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In a single quantitative study, we measured acrA, acrB, tolC, mdfA, and norE expression in Escherichia coli
clinical isolates by using real-time PCR. acrA and acrB overexpression strongly correlated with fluoroquinolone
and multidrug resistance; tolC, mdfA, and norE expression did not. The order of abundance of efflux pump
transcripts in all fluoroquinolone-susceptible isolates was tolC (highest), then acrA and acrB, and then mdfA
and norE. Our findings suggest acrAB overexpression is an indicator of multidrug resistance.

Multidrug resistance (MDR) is an increasing public health
concern worldwide (7, 11). There is a growing epidemic of
multidrug-resistant Gram-negative pathogens and a dwindling
arsenal of antibiotic options. MDR is most commonly defined
as resistance to �3 classes of antibiotics (4). Increased efflux
pump expression has been documented in association with
resistance to several antibiotic classes, including the fluoro-
quinolones (reviewed in reference 11). Of more than 40 puta-
tive transporters in Escherichia coli, acrAB-tolC, mdfA, and
norE affect fluoroquinolone MICs when expressed with their
own promoters under laboratory growth conditions (14, 17).
Only AcrAB-TolC overproduction, however, has been shown
to contribute to clinical fluoroquinolone resistance. Addition-
ally, plasmid-borne efflux pump gene qepA was found in a small
percentage of E. coli isolates (10, 16), and it confers resistance
to fluoroquinolones and aminoglycosides (9). Despite these
findings, the link between efflux pump expression and multi-
drug resistance in the clinical setting is unclear.

We quantified expression of the efflux pump genes known to
affect fluoroquinolone resistance in a single quantitative study.
From our earlier study of 214 fluoroquinolone-resistant iso-
lates and 27 fluoroquinolone-susceptible isolates from Ben
Taub General Hospital in Houston, TX (2), 24 susceptible
isolates and 36 resistant isolates that represented a full range
of fluoroquinolone MICs were analyzed. RNA was stabilized
in RNAprotect bacterial reagent. RNA was isolated using
RNeasy minicolumns (Qiagen, Valencia, CA). RNase-free
DNase I was incubated on-column for digestion of geno-
mic DNA. RNA concentrations were assessed by using a
NanoDrop spectrophotometer (Thermo Scientific, Wilming-
ton, DE). Reverse transcription was completed using the ABI

high-capacity reverse transcription kit (Applied Biosystems,
Foster City, CA). Quantitative PCRs (qPCRs) were performed
in triplicate on a 7500 Fast PCR system from Applied Biosys-
tems using 2� Power SYBR green chemistry. PCR-grade water
served as a negative control. Genomic DNA from the E. coli
ATCC 25922 strain was the positive control, and its cDNA was
the calibrator. The primer concentrations (Table 1) equaled
300 nM, and melt curve analysis ensured that only a single
PCR product was amplified.

In our previous study, �30% of fluoroquinolone-resistant
isolates overproduced AcrA, but fluoroquinolone-susceptible
isolates had normal AcrA levels (6). Relative to the house-
keeping gene rpsL, the average levels of expression of acrA and
acrB in the fluoroquinolone-susceptible strains were 1.8- �
0.7-fold and 2.0- � 0.6-fold, respectively, compared to those of
the ATCC 25922 standard E. coli strain. In fluoroquinolone-
resistant isolates, the expression level of acrA averaged 4.5- �
2.0-fold (Fig. 1A) and the expression level of acrB averaged
4.6- � 2.5-fold (Fig. 1B). For both genes, the difference be-
tween the two groups was significant by Wilcoxon rank sum
(P � 0.001). Overall, of 37 fluoroquinolone-resistant isolates,
22 overexpressed acrA and 25 overexpressed acrB more than
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TABLE 1. Primers used in this study

Primer Sequence (5�–3�)
Amplicon

length
(bp)a

% primer
efficiency

(E)a,b

acrA-F CTCTCAGGCAGCTTAGCCCTAA 107 95
acrA-R TGCAGAGGTTCAGTTTTGACTGTT
acrB-F GGTCGATTCCGTTCTCCGTTA 107 95
acrB-R CTACCTGGAAGTAAACGTCATTGGT
rpsL-F GCAAAAACGTGGCGTATGTACTC 104 97
rpsL-R TTCGAAACCGTTAGTCAGACGAA
mdfA-F CATTGGCAGCGATCTCCTTT 103 97
mdfA-R TTATAGTCACGACCGACTTCTTTCA
norE-F CTGGCGGCAGCGGTAA 108 94
norE-R TGCCATACAGACACCCACCATA
tolC-F AAGCCGAAAAACGCAACCT 100 95
tolC-R CAGAGTCGGTAAGTGACCATC

a Amplicon lengths and primer efficiencies in the rows for forward (F) primers
correspond to the respective primer pairs.

b As measured by the efficiency equation, E � 10(�1/m) � 1, where m is
�CT/�	cDNA
.
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two standard deviations above the respective means for the
fluoroquinolone-susceptible isolates. acrA and acrB coexpres-
sion was plotted (r2 � 0.75; Fig. 2A). The best-fit line had a
slope of 1.05, fitting the 1:1 ratio expected.

Two fluoroquinolone-resistant Shigella clinical isolates over-
expressed tolC in response to ciprofloxacin (5). Otherwise, tolC
expression has not been previously assessed. In three fluoro-

quinolone-resistant isolates, tolC expression was increased �7-
fold. Two of the isolates that overexpressed tolC also overex-
pressed acrA and acrB (Fig. 2B, arrows). Overall, the average
tolC expression levels (Fig. 1C) of the fluoroquinolone-suscep-
tible and fluoroquinolone-resistant clinical isolates did not dif-
fer statistically. tolC did not correlate with either acrA (Fig. 2B)
or acrB (data not shown). It does not appear that tolC is

FIG. 1. Multidrug efflux pump expression in E. coli clinical isolates. Transcript levels of acrA (A), acrB (B), tolC (C), mdfA (D) and norE
(E) were determined by qPCR and are shown normalized to their expression in the standard E. coli strain ATCC 25922, which had a norfloxacin
MIC of 0.032 �g/ml. The housekeeping gene rpsL was used to calculate relative expression. Data are displayed relative to the MIC (�g/ml) of the
historically relevant fluoroquinolone norfloxacin as measured in our laboratory. Isolates were classified as either susceptible (�) or resistant (�)
to fluoroquinolones as determined by the hospital. Each point is the average of three experiments. Lines represent the average relative expression
values for all of the isolates in the norfloxacin-susceptible (�) and -resistant (�) groups. Overexpression was defined as greater than two standard
deviations above the mean for the 24 fluoroquinolone-susceptible isolates.
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overexpressed with acrAB for acquisition of fluoroquinolone
resistance despite the ability of all three genes to respond to
MarA regulation (1), which indicates complex regulation dif-
ferences between these two promoters.

We previously found that known genotypic alterations could
not explain the fluoroquinolone MICs in �30% of the fluoro-
quinolone-resistant clinical isolates, suggesting that additional
unknown mechanisms exist (2, 6). In laboratory strains, the
overexpression of mdfA or norE causes 2- to 4-fold increased
ciprofloxacin and norfloxacin MICs but has no effect on levo-
floxacin MICs (17). Overexpression of acrAB and either mdfA
or norE synergistically increases fluoroquinolone MICs (17). In
Shigella, transcript levels of ydhE (norE) and mdfA were in-
creased in two fluoroquinolone-resistant isolates exposed
to ciprofloxacin (5). Thus, increased expression of mdfA and
norE could contribute to fluoroquinolone resistance, especially
if combined with overproduction of AcrAB-TolC. Expression
levels in fluoroquinolone-susceptible and fluoroquinolone-re-
sistant clinical isolates, respectively, were 1.2- � 0.5-fold and
1.1- � 0.4-fold for mdfA and 1.5- � 0.8-fold and 1.8- � 0.9-fold
for norE (Fig. 1D and E). Thus, E. coli isolates do not stably

overexpress mdfA or norE in fluoroquinolone-resistant clinical
isolates.

Although the genes encoding each of the three pumps,
AcrAB-TolC, MdfA, and NorE, when overexpressed, increase
fluoroquinolone MICs similarly, only the deletion of acrAB
decreases MICs (8, 17). There are several possible explana-
tions for these findings, but one simple explanation is that
acrAB is normally expressed at higher levels than mdfA and
norE and thus masks their contributions. Earlier exponential
amplification of a gene, as shown by a lower threshold cycle
(CT) value, may be inferred as greater transcript abundance in
the template (3); every 3.32 CT values indicates a 10-fold dif-
ference in abundance. In the ATCC 25922 strain, the CT value
was 18.5 for tolC, 20.3 for acrA and acrB (each), and 22.6 and
22.7 for mdfA and norE, respectively. This order was observed
for all fluoroquinolone-susceptible isolates (see Table S1 in the
supplemental material).

In spite of the very low prevalence of the qepA gene (0.3%
in Japan [15] and, to our knowledge, none yet in the United
States), we screened 78 of our fluoroquinolone-resistant iso-
lates for qepA by colony PCR using the primers 5�-CGAACC
GATGACGAAGCACAG and 5�-CTCGCTTCCTGCCCGA
GTAT. We found no isolate that harbored this gene.

AcrAB-TolC overproduction affects the MICs of several anti-
microbial agents. To determine whether increased acrAB expres-
sion correlated with MDR, we analyzed drug resistance data
generated at the hospital (described in references 2 and 6) for
each E. coli isolate. We classified the antibiotics that were tested
at the hospital into the following classes: aminoglycosides, car-
bapenems, cephalosporins, fluoroquinolones, monobactams, ni-
trofurans, penicillins, combination penicillins, and sulfamethox-
azole-trimethoprim. We then grouped the isolates into MDR
classifications as follows: “non-MDR” if the isolate was resistant
to fewer than three drug classes, “MDR(�3)” if the isolate was
resistant to three or more drug classes, and “MDR(�5)” if the
isolate was resistant to five or more drug classes. The non-MDR
and MDR(�3) classifications were chosen to model the most com-
mon definition of MDR (4). MDR(�5) isolates are highly multi-
drug resistant, akin to extremely drug-resistant (XDR) Mycobac-
terium tuberculosis.

In general, the more severe the MDR phenotype, the higher
the probability that the isolate also overexpressed acrAB (Ta-
ble 2). Interestingly, no isolate categorized as MDR(�5) was
fluoroquinolone susceptible. While direct drug efflux has been
demonstrated for some fluoroquinolones and a few additional
agents (12), most of the drugs to which these clinical isolates
were resistant have been shown to be unaffected by acrAB

TABLE 2. acrAB overexpression in MDR isolates

Resistance
No. (%) of isolates with acrAB expression

Normal Increased

Non-MDR 19 3 (13.6)
MDR(�3) 17 17a (50.0)
MDR(�5) 5 8b (61.5)

a Significantly increased relative to the value for the non-MDR classification
(P � 0.05).

b Significantly increased relative to the value for the non-MDR classification
(P � 0.01).

FIG. 2. Correlation of efflux pump expression levels. For each iso-
late, the transcript levels of acrB and acrA (A) and tolC and acrA
(B) were plotted. Clinical isolates were either susceptible (�) or re-
sistant (�) to fluoroquinolones as determined by the hospital. In panel
A, isolate ELZ4033 (arrow) was determined to be an outlier by the
extreme studentized deviate test statistic and was removed from the
best-fit regression. The arrows in panel B denote isolates ELZ4000 and
ELZ4001, which significantly overexpressed acrA and tolC relative to
the fluoroquinolone-susceptible isolates (P � 0.05).
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overexpression or deletion in laboratory experiments (12). This
introduces the possibility of an underlying correlation between
fluoroquinolone resistance and MDR. Because fluoroquinolo-
nes are heavily prescribed (13), there is strong selective pres-
sure for bacteria to become resistant to them. If exposure to
other antibiotics occurs prior to exposure to fluoroquinolones,
an isolate that subsequently overexpresses acrAB following
fluoroquinolone treatment might simultaneously become both
fluoroquinolone resistant and MDR. Thus, acrAB may not
cause MDR but rather is indicative of an MDR phenotype in
isolates that overexpress it. Regardless of the specific mecha-
nisms through which bacteria become MDR, these data indi-
cate that acrAB overexpression is a biomarker for MDR.
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