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Abstract

We report a reaction for the convergent coupling of allylic alcohols with imines that delivers
stereodefined homoallylic amines. The process proceeds with net allylic transposition, without the
intermediacy of allylic organometallic reagents, and forges two stereodefined centers and a
geometrically defined di- or trisubstituted alkene with very high levels of selectivity.
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Since the birth of the field, convergent C–C bond forming reactions have defined the
backbone of organic synthesis.[1] While significant advances in reaction development have
recently been made in the area of catalysis,[2] contributions that describe novel bimolecular
C–C bond construction remain central to the evolution of organic synthesis. Such
contributions provide new paradigms for molecular assembly, greatly facilitating the manner
in which complex molecules are made. Here, we describe a convergent coupling reaction
between allylic alcohols and imines that delivers complex homoallylic amines with high
levels of regio- and stereoselectivity by a pathway that proceeds without the intermediacy of
allylic organometallic reagents (Figure 1, eq 1).

Over the last thirty years, allylation has emerged as a particularly powerful bimolecular C–C
bond forming process, with current examples demonstrating the ability to achieve enantio-
and diastereoselective allyl-, crotyl- and prenyl-transfer.[3] While powerful, the typical
dependence on allylic organometallic reagents often restricts the utility of these processes,
limiting them to the addition of these simple hydrocarbon fragments.[4] The synthesis and
application of more functionalized allylic organometallic reagents for convergent coupling is
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complicated and typically unwieldy owing to: 1) Functional group tolerance in the
preparation of the allylic organometallic reagent, 2) challenges associated with the control of
site selectivity in the metalation step, 3) difficulties in controlling site-selective C–C bond
formation (due to a competition between α- vs γ- attack, and the known propensity for
allylic isomerization of the intermediate organometallic reagent), and 4) problems associated
with attaining selectivity in both the establishment of a stereodefined alkene and the
tetrahedral stereochemistry at the allylic and homoallylic positions (Figure 1, eq 2). In cases
where the allylic metal reagent is generated in a catalytic fashion, functional group tolerance
is often enhanced, but complexities still remain due to competing isomerization (of the
allylic metal species), as well as the previously mentioned issues with regio- and
stereoselection in the C–C bond forming event.[5] As such, the potential impact of the bond
constructions made possible with allylic organometallic reagents (independent of whether
such processes are rendered catalytic in the metal) remains limited.

Recent contributions from our laboratory have focused on harnessing the power of
metallacycle-mediated C–C bond formation for new convergent coupling reactions in
organic chemistry.[6] These accomplishments have derived from the development of general
strategies to control the reactivity of metal–π complexes. In particular, association of
neighboring alkoxides with the metal center has played a central role in these processes;
functional groups that often complicate other C–C bond forming reactions.[7] One powerful
mode of control is reaction via formal metallo-[3,3] rearrangement.[8] Here, we describe a
new stereoselective convergent coupling reaction by formal metallo-[3,3] rearrangement that
addresses long-standing problems in allyl-transfer chemistry and defines a pathway for
complex allylation of imines that:

1. Proceeds via the direct coupling of allylic alcohols, thereby eliminating the need for
preformed allylic organometallic reagents,

2. occurs with diverse functional group tolerance,

3. progresses in a highly regioselective manner with net allylic transposition,

4. delivers homoallylic amines with high anti- selectivity, and

5. establishes a stereodefined di- or tri-substituted alkene in concert with C–C bond
formation (Figure 1, eq 1).

Our generic design for an allylic alcohol–imine cross-coupling process is outlined in Figure
2. Treatment of an imine (A) with a low-valent metal (B) was anticipated to result in the
formation of an intermediate azametallacyclopropane (C). Addition of an allylic alkoxide
(D) to this preformed complex, was expected to result in rapid and reversible ligand
exchange to deliver E. Rearrangement by way of F results in the formation of a C–C bond,
two-stereogenic centers and one geometrically defined substituted alkene and delivers
homoallylic metallated amine G. From G, simple hydrolysis provides the complex
homoallylic amine product H. Alternatively, depending on the metal employed, we
envisioned a potential pathway for capturing the precious metal intermediate G via net
reduction, and epimetalation with imine A. Defining this portion of the reaction would
render the process catalytic in the metal component, but was thought to be necessary only if:

1. The reaction requires a complex ligand for control of selectivity (enantio-,
diastereo-, or regioselectivity), or

2. if the metal employed is rare, expensive or toxic.

The metal (B) selected for this process was a readily available titanium alkoxide, and the
control of the coupling reaction was anticipated to follow from the geometrical constraints
imposed by reaction through a formal metallo-[3,3] rearrangement. As such, the primary
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goal of our studies was to investigate the possibility of this stereoselective new bond
construction, without concern for turning over the non-toxic and readily available titanium
alkoxide reagent.

As illustrated in Table 1, coupling of allyl alcohol (2) with imine 1 delivers the simple
homoallylic amine 3 in 70% yield (entry 1).[9] With more substituted allylic alcohols (4 and
6), coupling provides homoallylic amines bearing proximal tri- and tetrasubstituted alkenes
(entries 2 and 3); in one case defining a useful reaction for the prenylation of aromatic
imines (4→5).[10] Interestingly, coupling of allylic alcohol 8 with imine 1 proceeds with
both high regio- and stereoselectivity delivering homoallylic amine 9 in 87% yield as a
single geometrical isomer (Z:E ≥ 20:1; entry 4).

When employing terminally substituted allylic alcohols, this C–C bond forming process
proceeds in a highly anti-selective manner. For example, coupling of allylic alcohol 10 or 12
with 1 provides the stereodefined product 11 in 81 and 68% yield, respectively (dr ≥ 20:1 in
both cases). With secondary allylic alcohols, bearing geometrically defined alkenes, the
control of stereochemistry is more complex, as the challenge of establishing allylic and
homoallylic stereochemistry is coupled to the construction of a stereodefined alkene.
Nevertheless, reaction of allylic alcohol 13 with 1 provides 14 in 92% yield (anti:syn ≥
20:1). While this coupling reaction does not deliver the stereodefined alkene with high
levels of selectivity (Z:E = 1.6:1), coupling of the isomeric allylic alcohol 15 with 1 delivers
16 with much higher levels of selectivity, favoring the anti-product with a proximal (E)-
disubstituted alkene (dr ≥ 20:1; E:Z ≥ 20:1; entry 8). Finally, as depicted in entry 9,
coupling of the (E)-trisubstituted allylic alcohol 17 with 1 provides homoallylic amine 18 in
54% yield, in this case delivering an anti-product with a central (Z)-trisubstituted alkene (dr
≥ 20:1; Z:E ≥ 20:1).

While this convergent coupling reaction affords complex homoallylic amines that are
otherwise difficult to prepare, it is also compatible with vinyl halides – a feature that further
defines a rather unique stereoselective bond construction for complex molecule synthesis
(Table 2). Entries 1–3 demonstrate that 2-halo-allylic alcohols (19–21) are suitable
substrates for coupling with 1. As depicted in entries 4 and 5, more complex bond
constructions are possible in this series. Here, high anti- selectivity is coupled to the
generation of geometrically defined vinyl halides (dr ≥ 20:1; E:Z ≥ 20:1). Finally, allylic
alcohols bearing carbocyclic vinyl halides are also viable partners in this coupling reaction.
As illustrated in entry 6, coupling of imine 29 with 30 provides the functionalized
cyclohexene 31 in 53% yield (dr ≥ 20:1).

This stereoselective convergent coupling reaction is compatible with a variety of aromatic
imines and substituted allylic alcohols. Table 3 highlights the use of this reaction for the
synthesis of homoallylic amines bearing heteroaromatics (33 and 38), tetrasubstituted vinyl
halides (36), aromatic halides (40, 42 and 44), additional alkenes (42 and 44) as well as a
trifluoromethyl substituted aromatic (40). As depicted in entry 7, this reaction can also be
extended to ketimines, in this case providing the 3° carbinolamine 46 in 83% yield.

Finally, the absolute stereochemistry of this reaction can be controlled in a substrate-directed
manner. As depicted in entry 8 of Table 3, coupling of the stereodefined allylic alcohol 47
with imine 1 provides the chiral stereodefined product 48 in 72% yield, as a single isomer.
[11]

The regiochemical course of this coupling reaction is consistent with an empirical model
based on a formal metallo-[3,3] rearrangement via the intermediacy of a mixed titanate ester
(Figure 3). The stereochemical control observed is consistent with reaction through a
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conformation where σC–M is aligned with πC=C, while minimizing allylic strain (A-1,2/
A-1,3) and developing 1,2-non bonded steric interactions (A and B;Figure 3).[12]

In conclusion, we describe a new reaction design to accomplish complex convergent
coupling via formal allyl-transfer that proceeds without the requirement of allylic
organometallic reagents. This process, while not yet rendered catalytic in the metal (Ti or
Mg), defines a unique and powerful convergent bond construction. Due to the low cost of
the metal-containing reagents, benign nature of the byproducts (TiO2 and magnesium (II)
salts), and substrate-controlled stereoselection, this type of process in its current form should
be of great utility in organic chemistry.
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Figure 1.
Allylation for convergent C–C bond formation.
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Figure 2.
Reaction design.
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Figure 3.
Empirical model for regio- and stereoselection.
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Table 3

entry imine allylic alcohol yield (%)[a],[b] product

1

32 20

53

33

2

34

35

52

36

3

1

37

55

38
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entry imine allylic alcohol yield (%)[a],[b] product

4

39 4

67

40

5

41; R1, R2 = Me

4 79

42; R1, R2 = Me

6 43[c]; R1 = H, R2 = TMS 4 69 44; R1 = H, R2 = TMS
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entry imine allylic alcohol yield (%)[a],[b] product

7

45

4 83

46

8 1

47

72

48
dr ≥ 20:1; (Z):(E) ≥ 20:1

[a]
Reaction conditions: See supporting information for details.

[b]
No evidence was found for the production of stereoisomeric products.

[c]
Compound 43 was used as a mixture of alkene isomers (E:Z = 4:1).
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