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The adenovirus (Ad) E1b55K and E4orf6 gene products assemble an E3 ubiquitin ligase complex that
promotes degradation of cellular proteins. Among the known substrates are p53 and the Mre11-Rad50-Nbs1
(MRN) complex. Since members of the RecQ helicase family function together with MRN in genome mainte-
nance, we investigated whether adenovirus affects RecQ proteins. We show that Bloom helicase (BLM) is
degraded during adenovirus type 5 (Ad5) infection. BLM degradation is mediated by E1b55K/E4orf6 but is
independent of MRN. We detected BLM localized at discrete foci around viral replication centers. These
studies identify BLM as a new substrate for degradation by the adenovirus E1b55K/E4orf6 complex.

Cellular DNA repair proteins are associated with virus in-
fection (reviewed in references 37 and 65). While cellular re-
pair proteins accumulate at viral replication centers (24, 40, 52,
57, 59, 67, 72) and process viral DNA ends (20, 57), viruses
employ multiple strategies to manipulate DNA damage signal-
ing and repair pathways (reviewed in references 19 and 65).
Infection with adenovirus (Ad) deleted of early region E4
activates the DNA damage response and results in joining of
linear viral genomes into concatemers (3, 9, 13, 14, 24, 40, 57).
Processing and ligation of viral ends involve the Mre11-Rad50-
Nbs1 (MRN) complex and components of the nonhomologous
end-joining pathway (3, 9, 57). Adenoviral E4 gene products
E4orf3 and E4orf6, respectively, mislocalize and degrade cel-
lular repair proteins to promote viral infection (3, 14, 23, 24,
35, 40, 57, 58). The viral E1b55K and E4orf6 proteins assemble
an E3 ubiquitin ligase complex together with cellular proteins
Cullin 5 and Elongin B/C (28, 47). Cellular proteins identified
as degradation substrates of E1b55K/E4orf6 include the MRN
complex (6, 14, 51, 57), p53 (15, 28, 43, 47–50, 55), integrin �3
(22), and DNA ligase IV (3). The E1b55K/E4orf6 ubiquitin
ligase activity is suggested to create a cellular environment that
promotes efficient virus growth through degradation of these
and other targets (4, 5, 7, 68).

Studies of DNA double-strand breaks have identified a large
number of factors required for correct recognition, processing,
and repair (reviewed in references 30 and 41). The MRN
complex senses DNA damage and functions together with
nucleases and helicases to process DNA ends and promote
repair (36, 41). The human RecQ helicases (RecQ1, WRN,
BLM, RecQ4, and RecQ5) are a family of proteins involved in
maintaining genome integrity (8, 21, 53). The Bloom helicase
(BLM) is implicated in processive resection of DNA breaks
(27, 31, 34, 44, 45, 56, 62, 69). Since proteins involved in DNA
end processing and repair are deactivated by adenovirus, we

investigated whether human RecQ helicases are altered during
infection.

E1b55K and E4orf6 induce proteasome-mediated degrada-
tion of BLM. We examined the effect of Ad infection on hu-
man RecQ helicases (Fig. 1). Immunoblotting of lysates re-
vealed that levels of BLM decreased significantly in cells
infected with wild-type Ad5 virus but not E4-deleted virus
(dl1004). The kinetics for BLM decrease mirrored the previ-
ously described degradation of Mre11 (Fig. 1A), which is pro-
teasome mediated and E4 dependent (14, 51, 57). Addition of
proteasome inhibitors during Ad5 infection confirmed that
BLM degradation was proteasome dependent (Fig. 1B). The
protein levels of RecQ1, RecQ4, and RecQ5 helicases were
not altered during infection. Although levels of WRN de-
creased, this was not dependent upon proteasome activity and
the E4 region (Fig. 1A and data not shown).

To identify viral proteins responsible for BLM degradation,
we infected HeLa cells with mutant viruses with specific genes
deleted (2, 10, 11, 26). BLM levels decreased during infection
with a viral mutant that does not express E4orf3 (dl1006) but
were unaffected by mutants that lack either E1b55K or E4orf6
(Fig. 1C). The E1b55K/E4orf6 complex is therefore required
for BLM degradation. To determine whether BLM degrada-
tion was mediated by the Cul5 complex, we utilized a dominant
negative version of Cul5, consisting of the N-terminal domain
(NTD-Cul5), which prevents substrate ubiquitination (68).
BLM degradation was prevented by NTD-Cul5 but was unaf-
fected by empty vector and full-length Cul5 (Fig. 1D). There-
fore, BLM undergoes proteasome-mediated degradation by
the E1b55K/E4orf6 ubiquitin ligase complex containing Cul5.

Further experiments examined requirements for BLM deg-
radation (Fig. 2). The E1b55K protein is in an aggresome
structure in HEK293 cells (1, 25, 38) and relocalizes to the
nucleus upon E4orf6 expression (15). BLM was diffusely nu-
clear in these cells but was reduced in cells that were trans-
fected to express E4orf6 and have nuclear E1b55K (Fig. 2A).
BLM degradation in E4orf6-transfected HEK293 cells was
confirmed by immunoblotting and was rescued by proteasome
inhibitors (Fig. 2B). BLM was also degraded when E4orf6 was
expressed from an adenovirus vector (48) in U2OS cells that
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stably express E1b55K (14) (Fig. 2C). These data demonstrate
that E1b55K and E4orf6 are sufficient for degradation of BLM.

BLM is a member of the BRCA1-associated genome sur-
veillance complex (BASC) supercomplex of proteins, which
interact with the BRCA1 protein (61). Since the MRN com-
plex is also part of the BASC supercomplex (61), it was pos-

sible that BLM degradation was an indirect outcome of its
association with MRN. We found that BLM is efficiently de-
graded during Ad5 infection of HeLa cells stably expressing
short hairpin RNA (shRNA) against Mre11 (HeLa-shMre11
cells) (60) and in Nijmegen breakage syndrome cells with mu-
tant Nbs1 (16) (data not shown). This suggests that BLM
degradation by E1b55K/E4orf6 is independent from interac-
tion with MRN. This was confirmed using U2OS cell lines
expressing separation-of-function mutants of E1b55K (14, 51).
The H354 insertion mutant degrades p53 but is defective for
MRN degradation, while the R240 mutant degrades MRN but
not p53. E4orf6 expression in cell lines expressing E1b55K,
H354, and R240 degraded BLM (Fig. 2C). Therefore, the
region of E1b55K required for Mre11 degradation is different
from that required to degrade BLM.

The E1b55K protein provides substrate specificity to the
ubiquitin ligase complex through binding to cellular targets
(14, 15, 38, 47, 49–51, 54, 66). To examine interactions, we
performed immunoprecipitations with BLM-specific antibody
on lysates from cells infected with recombinant adenovirus
(rAd) expressing green fluorescent protein (GFP) or E1b55K.
Immunoblotting demonstrated that E1b55K coimmunopre-
cipitates BLM (Fig. 2D). BLM could also immunoprecipitate
E1b55K in the absence of Mre11 from cell lines stably express-
ing shMre11 (60). Interaction was also verified in cells tran-
siently transfected with affinity-tagged E1b55K (data not
shown). These data demonstrate association of BLM with
E1b55K, independently of the interaction between E1b55K
and MRN.

BLM localizes to sites of active viral replication. We exam-
ined localization of BLM in Ad-infected cells (Fig. 3). The
virally encoded single-stranded DNA (ssDNA) binding protein
(DBP) marks sites of viral DNA replication in infected nuclei
(46). In uninfected cells, BLM was localized throughout the
nucleus, in distinct foci, and in the nucleolus, as previously
reported (29, 44, 71, 73). In Ad5-infected cells with small DBP
centers, representing early-stage infection, BLM localized to
foci at DBP centers (Fig. 3A). BLM staining was not detected
in Ad5-infected cells with large, spherical-shaped DBP centers,
representing late-stage infection (46). Quantitation of staining
patterns showed that at early times all viral replication centers
displayed colocalizing BLM foci but that this decreased as
infection progressed (Fig. 3B). In cells infected with E4-de-
leted virus, BLM localized at viral replication centers and did
not decrease (Fig. 3A). Pulse-labeling with bromodeoxyuridine
(BrdU) incorporation reveals sites of active adenoviral DNA
replication (46). Immunofluorescence using antibodies to
BLM and BrdU revealed partial colocalization in foci at DBP
centers (Fig. 3C). This suggests that BLM accumulates near
sites of active viral replication during early stages of infection.

BLM does not affect levels of DNA accumulation or forma-
tion of concatemers. Since BLM is implicated in DNA end
processing, we examined whether BLM affected viral DNA
replication and formation of viral genome concatemers in
E4-defective virus infection (Fig. 4). E4-deleted mutants are
defective in accumulation of replicated viral DNA (12, 64),
and this is overcome in cells deficient for components of the
MRN complex (24, 35, 39). To test whether BLM contrib-
utes to inhibition of adenovirus replication, we assessed
E4-deleted virus replication in cells deficient for BLM (Fig.

FIG. 1. Adenovirus infection induces proteasome-mediated degra-
dation of BLM. (A) The steady-state levels of cellular RecQ helicases
were examined over a time course of adenovirus infection. HeLa cells
were either mock infected (M) or infected with wild-type Ad5 (multi-
plicity of infection [MOI] of 10) or the E4-deleted mutant dl1004
(MOI of 25). Cells were harvested at the indicated hours postinfection
(hpi) for analysis by immunoblotting (14). Specific antibodies were
used to detect RecQ1 (Santa Cruz), WRN (BD Biosciences), RecQ4
(Cell Signaling), and RecQ5 (gift from P. Janscak) (32). To generate
the anti-BLM antibody, rabbits were immunized with a purified re-
combinant protein consisting of a His-tagged BLM fragment (amino
acid residues 1 to 439). The purified anti-BLM antiserum (designated
7099) was tested for specificity by immunoblotting and immunofluo-
rescence (data not shown). The viral DBP (detected with monoclonal
antibody B6, from A. Levine) served as a control for infection, and
degradation of cellular proteins was confirmed by inclusion of the
Mre11 positive control (Genetex). Antibody to Ku86 (Santa Cruz)
served as a loading control. Although the levels of WRN were slightly
affected, only BLM was reduced in an E4-dependent manner analo-
gous to Mre11 degradation. (B) BLM degradation is proteasome de-
pendent. Cells were infected with Ad5 (MOI of 10) or dl1004 (MOI of
25), and at 12 hpi, proteasome inhibitors (Prot. inh) (10 �M MG132
and 1 �M epoxomicin) were added to the cells for a further 12 h.
Degradation of BLM by Ad5 was prevented by the proteasome inhib-
itors. Ku70 served as a loading control. (C) E1b55K and E4orf6 are
required for degradation of BLM during adenovirus infection. BLM
levels were compared in HeLa cells infected for 24 h with wild-type
Ad5 or mutants lacking genes from the E1 and E4 regions as indicated
(2, 10, 11, 26). Compared with results for mock-infected cells, BLM
levels were reduced only during infection with viruses that express both
E1b55K and E4orf6. E1b55K (detected with monoclonal antibody
2A6, from A. Levine) and Ku70 (antibody from Santa Cruz) served as
controls for infection and gel loading, respectively. (D) The Cul5
complex is required for BLM degradation. Cells were infected with
Ad5 (MOI of 10), superinfected (MOI of 50) with �5, �5-Cul5, or
�5-NTD (68), and harvested at 24 h after the primary infection. In
these infections, the FLAG antibody (Sigma) demonstrates expression
of Cul5 or NTD-Cul5 from the �5 viruses, and GAPDH (glyceralde-
hyde-3-phosphate dehydrogenase) (Research Diagnostics Inc.) serves
as a loading control.
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4A). Measurement of virus DNA accumulation by quanti-
tative PCR (qPCR) (35) demonstrated that E4-deleted virus
remained defective for replication in HeLa cells stably ex-
pressing shRNA against BLM (HeLa-shBLM cells). We also
analyzed viral DNA by pulsed-field gel electrophoresis
(PFGE) (Fig. 4C). In cells infected with Ad5, the viral
genome was detected in a single band representing linear
monomers (9, 57, 63). The E4-deleted virus genomes were
detected in slower-migrating bands representing concate-
mers of viral DNA in both HeLa and HeLa-shBLM cells.
Together, these results demonstrate that BLM is not re-
sponsible for inhibition of E4-deleted Ad replication or
concatemerization of viral genomes. These conclusions were

confirmed in patient-derived Bloom syndrome cells lacking
functional BLM (data not shown).

During Ad infection, the DNA damage signaling and repair
machinery is manipulated in multiple ways (65). In this report,
we identified BLM as a novel degradation substrate for
E1b55K/E4orf6. Despite sequence and structural homology
across the human RecQ helicases, BLM is the only member
degraded by E1b55K/E4orf6. Although BLM and the MRN
complex are both members of the BASC supercomplex (61),
we demonstrated that they are degraded independently. There
is no obvious homology among the substrates for E1b55K,
suggesting that different regions of E1b55K mediate interac-
tions with distinct substrates (51). It will be interesting to

FIG. 2. E1b55K and E4orf6 are sufficient for degradation of BLM. (A) Immunofluorescence reveals that in HEK293 cells the BLM protein is
located throughout the nucleoplasm and E1b55K is in cytoplasmic aggregates (left). When HEK293 cells were transfected with E4orf6 (15), BLM
levels were reduced (middle). In cells transfected with plasmids expressing E4orf6 and monomeric red fluorescent protein (mRFP) (at a 9:1 ratio),
transfected cells demonstrated nuclear E1b55K, with reduced BLM levels (right). Cells were fixed for staining (14) at 24 h after transfection, and
DAPI (4�,6-diamidino-2-phenylindole) staining indicates the location of the nuclei in all merged images. (B) Expression of E4orf6 by transfection
of HEK293 cells demonstrated a proteasome-dependent decrease in BLM levels. Cells were harvested at 20 h posttransfection for analysis by
immunoblotting with specific antibodies. Degradation was abrogated by proteasome inhibitors (10 �M MG132 and 1 �M epoxomicin). Mre11
served as a control for degradation, and Ku70 served as a loading control. (C) E1b55K and E4orf6 are sufficient for BLM degradation. E4orf6 was
expressed by rAd vector transduction (48) of U2OS cells that stably express GFP or E1b55K (14), and protein levels were assessed by
immunoblotting with the indicated antibodies. Antibodies to Mre11 (Genetex) and p53 (Calbiochem) served as controls for degradation, and Ku70
served as a loading control. (D) E1b55K coimmunoprecipitates with BLM in the absence of Mre11. HeLa cells or HeLa-shMre11 cells were
infected (MOI of 50) with rAd-GFP and rAd-E1b55K (48) for 24 h, and lysates were subjected to immunoprecipitation with the BLM antibody
(IP �BLM). Immunoblotting of the precipitated proteins demonstrated that E1b55K could be pulled down by BLM in lysates from both cells.
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determine whether E1b55K/E4orf6 proteins of different Ad
serotypes degrade BLM or other RecQ helicases.

Adenovirus inactivation of cellular DNA repair proteins
prevents inhibition of viral DNA replication and genome pro-
cessing (3, 24, 35, 39, 57). In our studies with BLM, we have
been unable to assign a functional relevance to degradation.
Unlike results with the MRN complex (35, 39), knocking down
levels of BLM did not rescue the E4-deleted virus replication
defect or prevent concatemerization. Prior to its degradation
by E1b55K/E4orf6, BLM was detected adjacent to sites of viral
replication. This recruitment may play a positive role in early
steps of viral infection. It is possible that replication integrity
and resulting progeny genomes are affected by BLM. Redun-

dancy across the RecQ helicase family may functionally sub-
stitute in the absence of BLM. BLM suppresses hyperrecom-
bination (17, 18) and functions to resolve recombination
intermediates (70). These BLM activities could affect Ad rep-
lication by resolving incomplete intermediates or could prevent
serotype mixing by suppressing homologous recombination be-
tween coinfected viruses. Analysis of the sequences at end-to-
end junctions in concatemers has demonstrated heterogeneity
in the degree of sequence loss (33, 63), suggesting incomplete
replication or processing of viral DNA ends. Given its emerg-
ing role in end processing/resection of DNA breaks (27, 42,
45), it is possible that BLM functions with MRN to modify the
ends of viral genomes. Comparison of sequences for concate-

FIG. 3. Accumulation of BLM at sites of viral replication. (A) HeLa cells were infected with wild-type Ad5 (MOI of 10) or E4 mutant dl1004
(MOI of 25). Localization of BLM was examined by immunofluorescence (14) after preextraction to remove soluble protein prior to fixation and
compared to that for mock-infected cells (left). In uninfected cells, BLM localized to nucleoli and ND10 structures. In Ad5-infected cells, BLM
was either located in discrete foci surrounding early viral replication centers (as detected with an antibody to the viral DBP) or undetectable in
cells with large centers (representing late-stage infection). In cells infected with E4-deleted virus dl1004, all infected cells displayed BLM
accumulated at viral centers. DAPI staining indicates the location of the nuclei in all merged images. (B) Quantification of infected cells with BLM
at viral replication centers over a time course of wild-type Ad5 infection. At each time point, the relative number of cells with BLM in the two
patterns demonstrated by the representative images shown in panel A was determined by examining 100 infected cells. (C) BLM at sites of active
viral replication. HeLa cells were transfected with DBP-mRFP and, after 8 h, were infected with Ad5 (MOI of 10). At early (16 hpi) and late (30
hpi) stages of infection, cells were pulsed with BrdU for 30 min to label sites of DNA replication (46) and detected with a BrdU-specific antibody
(Sigma). In preextracted cells, BLM could be detected adjacent to sites of ongoing viral replication. By 30 hpi, BLM had been degraded.
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mer junctions formed in the presence and absence of BLM
may reveal processing differences. Further understanding of
interactions with adenovirus will also provide insights into the
role of BLM in cellular functions.
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