations of the model. For readers familiar with a 
regularization interpretation, we note that the Bayesian model is a subset of the general class 
of linear quadratic regularization models (for example, Tikhonov regularization) in which the 
regularization penalty (e.g. Cλ ⋅  in the term 2

C
X

λ⋅
) is specifically interpreted to be the 

inverse of a covariance matrix under the Bayesian model 
The solution to the linear model Y H β= ⋅ for either the Bayesian model or the linear 

quadratic regularization model is given by the Gauss-Markov expression: 

 
{ }

( )11

2 2 1
0 0 | 0

ˆarg min   
PN

T
Y NCC

Y Y C H C Y Hβ
β

β β β β−−

−− + − = + ⋅ ⋅ ⋅ − ⋅   (14) 

with 

 ( ) 11 1
|

T
Y N PC H C H Cβ

−− −= ⋅ ⋅ +   (15) 

In the Bayesian interpretation, |YCβ is the covariance of the parameters given the 
measurements and encapsulates both the intrinsic uncertainty in the parameters and the noise 
of the measurement process projected onto the parameter space. 

In both the Bayesian and regularization interpretations, the Gauss-Markov expression 
requires an estimate of the terms CN and CP. Since these terms are specifically covariances in 
the Bayesian framework, approaches such as maximum likelihood can be used to optimize the 
values of these terms. It can be shown that the solution that provides the maximum likelihood 
of the data conditional on some set of hyperparameters (p(Y|λ)) can be found by maximizing 
the free energy expression(see [24] for derivation) 

 
{ }

( ) ( )11

2 2
0

, ,

1 1 1 1ˆarg max   log log
2 2 2 2PNN P

N PCCC C
Y Y C C

β
β β −−

− − − − − −   (16) 

Note, that the free energy expression is similar to original weighted-least squares cost 
function expression (Eq. (13) with the addition of terms to penalize for large covariance 
terms. 

The covariance of the model are parameterized such that 

 andN i N P j P
i j

C Q C Q= Λ ⋅ = Λ ⋅∑ ∑   (17) 

where the set of Λ’s are hyperparameters that will be estimated in the model and the Q terms 
are a set of covariance components that describe a priori expectations about the structure of 
the covariance model. We will later further detail these components for our specific model 
within the methods section of this paper. The method of ReML is to maximize Eq. (16) by 
solving for the parameters (β) and the hyperparameters (Λ). The approach used in the SPM 
software [24] and our current work is to use the expectation-maximization algorithm [26] in 
which the solution to Eq. (16) is obtained by iteratively solving for the parameters under the 
assumption of a fixed set of hyperparameters (via the Gauss-Markov expression) and then 
solving for the hyperparameters that maximize Eq. (16) under the assumption of a fixed set of 
parameters. This second step can be done by taking the derivative of free energy expression 
with respect to the vector of hyperparameters and setting this derivative equal to zero. Since 
this approach has been published several times, our purpose here is not to exhaustively detail 
this model. Refer appendix III of [24] for details of the derivation and implementation of this 
approach in the context of the fMRI and MEG models. 
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ReML solution to the random-effects DOI model 

For our random-effects DOI model, we will use a hierarchical Bayesian formulation of the 
forward model. To summarize our previous sections in light of this, our optical model 
represents a three level model and is given by the set of equations 

Level I- Measurement level 

 Subject Subject Subject Subject
WY HW β υ= ⋅ +   (18) 

Level II- Subject level 

 , , ,

, ,0

Subject Group Subject
W brain W brain W brain

Subject Subject
W skin W skin

β β β

β ω

= + ∆

= +
  (19) 

Level III-Group level 

 , 0 , ,
Group Group Group

W brain W brain W brainβ β ω= +   (20) 

In this model, 0 ,
Group
W brainβ is a prior on the expected value of the brain image for the group. 

For the purpose of this work, we will assume this prior is zero, which enforces a minimum 
norm prior on the group parameter space. However, throughout this text we will leave this 
term in the description since an obvious extension of this model would be to use a non-zero 
prior from previous NIRS or fMRI data. In the hierarchical model, there are four separate 
noise terms, which are all zero mean random variables; υSubject is the measurement noise, 

,
Subject

W brainβ∆ is the random-effect for each subject, ,W skinω is the physiological noise in the skin for 
each subject, and finally ,W brainω  is the uncertainty in the group image of brain activity. In a 
similar manner to the per subject random-effect model, a multiple groups comparison model 
can be created by adding a fourth level to the model and so on. We will define the following 
noise models 

 ,

,

,

(0, )

(0, )

(0, )
(0, )

Subject
N

Subject
W brain B

Subject
W skin S

W brain G

N C

N C

N C
N C

υ

β

ω

ω

∈

∆ ∈

∈

∈

  (21) 

The free-energy expression for our specific model is given by 

 

{ }
11

1 1

2 2

,
, , , ,

22

, 0 , 0| ,

1 1ˆarg max
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1 1
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1 1 1 1log log log log
2 2 2 2
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S G

Subject
W brain CCC C C C

Subject Group Group
W skin W brain W brainC C

N B S G

Y Y

C C C C

β
β

β β β

−−

− −

− − − ∆

− − −

− − − −

  (22) 

In order to solve this model, we will parameterize the covariance models such that 
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  (23) 

In the following methods section, we will describe the details of these covariance 
components. 

2. Methods 

In this section, we will describe the implementation of the group-analysis model, having 
presented the theory behind this model in the last section. We will also describe the methods 
used to generate the optical simulations used in this paper. 

Implementation of ReML and Covariance models 

ReML was used to solve the linear inverse model under multiple prior constraints. This model 
was implemented in Matlab (version 2010a) through a modification of the program 
spm_reml.m, which is part of the SPM-8 software program (http://www.fil.ion.ucl.ac.uk/spm/ 
[24]; ). In the situation of our cortical surface model, each subject’s image contains several 
thousand unknowns, but only several dozen measurements (our specific surface model 
contained ~7,500 parameters for the brain and ~1,000 parameters for the skin model for each 
of HbO2 and Hb). In the case of the group-analysis model, there are a total of [(N + 
1)*<number of brain parameters> + N*<number of skin parameters>] parameters where N is 
the number of subjects. For five subjects, this is greater the 200,000 parameters. Thus, this is a 
massively under-determined model whose dimensionality quickly exceeds the computational 
capacity of most computers. In order to solve this model numerically and computationally 
efficiently, we first reparameterize the model using a singular value decomposition (SVD). 
For the model Y H β= ⋅ , a singular-value decomposition ( TH U S V= ⋅ ⋅ ) can be used to 
define a new set of parameters such that 

 ( ) 'TY U S V Uβ β= ⋅ ⋅ ⋅ = ⋅   (24) 

and the covariance of this new set of parameters is now given by 

 ( )T T
P i i i i

i i
C S V Q V S= Λ ⋅ ⋅ ⋅ ⋅ ⋅ = Λ ⋅Ω∑ ∑   (25) 

Importantly, in this new space, the size of the forward model (U) is square and of 
dimensions matching the number of measurements per subject times the number of subjects. 
Moreover, the hyperparameters of this space are identical to those of the original model. Thus, 
in practice, the SVD reparameterized model can be solved to yield the estimate of the 
hyperparameters in a very efficient manner using the much smaller matrix form. Once the 
hyperparameters have been determined, the original larger model can be solved directly in a 
single-step from the Gauss-Markov expression (Eq. (14). Since we had found that the ReML 
computation ran close to O(N^2) with the size of the model, by performing the SVD 
reparameterization we were able to cut the computation of the model from over several years 
of theoretical computational time to only minutes. The accuracy of this reparameterization 
was verified from both a theoretical and empirical prospective using smaller dimensional ill-
posed DOI inverse models. This approach is similar to the source-space ReML models used 
for MEG reconstruction [25,27]. 

In order to constrain the covariance terms to have only positive variance (real-valued 
data), we reparametered the hyperparameters with an exponential function such that 
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 il
i eΛ ≡   (26) 

The ReML code was iterated on the SVD-reparameterized model until the value of the 
(exponential) hyperparameter changed by less then 1E-5. 

Covariance components 

In our model, there are four types of noise/uncertainty terms (Eq. (21)). Each of these noise 
terms was modeled as a linear combination of covariance components weighted by the 
hyperparameters. E.g. 

 i i
i

C Q= Λ ⋅∑   (27) 

Measurement noise (CN). For each subject, two diagonal (identity) covariance components 
were used to model the measurement noise with one component corresponding to each of the 
two wavelengths of light used in the model (specifically 830nm and 690nm were simulated). 
Thus, the number of terms in the model of measurement noise was 2 × N where N was the 
number of subjects. 

Subject-Parameter Uncertainty in the brain (CB). For each subject, two diagonal (identity) 
covariance component terms were used to model oxy- and deoxy-hemoglobin changes 
respectively. The number of terms in the model of random effect was 2 × N where N was the 
number of subjects. 

Subject-Parameter Uncertainty in the skin (CS). 

2 ( 1)1 / nσ ⋅ −

An additional two diagonal covariance 
component terms were used to model oxy- and deoxy-hemoglobin changes in the superficial 
(skin) layer. These covariance components were used to bias the superficial image to lower 
spatial resolutions (spatial smoothing) by imposing that the variance of each level of the 
wavelet model (from lowest to highest spatial frequencies) was attenuated as  where 
n is the corresponding level of the wavelet model for those parameters in the model and σ is a 
smoothing factor. We used a value of σ = 15mm for this work. The number of terms in the 
model of skin physiology was 2 × N where N was the number of subjects. 

Group-Parameter Uncertainty (CG). 

Calculation of the optical forward model 

Finally, the covariance of the group-level model was 
modeled by three covariance component terms. Two unity diaginal terms were used to model 
the oxy- and deoxy-hemoglobin images respectively. A third term with negative unity along 
the off-diagonal elements corresponding to covariance between oxy- and deoxy-hemoglobin 
was used to statistically model the expected anti-correlation between oxy- and deoxy-
hemoglobin. Note that in the ReML model, all the covariance components are actually soft 
statistical (covariance) priors. In total there were 6 × N + 3 covariance components for the 
model where N was the number of subjects. 

The procedure for the calculation of the optical forward model is described in [18]. In brief, a 
structural MRI image (MPRAGE image collected on a Siemens 3T TRIO scanner or the 
Colin27 atlas [28] as noted) was segmented, cortically inflated and registered using the 
software tools in FreeSurfer [16,17]. The segmented head (skin, skull, cerebral spinal fluid, 
and gray/white brain matter) was used to construct a finite element model and the program 
NIRFAST [29] was used to compute the optical forward model at simulated wavelengths of 
690nm and 830nm using the optical properties described in [18,30]. The two wavelength 
forward models were combined with the extinction coefficients of hemoglobin (Beer-
Lambert) to generate the spectral forward model. The registered FreeSurfer surface (e.g. 
“sphere.reg”) was used to construct the spherical wavelet model as described in [18]. An 
additional wavelet model of the skin was generated from the outer surface of the skull, which 
was obtained using the MNE software extension to the Massachusetts General Hospital’s 
FreeSurfer program. We used the outer surface of the skull rather then the actual surface of 
the head because we found that the later suffered from artifacts due to the optical forward 
model right at the surface. 
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In order to test the group-level model, we performed two types of simulations (later 
described as example I and II/III). In the first type of simulations, we used a single MRI brain 
(for this we used the Colin27 atlas [28]; ) and simulated the repositioning of an optical probe 
on the head with varied degrees of error (mean displacements of 0mm, ±0.5mm, ±1.5mm, 
±2.5mm, ±5.0mm, ±10.0mm, and ±15.0mm [half the source-detector distance]). This set of 
simulations was intended to look at the errors introduced by the positioning of optical sensors. 
In the second set of simulations, we used MRI images from five separate subjects and 
positioned the optical probe on the head of each image according to the distance from the 
nasion, inion, and ears using an initial affine registration followed by relaxation onto the 
surface (see [31]). In this second set of simulations, we are able to look at both the effects of 
differing subject anatomy and positioning differences in the optical probe. In all simulations, 
we assumed that we knew the position of the probe on the head precisely, but that the probe 
positioning varied across subjects with random error. 

In all simulations, we have used a nearest-neighbor probe as shown in Fig. 3. Although 
representing the majority of published optical studies, the nearest-neighbor probe is known to 
have areas of low sensitivity, particularly the volume directly beneath a source or detector 
position. With this type of probe, partial volume errors associated with the placement of the 
probe relative to the area of activation can be severe. Previous work by Joseph et al.[32] 
provides evidence that nearest-neighbor geometries are inferior to high-density probe 
arrangements with overlapping (tomographic) measurement geometries. In our opinion, 
however, these high-density probes are not always practical depending on the area of interest, 
the hair color and thickness of the subject, and the capabilities of the instrumentation. Thus, in 
this work, we examined the performance of our group-level model in comparison to 
individual reconstructions for the case of the nearest-neighbor probe only. It is expected that 
the reconstruction of tomographic (e.g [32].) probe in the case of a single subject/session 
would be more robust to partial volume and probe positioning errors. Since the vast majority 
of DOI studies currently do not use tomographic probes, we feel that this study is currently 
justified. 

Simulations 

In order to demonstrate this model, we will go through three examples of increasing 
complexity. All simulations were performed using a nearest-neighbor optical probe with a 
source-detector spacing of 32mm which we currently also use for experimental studies. The 
layout of the probe was shown in Fig. 1. Figure 4 shows the sensitivity of this probe to the 
underlying gyri and sulci in the brain. This probe has 4 source and 8 detector positions 
providing 15 measurement combinations at each of the two wavelengths (690nm and 830nm). 

 
Fig. 4. Sensitivity of the optical probe. The sensitivity model for the optical probe used in this 
study (see Fig. 1) is shown panel A. This probe consisted of 4 source and 8 detector positions 
in a nearest-neighbor arrangement. The relative sensitivity map is shown on the inflated surface 
of the brain for the Colin27 atlas. The anatomical gyri and sulci locations are indicated in green 
and blue respectively in panel B. The sensitivity of the optical probe is near zero within the 
sulci of the brain. 
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To simulate brain activity, a 7cm2 homogenous target was generated in the center of the 
probe. The location of this activation was chosen for one of the subject’s brains as a reference 
and then placed in the registered inflated surface coordinate system. The location of the 
simulated activation was then transferred onto the individual brains of each simulated subject. 
A superficial model of systemic noise was also simulated. For each individual simulation, a 
noise image was created on the surface of the skin by randomly placing a 5cm radius 
inclusion on the skin layer followed by spatial low-pass filtering and renormalization to an 
amplitude of between 1 and 5μm for oxy-hemoglobin. Due to the low-pass filtering operation, 
the additive skin noise contained both positive and negative signed values. Deoxy-hemoglobin 
noise was added as −0.25 times the oxy-hemoglobin image. The noise in the skin layer was 
randomly positioned for each simulation. An example of a noise model used to represent the 
skin is shown in Fig. 5. 

 
Fig. 5. Skin noise model. In addition to brain activation, a low-spatial frequency noise image 
was added to the skin layer of the model. This was generated by placing an inclusion with a 
5cm radius on the surface of the skin layer followed by spatial smoothing. The skin noise 
image was randomly placed for each simulation. An example noise image for oxy-hemoglobin 
is shown above. 

In the first example, we will show results from the simulation of a within-subject study in 
which we examine the effects of the repositioning of the DOI probe with random 
displacements (see Fig. 6). In this example, the anatomy and simulated brain activity were the 
same for each simulation but the location of the probe on the head, the additive systemic noise 
and the additive random measurement noise was different. In the second example, we 
simulated a multiple-subject study in which different anatomical volumes and repositioned 
DOI probe placements were used. For each subject, the same brain activation pattern was 
generated in the registered spherical space and then warped onto that subject’s individual 
cortical map (Fig. 7). Thus, each subject had slightly different location and extent of brain 
activity simulated depending on their actual anatomy. As before, additive systemic noise and 
the additive random measurement noise was different between subjects. In this example, we 
are examining the effects of both probe sensitivity and anatomical differences on the optical 
reconstruction. In the third and final example, we simulated a multiple-subject, multiple-
session, and multiple-condition study. Here, five separate subjects were simulated in two 
sessions each. The simulated brain activity of the first and second sessions differed. In this 
example, we will look at the performance of the models to detect differences in brain activity 
subject to errors introduced by probe placement, subject anatomy, and systemic noise. 
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Fig. 6. Positions of the optical probe for within subject simulations. Optical data was simulated 
for displacements of the optical probe of 0.5-15mm. The probe was repositioned five times for 
each level of displacement error. In panel A, we show the procedure to register the optical 
probe on the head of a phantom using a Polhemus three-dimensional digitizer. Random 
perturbations were generated numerically from a registered template. In panel B, the placement 
of the five probes for the ±15mm displacement simulations is shown. A different color marker 
represents each position. For simulations, the Colin27 [28] atlas was used. 

Comparison of models 

We will compare three versions of the group-level model. First, images were individually 
reconstructed using a ReML model and then were averaged together in the image (parameter) 
domain. Overall statistical maps were constructed assuming independence between the 
individual subject images. In the second method, we used a mixed-effects model in which the 
random-effect term was left off allowing for direct reconstruction of the group average via 
joint-reconstruction. In the third method, we used the proposed random-effects model. For all 
models with the exception of those simulated with zero noise, a total of ten simulations were 
performed with varied levels of random additive noise added to the measurement channels. 

In all of our examples, we are performing a sort of inverse crime in that we are assumed to 
know the DOI probe position and its sensitivity model exactly. We have also assumed that the 
registration offered by FreeSurfer is exact in order to generate individual activation maps from 
the registered spherical atlas. In reality, we would expect errors in the determination of the 
position of the probe, errors in the registration of FreeSurfer, and inaccuracies of the optical 
forward model. The purpose of this current work is to explore whether a random-effects 
model can improve group-level analysis compared to individual subject level image 
reconstructions followed by averaging. Thus, the use of this simplified inverse model is 
justified to address this specific question. Future work to improve the optical forward model 
and optical registration will be needed to fully realize our model. 
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Fig. 7. Generation of inter-subject simulations. Optical data from multiple subjects was 
simulated by first generating an activation region on the registered atlas (spherical) map. This 
activation was then morphed back onto the individual cortical structures for five subjects via 
FreeSurfer. According to the registration of the cortical surface, the simulated activation in 
each of the five subjects represents the same anatomical area in the inflated space, however the 
extent and location in the three-dimensional (folded) brains varies between subjects. 

3. Results 

Our proposed random-effects model outperformed the approach of performing separate 
reconstructions for each subject followed by averaging in terms of both accuracy and 
statistical effect size. In this section, we will highlight three examples of this model going 
from the case of a within subject design to a between groups design. The later is more difficult 
since brain activation pattern, optical probe placement, and subject anatomy must be 
accounted for. 

Example I. Within-subjects design 

A known limitation of the DOI nearest-neighbor probe design is the location of regions of low 
sensitivity, in particular, directly beneath source or detector positions on the probe. Although 
tomographic probes using overlapping optical measurements provide more uniform sensitivity 
[32], the complicated setup and instrumentation of these probes is a limiting factor in their 
success. In general, most optical studies still use nearest-neighbor probe designs. In this first 
example, we simulated the repeated placement of an optical probe on the Colin27 atlas brain 
in order to examine the reconstruction errors introduced by a nearest-neighbor probe. We 
compared the individual reconstruction of each data set to joint reconstructions using a fixed-
effect and random-effect model. A total of ten iterations of simulations were performed for 
each of five levels of signal-to-noise ratios (infinite, 50:1, 20:1, 10:1, and 1:1) and each of 
seven mean displacement errors (0-15mm) of the probe. For each simulation, the probe was 
repositioned five times. A total of 1750 simulations were performed. 

In Fig. 8, we show a single set of simulations for a probe displacement of +/15mm at a 
signal-to-noise level of 10:1. In Fig. 9, the activation T-statistics for the same data is shown. 
As can be seen in both figures, compared to the individual reconstruction/average both the 
mixed and random-effects models produced much more localized activation estimates of oxy-
hemoglobin that closely agreed with the simulated truth image. The effects size of the 
estimated activation was four-fold higher for both the fixed and random effects models. In the 
case of deoxy-hemoglobin reconstructions, all three methods produced comparable activation 
amplitudes, but the random and fixed effects models showed vast improvements to the 
statistical effect size. For this example, since the same signal-to-noise level using random 
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measurement noise was simulated for all models, we don’t expect a large difference between 
the fixed- and random-effects analysis in this case. This does demonstrate that, as expected, 
the random-effects terms in the model are approaching zero since it is possible to model all 
five simulated data sets using a single group-level image. 

 
Fig. 8. Intra-subject optical reconstructions from repeated measurements. The images above 
show the results of a simulation of intra-subject data with a random optical probe displacement 
of +/−15mm (also see Fig. 6). Data was simulated with a signal-to-noise ratio of 10:1. In 
column A, the simulated truth images are shown. The top/bottom rows show oxy- and deoxy-
hemoglobin respectively. Column B shows the average of five individual reconstructions using 
a ReML model. Column C and D show the same data reconstructed using a fixed and random-
effects model respectively. 

 
Fig. 9. Statistical effects sized from intra-subject optical reconstructions. The images above 
show the t-statistic for the data presented in Fig. 8. Based on Satterthwaite estimate [24] of the 
effective degrees-of-freedom for the model (1.8), the cutoff for significance of 0.05 is 3.1 
standard deviations. Both the fixed and random effects images (columns C and D respectively) 
exceed this threshold for the area over the simulated region, but individual reconstruction and 
averaging results (column B) shows no significant activation. 

In Fig. 10, we show bar graphs of the reconstruction accuracy and model fit to the data for 
the various reconstructions at each signal to noise level. At all five signal-to-noise levels the 
fixed and random-effects models were nearly identical. Both performed better then the 
individual reconstruction followed by averaging method. The ReML method, which results in 
an empirically determined weighted least-squares model, adjusted the measurement noise 
term across the five signal-to-noise levels. As a result, the root mean squared measurement 

error (
2ˆY Y− ) approximately followed the additive level of measurement noise. In 

contrast, the model error ( 2
Trueβ β− ) was roughly the same across all signal-to-noise 

levels. This is because the parameter noise term (CP) in the ReML model was approximately 
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the same order of magnitude across all reconstructions. This is expected of the ReML model 
since differing levels of random measurement noise but not parameter noise was added in the 
simulations. 

 
Fig. 10. Reconstruction errors in within subject simulation. In panel A, the residual error of the 
model is shown for each of the five signal-to-noise levels and for the individual, fixed, and 
random-effects model. In panel B, the model error (reconstructed group image minus the 
simulated image) for the brain is shown. 

Example II. Across-subjects design 

In this second example, we simulated a between subjects study consisting of DOI signals 
simulated from five different subjects. Both the anatomy and location of the optical probe 
varied between subjects. Data was simulated based on the registered (inflated) cortical space. 
In Fig. 11, we show the reconstructed maps of oxy-hemoglobin for the average of the five 
subjects and the group images for the fixed and random-effects models. In the multiple-
subject model, the estimate of brain activity is directly obtained in the registered spherical 
space (inflated cortical surface). Thus, we have shown the group images on the surface of the 
registered surface (top row). We have also shown the image of this group estimate on the 
surface of one of the five subject’s brain. Similar to the intra-subject reconstruction case, the 
fixed and random-effects model were better localized compared to the independent 
reconstruction model. The deoxy-hemoglobin results (not shown) were consistent with those  
 

 
Fig. 11. Reconstructions of simulated data in inter-subjects study. The images above show the 
results of a simulation of inter-subject data (N = 5). Data was simulated with a signal-to-noise 
ratio of 10:1. In column A, the simulated truth images are shown. The top/bottom rows show 
the reconstructions of oxy-hemoglobin on the registered spherical surface and the group image 
projected onto one particular cortical surface. Column B shows the average of five individual 
reconstructions. Column C and D show the same data reconstructed using a fixed and random-
effects model respectively. 
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Fig. 12. Statistical effects of the inter-subjects study. The images above show the t-statistic for 
the data presented in Fig. 11. As before, the cutoff for significance of p<0.05 is 3.1 standard 
deviations. Again, both the fixed and random effects images (columns C and D respectively) 
exceed this threshold for the area over the simulated region, but individual reconstruction and 
averaging results (column B) shows no significant activation. Column A shows the simulated 
true image. 

previously shown for the intra-subject example. In Fig. 12, we show the T-statistics for the 
same set of data. As before, the fixed and random-effects models outperformed the individual 
reconstructions and the effects size of the random and fixed effects reconstructs was three to 
four times that of the individual reconstructions. 

In both the individual reconstructions and the random-effects model, an estimate of brain 
activity is obtained for both the group average and the individual subjects. In the case of the 
random-effects model, the individual’s image is obtained from Eq. (10). In Fig. 13, we show 
the simulated images and reconstructions for the five individual subjects. The reconstruction 
errors for various signal-to-noise ratios are shown in Fig. 14. In the case of the individual 
reconstructions, we can see that two of the subjects (A and E) had fairly good reconstructions 
while two of the other subjects (B and D) were underestimated. This reflects the uneven 
sensitivity of the nearest-neighbor probe and arose since the activation for these two subjects 
happened to be in an area of low sensitivity of the optical probe (refer to [32] for a more 
detailed treatment of this issue). In the case of the random-effect model, the data from all 
other subjects is being used to improve any one reconstruction. Thus, the reconstructions for 
subjects B and D are improved because additional information about the location of the 
activation was conveyed from the other three subjects in, which the probe was better 
positioned. As noted before, the issue of non-uniform sensitivity is particular to the nearest-
neighbor probe. 
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Fig. 13. Reconstructed images for the five subjects. Both the individual reconstructions and the 
random effects model allow recovery of both the group averages (previously shown in Figs. 
11 and 12) and the estimates for each individual subject. The individual subjects’ images are 
recovered from the random-effects model through Eq. (9) and are shown above for the same 
data presented in Fig. 10. The top row shows the location of the simulated activity on each 
subject’s brain. Note that the location and extent varies based on the individual folds of the 
brain. All five activation patterns were generated from the same registered cortically registered 
brain space (see Fig. 7). The middle row shows the results of the individual reconstructions 
and the bottom row shows the random-effects model. 

 
Fig. 14. Reconstruction errors in inter-subject simulation. In panel A, the residual error of the 
model is shown for each of the five signal-to-noise levels and for the individual, fixed, and 
random-effects model for the data presented in Figs. 11-13. In panel B, the model error 
(reconstructed group image minus the simulated image) for the brain is shown. 

Example III. Multiple-session across subjects design 
In this final example, we examined the case of an across subjects design consisting of two 

simulated sessions which each had different brain activation. In this set of simulations, we 
examined the performance of the models to detect differences in activation from one session 
to the other. We compared reconstructions using a three-level and four-level random-effects 
model. The three-level model was identical to the random-effects model described in the 
previous two sections (refer to Eqs. (18-20) for the definitions of the levels). This model 
consisted of a group term and five subject perturbation terms. Using this model, the two 
groups of subjects were examined separately and thus two independent random-effects models 
were solved. In the four-level model (see Eq. (12), there is an overall term, two group-level 
perturbation terms, and five subject-level perturbation terms. The two groups were simulated 
with amplitudes of 8 and 4μM with a small displacement in the location of the activation 
areas. The results of the image reconstructions are shown in Fig. 15. The t-statistics for these 
reconstructions are shown in Fig. 16. Both versions of the model performed nearly equally for 
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the estimation of the amplitude of the images. Both amplitudes for the two groups were 
accurately estimated. Although the amplitudes for these two images were correct and the 
difference between the images was around 4μM, we were unable to detect the difference in 
spatial location of the two groups. This was not too surprising since this remains an ill-posed 
inverse model. The t-statistics for the individual group images are comparable for both 
reconstructions as well. We were able to detect significant amplitude differences between the 
two groups, but we unable to detect the small difference in the position of the activity. 

 
Fig. 15. Image reconstruction of between groups study. The images above show the results of a 
simulation of two groups of subjects (N = 5/5). The simulated activation in group I and II was 
8μm and 4μm respectively for oxy-hemoglobin (column A) and −2μm and −1μm for deoxy-
hemoglobin (not shown). Data was simulated with a signal-to-noise ratio of 10:1. Columns B 
and C show the reconstructions of the two groups using a three and four-level random-effects 
model respectively. In the three-level model (B), the two groups were reconstructed 
independently. In the four-level model (C), both groups (10 subjects total) were reconstructed 
simultaneously. 

 
Fig. 16. Statistical effects of the inter-groups study. The images above show the t-statistic for 
the data presented in Fig. 15. The cutoff for significance of p<0.05 is 2.2 standard deviations 
(Satterthwaite correction). For both group's the estimated activation was significant for both the 
three- and four-level random effects models (columns B and C respectively). The difference 
image was only significant in the case of the four-level random-effects model (Column C). 
Column A shows the simulated true image. 
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4. Discussion 

In this work, we have described a random-effects model that uses joint reconstruction of 
multiple sessions of optical data to directly test the null hypothesis that two groups of subjects 
are identical. We are able to reject this hypothesis if at least one solution to the joint 
reconstruction model can be found that models both sets of data. Because our model also uses 
data from all of the subjects to estimate group and individual (rand-effects) images, we were 
able to demonstrate that the joint group-level model offers improvement of the reconstruction 
accuracy of both group and individual level estimates. In particular, we presented a series of 
simulated examples to show that this model improves the ability to localize brain activity 
compared to the approach of reconstructing each subject individually. Our model also 
improved the recovered effects size for the reconstruction by three to four-fold over the 
averaging of individual reconstructions. In many cases, this improvement marked the 
difference between being able to statistically reject the null hypothesis (e.g. no significant 
activation detected). In the random-effects model, both the group image and the individual 
results are obtained whereas in the fixed-effect model only the group average is retained. 
Thus, the random-effects model still allows single-subject information, but in effect uses all 
the other subjects to improve the individual estimates. 

Comparison of reconstruction models 

Our data supports an advantage of a multi-subject joint image reconstruction compared to 
individual reconstructions followed by averaging. However, in most cases we found that the 
fixed and random-effects models were very similar for many of the simulations. We failed to 
find any situations in which the random-effects model was significantly better then the fixed 
effects one. We believe that the differences between the two models may become more 
apparent under more situations of the model, which should be examined in future work. In 
particular, if the physiological and measurement noise across subjects or groups is random 
and of comparable magnitudes, we would expect both of these models to perform equally. If 
instead, one or few of the subjects had been outliers (either in terms of brain activation or 
physiological noise levels), the random-effects model would be expected to perform better. 
The advantage of the random-effects model over the fixed effect model is that the random-
effects model allows recovery of both the group and individual level data whereas only the 
fixed effects model only returns the group average result. Whether or not the individual 
images are of interest depends on the nature of the study and we not that the random-effects 
model has substantially more unknown parameters. 

Model assumptions and limitations 

We have made three major assumptions in this model. First, we have assumed brain activation 
to be constrained to the surface of the cortex. Our previous work [18] examined the 
justification and limits of this assumption. In short, we had found that cortical reconstructions 
closely matched both simulated volumetric data and experimental data collected with 
concurrent fMRI-DOI. In this work, we simulated activation directly on the surface of the 
brain and thus committed an inverse crime of sorts. In the original work, we had examined the 
performance of cortical reconstructions from volumetric simulations and had found that the 
cortical surface constraint resulted in slight under-estimation of the magnitude of the 
activation. The basis of the FreeSurfer multiple-subject registration is the alignment of the 
cortical surfaces rather than the brain volumes. Because of this, in the context of this work, it 
is impossible to generate registered volumetric simulations. In other words, we cannot 
simulate a single volumetric image of brain activation for the group that can be morphed into 
the individual brain volumes. Thus, the limitation of our cortical surface assumption depends 
on the accuracy of the cortical approximation. 

A second assumption of our model was that the position of the DOI probe could be 
determined and registered to the MRI structural image with certainty. In our experimental 
models, we use a Polhemus three-dimensional scanner (as shown in Fig. 2) and an initial 
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affine registration based on landmarks on the head followed by an automated relaxation 
algorithm to move the probe positions to the surface of the head whilst keeping the distances 
between the sensors along the surface fixed. Based on initial work, we believe that this 
registration is accurate to around 2-3mm, but we do not know to what extent an error in the 
probe positioning of this size will have on the reconstruction accuracy of the DOI data. 

Finally, in this work we have modeled superficial physiology using a low-pass filter bank 
of wavelets, which existed on a surface around the skull. This approach is conceptually 
similar to work done in Huppert et al.[13] where DOI and fMRI brain data was modeled by a 
low-resolution voxel basis set in the superficial layers. Here, we have modeled brain and skin 
changes using two concentric surfaces derived from the anatomy. 

5. Conclusions 

We have demonstrated how the registration and simultaneous reconstruction of optical data 
from multiple subjects can be used to improve group-level comparisons of functional data. In 
particular, our approach allows us to account for variations in the optical probe placement and 
underlying structural anatomy, which could confound analysis across subjects or experimental 
sessions. Because our method is based on the reconstruction of optical data within a common 
registered space (cortical surface space), the group-level reconstructions allow for the estimate 
of images that are simultaneously consistent with all of the subjects' data. We showed that this 
approach was more robust to partial volume and probe positioning errors and offered 
improvements to the effects size of the estimated group-level images. 
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