
Improved bioluminescence and fluorescence 
reconstruction algorithms using diffuse optical 
tomography, normalized data, and optimized 

selection of the permissible source region 
Mohamed A. Naser1,* and Michael S. Patterson1,2 

1Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, 
Hamilton, Ontario L8S4K1, Canada 

2Juravinski Cancer Center, 699 Concession Street, Hamilton, Ontario L8V5C2, Canada 
*naserma@mcmaster.ca 

Abstract: Reconstruction algorithms are presented for two-step solutions of 
the bioluminescence tomography (BLT) and the fluorescence tomography 
(FT) problems. In the first step, a continuous wave (cw) diffuse optical 
tomography (DOT) algorithm is used to reconstruct the tissue optical 
properties assuming known anatomical information provided by x-ray 
computed tomography or other methods. Minimization problems are formed 
based on L1 norm objective functions, where normalized values for the light 
fluence rates and the corresponding Green’s functions are used. Then an 
iterative minimization solution shrinks the permissible regions where the 
sources are allowed by selecting points with higher probability to contribute 
to the source distribution. Throughout this process the permissible region 
shrinks from the entire object to just a few points. The optimum 
reconstructed bioluminescence and fluorescence distributions are chosen to 
be the results of the iteration corresponding to the permissible region where 
the objective function has its global minimum This provides efficient BLT 
and FT reconstruction algorithms without the need for a priori information 
about the bioluminescence sources or the fluorophore concentration. 
Multiple small sources and large distributed sources can be reconstructed 
with good accuracy for the location and the total source power for BLT and 
the total number of fluorophore molecules for the FT. For non-uniform 
distributed sources, the size and magnitude become degenerate due to the 
degrees of freedom available for possible solutions. However, increasing the 
number of data points by increasing the number of excitation sources can 
improve the accuracy of reconstruction for non-uniform fluorophore 
distributions. 
©2010 Optical Society of America 
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1. Introduction 

Bioluminescence tomography (BLT) and Fluorescence tomography (FT) are imaging methods 
which provide monitoring of biological processes at a molecular level and can be used for 
noninvasive visualization of disease progression and response to treatment [1–4]. Optical 
molecular probes can be used to label cells or proteins and the light they emit can be detected 
at the surface giving information about the distributions of specific genes or proteins 
associated with these sources [5]. However, due to multiple light scattering in tissue, the 
image does not reflect the true distribution of the bioluminescence sources and fluorophore 
concentration. BLT and FT are inverse problems that attempt to reconstruct the true 
distribution of the bioluminescence and fluorescence sources from the measured light. 

BLT and FT are ill-posed and ill-conditioned problems [6,7]. The limited number of 
measurements obtained from the boundary compared to the number of unknowns or variables 
precludes a unique solution to the problem [7]. To reduce the ill-posedness, multi-spectral 
measurements can increase the measured data for BLT [8–10]. The number of unknowns can 
be reduced by using a priori information about permissible source regions [11–13] or solving 
for a rough estimate of an optimal permissible source region [14]. Different researchers have 
used sparsity regularization [15–17] for reconstructing localized and sparse sources. In our 
previous work [18], an iterative minimization solution based on the L1 norm was used to 
shrink the permissible regions where the sources are allowed by selecting points with higher 
probability to contribute to the source distribution. This provides an efficient BLT 
reconstruction algorithm with the ability to determine relative source magnitudes and 
positions in the presence of noise. However, the reconstruction of the total source power was 
not accurate due to the use of the regularization penalty term and the non-optimized choice of 
the permissible region. In addition, it was not possible to use the algorithm for reconstructing 
large distributed sources as the size of the final permissible region is determined a priori. 

In this work, an algorithm to reconstruct distributed as well as sparse bioluminescence 
sources has been developed. The algorithm, based on diffusion theory [19–26], used the 
diffuse optical tomography algorithm we have developed previously [18] to reconstruct the 
tissue optical properties assuming anatomical information obtained by another imaging 
modality such as x-ray CT. The reconstruction problems mentioned above have been solved 
in the current algorithm through the following: First, the objective function of the 
minimization algorithm avoids the use of a regularization penalty term. Second, the objective 
function is formed from the summation of the first norm of the difference between the multi-
spectral measured light fluence rate and that calculated using the Green’s function at different 
wavelengths. The light fluence rate and the corresponding Green’s function at each 
wavelength are normalized. This normalization makes contributions from all wavelengths 
comparable instead of having the objective function dominated by the longer wavelength 
terms where the signal is largest. . Third, the permissible region is initially chosen to be the 
whole object and then iteratively shrunk by scanning all possible combination of points inside 
the object. The optimized permissible region that gives the best result for the reconstructed 
source corresponds to the global minimum of the objective function. This provides an 
objective choice of the best solution and enables the algorithm to reconstruct distributed as 
well as sparse sources. 
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Different algorithms have been developed to solve the FT problem. Some groups 
emphasize the importance of using a priori information [27–29] about the background optical 
properties of the heterogeneous medium. Other groups used a priori information [30–32] 
about the fluorophore distribution in different tissues by employing “hard” or “soft” 
constraints to improve the reconstruction accuracy. Recent simulation studies [33,34] have 
suggested that both types of a priori information are essential for the accurate recovery of the 
fluorophore concentration in small inclusion embedded in a heterogeneous medium [33]. 

A new algorithm for FT has been developed here to reconstruct distributed and localized 
fluorophore distributions. The total number of fluorophore molecules is recovered with good 
accuracy without a priori information about the spatial distribution. First the optical properties 
of different tissues at the excitation and emission wavelengths are reconstructed using our 
DOT algorithm [18]. The emission light fluence rate and the corresponding Green’s function 
for every excitation source are normalized. An algorithm similar to that described above for 
BLT based on the L1 norm and adaptive shrinking of the permissible region has been used for 
reconstruction of the fluorophore concentration 

The two algorithms for BLT and FT rely on solving the diffusion equation numerically 
using the method of finite elements (FE). The object used in the simulation represents an 
idealized cross-section of a mouse abdomen. To satisfy some realistic conditions for in vivo 
imaging, the illumination of the object for DOT and FT is done using point sources embedded 
in the animal support to illuminate the posterior surface of the animal (i.e. 90 degrees of the 
circumference) while transmission and emission measurements are made from the anterior 
and lateral surfaces (i.e. 270 degrees of the circumference). 

2. BLT reconstruction 

For simplicity we consider 2D space where the diffusion equation at a specific wavelength at 
zero modulation frequency is given by [35,36]. 

 ( ) ( ) ( ) ( ) ( ), ; , ; , ; , ; , ; ,ax y x y x y x y s x y
x x y y
κ λ κ λ µ λ ϕ λ λ

  ∂ ∂ ∂ ∂
− + + =  ∂ ∂ ∂ ∂  

  (1) 

where ( ), ;x yϕ λ  is the light fluence rate at position ( ),x y  and wavelength λ  The isotropic 

source distribution is given by ( ), ;s x y λ . The spatial distribution of the tissue optical 

properties at wavelength λ  is given by the absorption coefficient ( ), ;a x yµ λ  and the diffusion 

coefficient ( ), ;x yκ λ , where the diffusion coefficient is defined by 

 ( ) ( )
1, ; ,

3 ( , ; ) ( , ; )a s

x y
x y x y

κ λ
µ λ µ λ

=
′+

  (2) 

where ( , ; )s x yµ λ′  is the reduced scattering coefficient (1 )s s gµ µ′ = − , sµ  is the scattering 
coefficient and g is the anisotropy factor. At the boundary, the light fluence rate satisfies the 
equation 

 ( ) ( ) ( ) ( )ˆ, ; ; 2 , ; , , ; ; 0,x y x y An x y x yϕ λ ω κ λ ϕ λ ω+ ⋅∇ =   (3) 

where ( )ˆ ,n x y is a unit vector pointed outwardly normal to the surface, and A is derived from 
Fresnel’s law as [37] 

 
( )( ) 3

0
2

2 / 1 1 cos
,

1 cos
c

c

R
A

θ

θ

− − +
=

−
  (4) 
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where the critical angle ( )1sin 1/c nθ −=  and ( ) ( )2 2
0 1 / 1R n n= − + and n is the tissue 

refractive index. Equation (1) can be solved numerically using the method of finite elements 
(FE), and the discrete version of Eq. (1), assuming a total number of nodes N in the mesh, is 
given by [38] 

 [ ] [ ]1 1,N ss NN N N N
K A sϕ × ×× ×

=   (5) 

where [ ]K is the FE matrix of the diffusion operator on the left hand side, and [ ]ssA  is the FE 
assembly matrix multiplied by the source resulting from the FE discretization. The light 
fluence rate is obtained from Eq. (5) and is given by 

 [ ] [ ]1
ssK A s Gsϕ −= = ,  (6) 

where the Green’s function of the system gives the light fluence rate at any point due to a unit 
excitation source at any other point and is defined as 

 [ ] [ ]1
ssG K A−=   (7) 

We assume that the light fluence rate at the boundary can be derived from the emission 
images captured by the CCD camera [39] and these data will be used for the source 
reconstruction. The light fluence rate at the detector positions on the boundary is given by 

 d dG sϕ = ,  (8) 

where ( )d dϕ ϕ=  is the light fluence rate at the detectors and ( ),:dG G d= is a matrix that 
gives the values of the Green’s function at the detector positions. The detector index is d and 
if the detector points do not coincide with the edge points of the FE mesh, interpolations are 
used to get the values of the Green’s function at the detector positions. The estimation of the 
BL source from Eq. (8) is an ill-posed problem because the number of data points is less than 
the number of unknown source values. To increase the number of data points and reduce the 
ill-posedness, bioluminescence images can be acquired at different wavelengths. The number 
of variables can be reduced by restricting the source to a permissible region. In our previous 
work [18], an algorithm for BL reconstruction was developed that used multi spectral 
measurement and iterative update to the permissible region to reconstruct sparse sources. The 
algorithm minimized an objective function which was a superposition of the first norm of the 
difference between the calculated and measured boundary light fluence rate and the zero norm 
of the source. The number of source points in the final iteration was pre-determined so that 
only few sparse sources could be reconstructed. A penalty term was essential in the iterative 
solution to guide the minimizer to choose points deeper inside the object instead of points 
close to the boundary. The weight of the penalty term will affect the accuracy of the 
reconstructed source location, strength and total power. 

Here we propose an improved algorithm for BL reconstruction. Like our earlier method it 
relies on DOT to reconstruct the tissue optical properties making use of the anatomical 
information available from x-ray CT or other techniques [18]. These optical properties are 
used to calculate the Green’s functions described above. The first improvement is the use of 
normalization: the light fluence rate and the Green’s function at each wavelength are divided 
by the maximum value of the light fluence rate at that wavelength. Without normalization, the 
longer wavelength terms will dominate the objective function due to the smaller values of the 
absorption coefficient and the minimizer will be guided mainly by these data. Normalization 
effectively increases the efficiency of the collected data points by making the contributions 
from all wavelengths equal and so more useful for properly guiding the search direction and 
permits the second improvement - reconstruction without a penalty term. The third 
improvement is the selection of the optimum source distribution that minimizes the objective 
function. As in our previous method, for every iteration, the source points are sorted in order 
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of descending power and a fixed fraction of the points is deleted. Unlike our previous 
algorithm where this process was continued until the number of source points was equal to the 
number of data points, the process now continues until there are only a few points. The 
objective function is calculated at each iteration and the source distribution that minimizes the 
objective function is taken as the best solution. The minimization problem is given in Eq. (9), 
while the description of the algorithm is given in Table 1. 

 

( ) ( ) ( )
1

max

=min , ; ;

. .    0

. .    Permissible Region

f G d R s R d

s t s s
s t R

λ

λ ϕ λ−

≤ ≤
∈

∑ 



  (9) 

Table 1. Algorithm description for BLT 

Algorithm for BLT reconstruction 
1. Calculate the Green’s function from Eq. (7) 
2.  Choose the rows corresponding to the detector points ( ), :G d  
3.  Normalize the light fluence rate at every wavelength and get the corresponding Green’s function, 
( ) ( ) ( )( ); ; / max ;d d dϕ λ ϕ λ ϕ λ=  and ( ) ( ) ( )( ), ; , ; / max ;G d R G d R dλ λ ϕ λ=  

4. Initialize the permissible region R: points corresponding to the whole object domain except points of one transport 
length 1 /

s
µ′ from the object boundary.  ( ) zeros(length( ),1)s R R=  

5. Initialize permissible region reduction factor ( ) ( )/  ^  1 /
i f IT

N N Nβ = , where
i

N is the initial number of points 

in the permissible region R, 
f

N is the final number of points which can be chosen to be one, and 
IT

N is the number of 
iterations. 
6. Solve the iterative minimization problem: 
 6.1. for i = 1: 

IT
N  solve the minimization problem in Eq. (9) and store the result 

( ) ( ) ( ) 1( )=min , ; ;f i G d R s R d
λ

λ ϕ λ−∑ 

  

 6.2. Sort the source values and choose number of points equals ( )length /R β corresponding to the highest source 
values 

 6.3. Update the permissible region R to be the new chosen points 
 6.4. If the value of f(i) is smaller than the previous iteration, then update the best source estimation to be s: 

best
s s=  

 6.5. End the for loop 
7. End 

3. FT reconstruction 

In this paper we extend the ideas described above and in [18] to the problem of fluorescence 
tomography. Two coupled diffusion equations are used to describe the propagation of 
excitation and emission light in tissue: 

 ( ) ( ) ( ) ( ) ( ), , , , , ,x x ax xx y x y x y x y s x y
x x y y
κ κ µ ϕ

  ∂ ∂ ∂ ∂
− + + =  ∂ ∂ ∂ ∂  

  (10) 

 ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,m m am m x afx y x y x y x y x y x y
x x y y
κ κ µ ϕ ϕ ηµ

  ∂ ∂ ∂ ∂
− + + =  ∂ ∂ ∂ ∂  

 (11) 

where xϕ  and mϕ are the excitation and emission light fluence rates, respectively, xκ  and axµ  
are the diffusion and absorption coefficients at the excitation wavelength, mκ  and amµ  are the 
diffusion and absorption coefficient at the emission wavelength, afµ  is the absorption 
coefficient of the fluorophore which is proportional to its concentration [33], 
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( )ln 10af Cµ ε= , where ε  is the extinction coefficient of the fluorophore, C is the 
concentration, and η  is the fluorescence quantum yield. As a specific example, we consider 
the fluorophore ICG which has excitation and emission maxima at 785 and 830 nm. The 
extinction coefficients at these wavelengths are 130,000 and 22,000 molar−1mm−1, 
respectively [40] and the quantum yield is 0.016 [33]. The boundary condition for the 
excitation and emission is a Robin-type boundary condition as given in Eq. (3). The starting 
point for our algorithm is the solution of the DOT problem at both the excitation and emission 
wavelengths. These estimated optical properties are then used for forward calculations of the 
coupled diffusion equations. 

Equation (10) is solved numerically using the finite element method where its discrete 
version is given by 

 [ ] [ ]1
x x ssK A sϕ −= ,  (12) 

where [ ]xK is the FE matrix of the diffusion operator at the excitation wavelength in the left 

hand side, and [ ]ssA  is the FE assembly matrix multiplied by the source resulting from the FE 
discretization. The Green’s function of the system at the emission wavelength for Eq. (11) is 
given by 

 [ ] [ ]1
m m ssG K A−=   (13) 

The light fluence rate at the emission wavelength is given by 

 ( )ln 10m m x af m xG G Cϕ ϕ ηµ ϕ η ε= =   (14) 
The reconstruction problem is to estimate the concentration of the fluorophore using the 

measurement of the light fluence rate at the emission wavelength. For each source used for the 
excitation, the corresponding data for the light fluence rate at both excitation and emission 
wavelength are measured and then a minimization problem of the difference between the 
calculated and measured light fluence rate can be formulated as 

 

( )( ) ( ) ( ) ( ) ( )
1

1

max

=min ln 10 ,

. .    0

. .    Permissible Region

sN

m i xi m i
i

f G d R R C R d

s t C C
s t R

εη ϕ ϕ
=

−

≤ ≤
∈

∑ 



,  (15) 

where sN  in the number of excitation sources, xiϕ is the light fluence rate at the excitation 
wavelength due to source i, id  is the detector index for detectors associated with the source i, 

and mϕ  and mG  are the normalized measured light fluence rate and the corresponding 
normalized Green’s function. The same technique for shrinking the permissible region 
described above for BLT is also used for FT. In each iteration a fraction of points with the 
lowest fluorophore concentration is removed. The description of the FT algorithm is given in 
Table 2. 
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Table 2. Algorithm description for FT 

Algorithm for FT reconstruction 
1. Calculate the excitation light fluence rate due to every excitation source i,  

xi
ϕ  using Eq. (12) 

2. Calculate the Green function at the emission wavelength,  
m

G  using Eq. (13) 

3. Choose the rows corresponding to the detector points associated with every source i,  ( ),:
m i

G d  
4. Normalize the emission light fluence rate at detectors corresponding to excitation source i and get the 
corresponding Green’s function, ( ) ( ) ( )( )/ max

m i m i m i
d d dϕ ϕ ϕ=  and ( ) ( ) ( )( ), , / max

m i m i m i
G d R G d R dϕ=  

5. Initialize the permissible region R: points corresponding to the whole object domain except points of one transport 
length 1 /

s
µ′ from theobject boundary.  ( ) zeros(length( ),1)C R R=  

6. Initialize permissible region reduction factor ( ) ( )/  ^  1 /
i f IT

N N Nβ = , where iN is the initial number of points 

in the permissible region R,  
f

N is the final number of points which can be chosen to be one, and 
IT

N is the 
number of iterations. 
7. Solve the iterative minimization problem: 
 7.1. for j = 1: 

IT
N solve the minimization problem in Eq. (15) and store the result 

( )( ) ( ) ( ) ( ) ( ) 1

1

( )=min ln 10 ,
s

N

m i xi m i
i

f j G d R R C R dεη ϕ ϕ
=

−∑ 

  

 7.2. Sort the fluorophore concentration values and choose number of points equals ( )length /R β corresponding to 
the highest concentration values. 

 7.3. Update the permissible region R to be the new chosen points. 
 7.4. If the value of f(j) is smaller than the previous iteration, then update the best fluorophore concentration 

estimation 
to be C: 

best
C C=  

 7.5. End the for loop 
8. End 

4. Results and discussions 

The 2D object (Fig. 1) used in the simulations is 25 mm in diameter and represents an 
idealized cross-section of a mouse abdomen where skin (E1), bowel (E2), kidneys (E3, E4), 
spinal column (E5), and adipose tissue (E6) are identified and assigned realistic wavelength-
dependent optical properties. It is a simplified version of Fig. 6(a) in Ref. [41]. It is assumed 
that different regions are distinguished through CT x-ray imaging or other imaging technique 
and all elements within each region have the same optical properties. In Fig. 1, the source-
detectors setup used in the simulation is shown. Five point sources embedded in the animal 
support table illuminate the posterior surface of the animal (i.e. 90 degrees of the 
circumference) while transmission measurements for DOT are made from the anterior and 
lateral surfaces (i.e. 270 degrees of the circumference) using 121 detectors corresponding to 
pixels on a CCD camera. Emission from the anterior and lateral surfaces is used as input for, 
BLT, and FT and the same source locations are used for fluorescence excitation. This 
geometry allows all imaging data including x-ray CT to be acquired without moving the 
animal. The total number of detector readings Nd = 5*121 = 605 for DOT and FT at excitation 
wavelength 785 nm and emission wavelength 830 nm. The total number of detector readings 
used for the BLT is Nd = 3*121 = 363 where the wavelengths used are 580 nm, 600 nm, and 
620 nm. 
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Fig. 1. Schematic of the object used in the simulation illustrating 6 different regions: E1 is the 
skin, E2 is the bowel, E3 and E4 are the kidneys, E5 is bone and E6 is adipose tissue. The 
source-detectors setup is also shown in the figure; 5 sources indicated by the star uniformly 
distributed in a field of view of 90°. 121 detectors forming an approximately 270° of view; the 
total number of data readings is 5x121 = 605 for DOT and FT. The total number of reading 
used for BLT is 3 (wavelengths) x121 which is 363. 

In the first step, the optical properties of all tissues at the desired wavelengths are 
reconstructed using the DOT algorithm described in [18]. It is assumed that an accurate 
segmented image is provided by x-ray CT, MR or by a deformable atlas of mouse anatomy. 
All elements within each region in the object are assumed to have the same optical properties. 
The light fluence rate at the boundary is written as a Taylor series expansion around an initial 
guess corresponding to a homogenous object with the same optical properties in all regions. 
The fluence rate is approximated by the first three terms including the first and second order 
derivatives which are calculated by the direct method and give the change of light fluence rate 
at the boundary due to small changes in the tissue optical properties in each region. The first 
and second order derivatives are used in an iterative algorithm to reconstruct the tissue optical 
properties. For this simulation forward finite element calculations of the light fluence rate 
were performed using the true optical properties and two per cent random Gaussian noise was 
added to obtain the data for reconstruction. The DOT algorithm recalculates the first order 
derivatives (Jacobian) around the new initial guess of the scattering and absorption 
coefficients obtained by the last iteration. The recalculation of the Jacobian using the up-to-
date values of the optical properties is more efficient than using only one Jacobian as it 
modifies the search direction and accounts for nonlinearities of the dependence of the light 
fluence rate on tissue optical properties. In Table 3, the true and reconstructed scattering 
coefficients sµ′  and srµ′ , respectively are presented while Table 4 shows the true and 
reconstructed absorption coefficients aµ and arµ , respectively. The true scattering and 
absorption coefficients were calculated using the data reported in [42,43]. The maximum 
relative error obtained for scattering coefficients is 15% at 580 nm while the maximum 
relative error obtained for the absorption coefficients is 18% at 785 nm. The total number of 
iterations used is 40. 
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Table 3. Scattering coefficients for each region in the heterogeneous object calculated at 
five different wavelengths. The values of the scattering coefficients are given in (mm−1). 

  580 nm 600 nm 620 nm 785 nm 830 nm 
  

s
µ′  

sr
µ′  

s
µ′  

sr
µ′  

s
µ′  

sr
µ′  

s
µ′  

sr
µ′  

s
µ′  

sr
µ′  

Skin (1) 2.60 2.51 2.51 2.32 2.42 2.52 1.86 2.13 1.75 1.78 
Bowel (2) 1.37 1.34 1.32 1.24 1.27 1.28 0.94 1.05 0.88 0.89 
Kidney (3) 2.80 2.33 2.66 2.69 2.53 2.82 1.77 1.94 1.63 1.62 
Kidney (4) 2.80 2.37 2.66 2.28 2.53 2.33 1.77 1.77 1.63 1.56 
Bone (5) 3.08 2.92 2.93 2.90 2.80 2.81 1.98 1.99 1.82 1.59 
Adipose (6) 1.30 1.29 1.28 1.24 1.26 1.26 1.11 1.20 1.08 1.06 

Table 4. Absorption coefficients for each region in the heterogeneous object calculated at 
five different wavelengths. The values of the absorption coefficients are given in (mm−1). 

 580 nm 600 nm 620 nm 785 nm 830 nm 
 

a
µ  

ar
µ  

a
µ  

ar
µ  

a
µ  

ar
µ  

a
µ  

ar
µ  

a
µ  

ar
µ  

Skin (1) 0.1299 0.1314 0.0391 0.0423 0.0178 0.0180 0.0305 0.0259 0.0261 0.0246 
Bowel (2) 0.0202 0.0206 0.0073 0.0079 0.0041 0.0040 0.0057 0.0051 0.0053 0.0050 
Kidney (3) 0.1216 0.1292 0.0372 0.0404 0.0176 0.0167 0.0292 0.0240 0.0254 0.0237 
Kidney (4) 0.1216 0.1284 0.0372 0.0422 0.0176 0.0195 0.0292 0.0266 0.0254 0.0255 
Bone (5) 0.1042 0.1083 0.0328 0.0338 0.0146 0.0135 0.0247 0.0241 0.0201 0.0220 
Adipose (6) 0.0077 0.0076 0.0031 0.0028 0.0022 0.0023 0.0027 0.0028 0.0029 0.0034 

 

4.1 BLT reconstruction 

The true optical properties and the true source distribution were used to calculate the 
bioluminescence fluence rate and 2% Gaussian noise was added to simulate realistic data. The 
BLT reconstruction algorithm used the optical properties in Tables 3 and 4 recovered by the 
DOT algorithm. The matrix elements corresponding to the 121 detectors are used for both the 
Green’s functions and the simulated light fluence rates. 

The objective function is minimized using the fmincon function of Matlab and the source 
is constrained between 0 and 1.5 nW/ mm2. The results are not sensitive to the value of the 
upper constraint but selecting a biologically plausible limit reduces the range of possible 
solutions. The first and second derivatives of the objective function are provided to fmincon to 
enhance speed. The first derivative used in the model for the objective function is given 

by ( ) ( )grad= ; , ;
T

TC d G d R
λ

λ λ ∗ 
 
∑  , where ( ) ( ) ( ) ( )( ); sign , ; ;C d G d R s R dλ λ ϕ λ= −

  is a 

column vector of size equal to the number of detectors and its elements equal 1 for 
( ) ( ) ( ), ; ;G d R s R dλ ϕ λ>

 , −1 for ( ) ( ) ( ), ; ;G d R s R dλ ϕ λ<

 , and 0 for 

( ) ( ) ( ), ; ;G d R s R dλ ϕ λ=

  where the first norm is not differentiable. The second order 
derivative used is zero. 

The permissible region is initially chosen to be the whole object excluding the points 
corresponding to one transport length 1/ sµ′  from the surface. At every iteration, the 
permissible region is slightly shrunk by an arbitrary factor β . For a permissible region 
initially containing 1389 mesh points that is finally shrunk to 10 points in 60 iterations, β  = 
(1389/10) ^ (1/60) = 1.0857. 

Figure 2 shows the value of the objective function obtained in every iteration as a function 
of the number of source points in the permissible region for the true source distribution 
illustrated in Fig. 3(a). It is dimensionless since it is a summation of the first norm of 
normalized terms. The best solution to the reconstructed BL source is obtained when the 
objective function records its minimum value 0.3385 when the permissible region contains 95 
Points at iteration 33. 
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Fig. 2. The objective function as a function of the number of reconstructed BL source points in 
the permissible region for the true source distribution of Fig. 3(a). 

 

Figure 3 shows the results of the BLT reconstruction algorithm for different source 
distributions. The source distribution in 2D space is given in nW/mm2 which implies that 
integration over z direction has been performed which is equivalent to multiplying by a unit 
length of 1 mm. The total source power is then obtained by integration over object area. The 
actual distribution in Fig. 3(a) is two 3mm diameter sources of equal and uniform magnitude 1 
nW/mm2 located in the right and left kidneys. The total power of the left sources is 11.06 nW 
and the right is 10.59 nW. The total power of the reconstructed left and right sources in Fig. 
3(d) are 11.11 and 10.57 nW, both within 5% of the true value, and the magnitudes of the 
reconstructed sources range between 0.78 and 1.22 nW/mm2. The accuracy of reconstructed 
source power is important since it reflects the total number of bioluminescent molecules. The 
total powers of the actual and reconstructed sources are calculated numerically by integrating 
the source magnitude over the source area which does not appear as a perfect circle in the 
figure due to discretization of the mesh. Figures 3(b) and 3(e) show the actual and 
reconstructed source distributions when a 3 mm source of magnitude 0.5 nW/mm2 (total 
power 5.53 nW) is in the left kidney and a 3 mm diameter source of magnitude 1 nW/mm2 
(total power 10.59 nW) is in the right. The total powers of the reconstructed left and right 
sources are 4.33 nW and 11.84 nW, and their magnitudes range between 0.8 to 1.12 nW/mm2 
for the left source and 0.5 to 1.08 nW/mm2 for the right source. Figures 3(c) and 3(f) show the 
actual and reconstructed source distributions when both sources have magnitude 1 nW/mm2 
but the left source is 2 mm in diameter (total power 5.66 nW) and the right is 3 mm (total 
power 10.59 nW). The total powers of the reconstructed left and right sources are 5.19 nW 
and 11.46 nW, and their magnitudes range between 0.9 to 1.13 nW/mm2 for the left source 
and 0.8 to 1.1 nW/mm2 for the right source. The total powers of the actual and reconstructed 
sources are within 20% in all cases but the magnitudes and sizes of the sources are not 
reconstructed properly in case Fig. 3(e). The reason is that the magnitude and size of the 
source are degenerate to the algorithm: as long as the total power is the same, a smaller source 
with larger magnitude cannot be distinguished from a larger source with smaller magnitude. 
The shrinking of the permissible region is based on removing points corresponding to small 
source magnitudes. Therefore, if we have two sources with the same size and different 
magnitudes, more points will be removed in the vicinity of the source with lower magnitude 
because it has smaller total power. When the lower magnitude source becomes smaller than 
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the higher magnitude source, the algorithm needs to increase the magnitude of the smaller 
source above the true value to reconstruct the total power and reduce the objective function. 

 
Fig. 3. BLT reconstruction of two uniform bioluminescence sources localized in the left and 
right kidneys. The actual sources in (a) are 3mm in diameter with magnitude 1 nW/mm. The 
reconstructed sources are shown in (d). The actual sources in (b) are 3mm in diameter with 
magnitude 0.5 nW/mm2 for the left source and 1 nW/mm2 for the right source. The 
reconstructed sources shown in (e) have total powers within 20% of the true value but the size 
and magnitude are not accurately estimated. In (c) the left source is 2 mm diameter with 
magnitude 1 nW/mm2 and the right source is the same magnitude with diameter 3 mm. The 
reconstructed sources in (f) have total powers within 10% and the size and magnitude are also 
recovered with comparable accuracy. 

Figure 4 shows the result of the reconstruction of a large uniform source; the actual source 
in Fig. 4(a) is of uniform magnitude 1 nW/mm2 and fills the gut region. The total power of the 
reconstructed sources in Fig. 4(c) is 143 nW which is within 2% of the true value, and the 
magnitude of the reconstructed sources range between 0.8 and 1.2 nW/mm2. The algorithm 
can reconstruct distributed sources as well as small sparse sources because the number of 
points in the permissible region is not specified a priori. The accuracy of the reconstruction is 
high as long as number of points in the true source is not much greater than the number of 
measured data. The number of data points for the three wavelengths is 363 and the number of 
points in the optimized permissible region corresponding to the reconstructed source in Fig. 
4(c) is 425 obtained at the iteration 14. However, for a non-uniform source distribution such 
as that shown in Fig. 4(b) where a 4 mm diameter hot spot with magnitude 1.25 nW/mm2 is 
located in a uniform background of 0.25 nW/mm2, the reconstruction fails to recover the 
details of the distribution, although the total power of the source is recovered within 2%. The 
reason for this failure is, as explained above, the degeneracy of magnitude and size of sources 
with the same total power. 
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Fig. 4. BLT reconstruction of a large distributed source that fill the gut region. The magnitude 
of the actual sources in (a) is 1 nW/mm2, and the reconstructed source is shown in (c). For the 
nonuniform source in (b), the reconstructed source in (d) shows almost uniform magnitude and 
smaller size than the true source. 

4.2 FT reconstruction 

For these simulations the true optical properties are used to calculate the light fluence rate at 
the excitation wavelength (785 nm) which is then combined with the true fluorophore 
concentration, the extinction coefficient, and the quantum yield to calculate the emission light 
fluence rate at 830 nm using Eq. (14). 2% Gaussian noise is added to the simulated data to 
obtain the measured light fluence rate mϕ  used in the minimization problem in Eq. (15). The 
optical properties recovered by DOT are used to calculate the light fluence rate at the 
excitation wavelength and the Green’s function at the emission wavelength to yield the 
emission light fluence rate in the objective function in Eq. (15). The matrix elements 
corresponding to the 121 detectors are chosen for both the Green’s functions and the 
simulated light fluence rates for each excitation source, giving 605 readings in total 

The minimization problem in Eq. (15) is formulated using the normalized light fluence 
rate and Green’s functions. The role of this normalization is to adjust the weight of the 
readings corresponding to each excitation sources so they make comparable contributions to 
the objective function. The objective function is minimized using the fmincon function of 
Matlab and the fluorophore concentration is constrained between 0 and 1.5 µmol/ mm2. As for 
BLT, the choice of this maximum value is not critical as long as it is larger than biologically 
plausible. The technique described above for BLT for shrinking the permissible region and 
choosing the best solution corresponding to the optimized permissible region when the 
objective function has its global minimum is applied. 

Figure 5 shows the results of the FT reconstruction algorithm for different fluorophore 
distributions. The actual distribution in Fig. 5(a) is two 3mm diameter regions of equal and 
uniform concentration 1 µmol/mm2 located in the right and left kidneys. The total number of 
molecules in the left region is 11.06 µmol and there are 10.59 µmol in the right. The total 
number in the reconstructed left and right sources in Fig. 5(d) is 12.28 and 11.12 µmol, within 
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10% of the true values. The concentration of the reconstructed sources ranges between 1 and 
1.16 µmol/mm2 for the left region and 0.8 and 1.2 µmol/mm2 for the right. Figures 5(b) and 
5(e) shows the actual and reconstructed fluorophore concentrations when a 3 mm source of 
uniform concentration 0.5 µmol/mm2 (total number of molecules 5.53 µmol) is in the left 
kidney and a 3 mm diameter source of uniform concentration 1 µmol/mm2 (total number of 
molecules 10.59 µmol) is in the right. The total numbers of molecules in the reconstructed left 
and right regions is 5.74 µmol and 11.94 µmol, and their concentrations ranging between 1.15 
and 1.24 µmol/mm2 for the left source and 0.8 and 1.15 µmol/mm2 for the right source. 
Figures 5(c) and 5(f) shows the actual and reconstructed fluorophore concentrations when 
both sources have uniform concentration 1 µmol/mm2, but the left source is 2 mm in diameter 
(total numbers of molecules 5.66 µmol) and the right is 3 mm (total numbers of molecules 
10.59 µmol). The total numbers of molecules in the reconstructed left and right sources is 5.73 
µmol and 11.72 µmol, and their concentrations range between 1 and 1.15 µmol/mm2 for the 
left source and 0.8 and 1.06 µmol/mm2 for the right. As in the case of BLT, the total number 
of fluorophore molecules in the actual and reconstructed sources are within 15% in all cases 
but the concentrations and sizes of the sources are not reconstructed properly in case Fig. 5(e) 
when we have multiple regions with different concentrations. The reason is the degeneracy or 
the degrees of freedom that the current algorithm has for choosing different sizes and 
concentrations that give the same total number of molecules, as explained above for BLT. 

 
Fig. 5. FT reconstruction of two uniform fluorophore sources localized in the left and right 
kidneys. The actual sources in (a) are 3 mm in diameter with concentration 1 µmol/mm2. The 
reconstructed sources are shown in (d) and they have total number of molecules within 10% of 
the true value. The actual sources in (b) are 3mm in diameter with concentration 0.5 µmol/mm2 
for the left source and 1 µmol/mm2 for the right source. The reconstructed sources shown in (e) 
have total number of molecules within 15% of the true value but the size and magnitude are not 
accurately estimated. In (c) the left source is 2 mm diameter with concentration 1 µmol /mm2 
and the right source is the same concentration with diameter 3 mm. The reconstructed sources 
in (f) have total number of molecules within 10% and the size and magnitude are also 
recovered with comparable accuracy. 

Figure 6 shows the result of the reconstruction of a large uniform fluorophore source; the 
actual source in Fig. 6(a) is of uniform concentration 1 µmol/mm2 and fills the gut region. The 
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total number of molecules of the reconstructed sources in Fig. 6(c) is 155 µmol which is 
within 7% of the true value, and the concentration of the reconstructed sources range between 
0.8 and 1.2 µmol/mm2. The algorithm can reconstruct distributed sources as well as small 
sparse sources because the number of points in the permissible region is not specified a priori. 
The accuracy of the reconstruction is high as long as the number of points in the true source is 
not much greater than the number of measured data. The number of data points for the 5 
excitation sources is 605 and the number of points in the optimized permissible region 
corresponding to the reconstructed source in Fig. 6(c) is 434. However, for a non-uniform 
source distribution such as that shown in Fig. 6(b) where a 4 mm diameter hot spot with 
concentration 1.25 µmol/mm2 is located in a uniform background of 0.25 µmol/mm2, the 
reconstruction fails to recover the details of the distribution, although the total number of 
molecules of the fluorophore is recovered within 6%. The reason, as explained above, is the 
degeneracy of magnitude and size of fluorophore distributions with the same total number of 
molecules. 

 
Fig. 6. FT reconstruction of a large distributed fluorophore source that fills the gut region. The 
concentration of the actual sources in (a) is 1 µmol/mm2, and the reconstructed source is shown 
in (c). For the nonuniform source in (b), the reconstructed source in (d) shows almost uniform 
magnitude and smaller size than the true source. 

Figure 7 show the reconstruction of the non-uniform fluorophore concentration when 16 
sources uniformly distributed around the object are used and, for each source, 121 detectors 
are uniformly distributed in a 270 degree field of view. The total number of data points is 
16*121 = 1936. The reconstructed concentration in Fig. 7(b) shows non-uniformity as there is 
a hot spot with concentration 1 µmol/mm2 which is closer to the actual value of 1.25 
µmol/mm2 in Fig. 7(a). Therefore, increasing the number of data points and the field of view 
can reduce the degeneracy in concentration and size of the fluorophore distribution and 
improve the reconstruction of non-uniform distributions. 
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Fig. 7. (a) The actual fluorophore concentration (same as Fig. 6(b)). (b) The reconstructed 
fluorophore concentration using 16 excitation sources uniformly distributed around the object; 
associated with every source are 121 detectors uniformly distributed in a field of view of 270 
degree. 

5. Conclusion 

Two numerical algorithms based on finite element methods and the diffusion equation have 
been developed for BLT and FT. The anatomical structure of the object is assumed to be 
known and a DOT algorithm is used to reconstruct the tissue optical properties at different 
wavelengths. The forward model applied with the true tissue optical properties and 2% 
Gaussian noise has been used to generate realistic data for the reconstruction algorithm for 
DOT, BLT and FT. The Green’s functions of the object have been calculated using the 
reconstructed optical properties. The normalized data for the measured light fluence rate and 
the Green’s function have been used to formulate the objective function for the minimization 
algorithm. An adaptive shrinking of the permissible region is performed where BL points with 
small values or FL points with low concentration are removed. The optimum reconstructed 
BL and FL distributions are chosen to correspond to the iteration with the global minimum of 
the objective function For BLT the results show good agreement for the total power and 
location of the actual and reconstructed sources in all cases including a large distributed 
source. For non-uniform distributions, the location and total power of the sources are 
reconstructed with good accuracy but the size and source magnitude could not be 
reconstructed well due to the degeneracy of possible solutions. The FT results show good 
agreement for the location and the total number of molecules in all cases. For non-uniform 
concentration, the size of the fluorophore region and concentration could not be reconstructed 
well due to degeneracy. However, increasing the number of data points can improve the 
reconstruction of non-uniform distributions. 
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