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Abstract
This study compared a conventional P300 speller brain-computer interface (BCI) to one used in
conjunction with a predictive spelling program. Performance differences in accuracy, bit rate,
selections per minute, and output characters per minute (OCM) were examined. An 8×9 matrix of
letters, numbers, and other keyboard commands was used. Participants (n = 24) were required to
correctly complete the same 58 character sentence (i.e., correcting for errors) using the predictive
speller (PS) and the non-predictive speller (NS), counterbalanced. The PS produced significantly
higher OCMs than the NS. Time to complete the task in the PS condition was 12min 43sec as
compared to 20min 20sec in the NS condition. Despite the marked improvement in overall output,
accuracy was significantly higher in the NS paradigm. P300 amplitudes were significantly larger
in the NS than in the PS paradigm; which is attributed to increased workload and task demands.
These results demonstrate the potential efficacy of predictive spelling in the context of BCI.
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1. Introduction
Brain-computer interface (BCI) technology can help people with severe neuromuscular
disease communicate (Wolpaw & Birbaumer, 2006). For example, amyotrophic lateral
sclerosis (ALS) is a neurodegenerative disease that may eventually cause people to become
completely paralyzed, or locked-in to their bodies, and typically causes death within 2–5
years (Kunst, 2004). Until recently, it was assumed that cognitive function remains intact
even in advanced stages of ALS; however, current research shows that some people with
ALS experience some type of cognitive impairment, although the actual number of people
affected is still debated (Murphy et al., 2007). Nonetheless, people with advanced ALS have
little or no means of effective communication given existing alternative and augmentative
communication (AAC) devices. For these people, a BCI may be the only option for
independent communication.
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The P300 BCI is based on event-related potentials (ERPs). An ERP is a time-locked
electrophysiological brain response to a meaningful stimulus. The P300 ERP is a positive
going deflection occurring approximately 300 ms post event. P300 BCI has received much
attention because it requires little training due to the P300 ERP being elicited by meaningful
attended stimuli (Picton, 1992; Ritter & Vaughan, 1969), and as compared to other BCIs it
produces high bit rates (e.g., Serby et al., 2005). The first P300 BCI was described by
Farwell and Donchin (1988). Since that time, approximately 90 papers addressing the topic
have been published. Moreover, people have now begun to use the P300 BCI in their homes
on a daily basis (Sellers, Vaughan, & Wolpaw, in press) and Vaughan et al (2006) have
described a research program focused on placing BCIs in numerous homes of people with
severe communication disorders. The system uses BCI2000 software (Schalk, McFarland,
Hinterberger, Birbaumer, & Wolpaw, 2004), and can provide icon selection, alphanumeric
character selection, and multiple menus. These components can provide input to other
software and even environmental control. It is now clear that a P300 BCI can be an effective
method of communication for ALS patients (e.g., Kubler et al., 2005; Nijboer et al., 2008;
Sellers et al., in press; Sellers & Donchin, 2006).

The P300 BCI first models a given participants response to attended stimuli and then uses
that information to try and determine which of the items being presented is the one that the
subject wishes to select. Typically, the P300 BCI can provide between three and eight
selections per min; this study examines how a predictive speller can transform these
selections into additional output characters and the predictive speller’s effects on
performance measures. Previous studies have measured performance through accuracy
(percentage correct), selections per minute (total selections correct or incorrect in a minute),
and bit rate (formulated from accuracy, number of possible choices, and time to complete a
task). In this study, we introduce a new performance measure “output characters per minute”
or OCM. OCM was calculated by taking the total selections to complete a session (including
spaces, and a selection to end the session) and dividing it by the total time to complete the
task. This new measure was used to calculate the contribution of the predictive speller
program. It is important to include a performance measure such as OCM when examining
the effectiveness of a BCI system because it provides more useful information than accuracy
and/or bit rate alone. That is, OCM provides information about how “powerful” each
selection is in terms of what it can accomplish. In other words, OCM is more or less
independent of accuracy and bit rate. In addition, OCM is certainly more important to the
BCI user than bit rate because it provides a realistic assessment of the system output, which
bit rate cannot.

Predictive spelling applications have previously been examined in the context of AAC
devices. Typically these comparisons use interfaces such as manual typing (Venkatagiri,
1994), mouth stick typing (Koester & Levine, 1996; Koester & Levine, 1994), or touch
screen typing (Trnka, McCaw, Yarrington, McCoy, & Pennington, 2009). A primary goal of
this research is to examine and maximize the benefits of word prediction by reducing user
effort and maximizing output; however, these studies have produced conflicting results
regarding the efficacy of predictive spelling applications (Garay-Vitoria & Abascal, 2004,
2006). Some researchers have suggested that keystroke savings as high as 50–60% is a
realistic limit of the benefits of delayed word prediction with an AAC user (Copestake 1997;
Lesher & Rinkus, 2002). Conversely, it has been noted that significant cognitive demands
occur with the use of word prediction programs, and that savings in keystrokes do not
necessarily lead to an increase in the rate of communication (Koester & Levine, 1994;
Venkatagiri, 1994).

Since a predictive speller may enable the user to produce more information with fewer
selections, it has the ability to enhance communication for those who depend on a P300 BCI.

Ryan et al. Page 2

Int J Hum Comput Interact. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While predictive spellers have been used in-home with ALS patients (Sellers et al., in press),
a formal comparison between the use of a predictive P300-speller and a conventional P300
speller has never been conducted. Therefore, we integrated a predictive speller software
package into a P300 BCI and compared its performance to a non-predictive (i.e.,
conventional) system.

1.1 The present study
To approximate in-home use, participants were required to accurately copy a sentence and
stop the session once complete. This is the first study to hold the participant to the same
simple, yet tedious, demands of an in-home user. To make P300 BCIs more viable for every
day home use for individuals that rely on communication devices, the program must be able
to quickly output words without sacrificing accuracy. Conventional performance measures
(i.e., accuracy, bit rate) were not designed for an additional output from a second program
such as a predictive speller. These performance measures are only based on single selections
made by the user; they do not encompass the potential output of a selection. Thus, OCM was
used to accurately measure the advantage or disadvantage of the predictive speller.

We predicted that the predictive spelling (PS) paradigm will improve performance, in terms
of OCM, as compared to the non-predictive spelling (NS) paradigm because the same
number of selections per minute (or bit rate) should allow participants to select several items
at a time (i.e., words).

We also predict that in the PS paradigm, P300 amplitude may be reduced and P300 latency
may be lengthened due to increases in workload or dual task interference in the PS paradigm
(e.g., Isreal, Chesney, Wickens, & Donchin, 1980; Isreal, Wickens, Chesney, & Donchin,
1980; Kramer, Wickens, & Donchin, 1985; Wickens, Kramer, Vanasse, & Donchin, 1983).
It is reasonalbe to assume that using a PS in addition to a BCI is more cognitively
demanding than using a conventional BCI. In the conventional method, other than attending
to the desired item, the only task of the participant is to evaluate the feedback between
selections and determine what to select next, either backspace or the next character. Using a
PS requires more attentional resources than the conventional method. An invidiviual using a
PS must a) evaluate whether or not an item is correct, b) decide if an incorrect item must be
corrected, c) evaluate the list of suggested words from the predictive speller, and d)
determine whether the next selection will be a backspace, an undo, a word from the list, or
the next character of a word. Indeed, predictive spellers used in non-BCI context have
shown an increase in cognitive demand (Koester & Levine, 1994; Venkatagiri, 1994). These
cognitive effects will become evident in the performance measures, but any negative effects
will be overshadowed by the increase in communication rate.

2. Methods
2.1 Participants

Twenty nine able-bodied adults were recruited from the East Tennessee State University
undergraduate subject pool. Twenty four (10 men, 14 women; age range 18–47) completed
the experiment. All were naïve to BCI use and none had uncorrected visual impairments or
any known cognitive deficit. The study was approved by the East Tennessee State
University Institutional Review Board and each subject gave informed consent.

2.2 Experimental paradigm
Each participant completed two experimental sessions on separate days within a one-week
period. Participants completed one PS and one NS session; sessions were counter-balanced
to control for order effects. Each session consisted of a calibration phase and an online test
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phase using an identical 8×9 matrix. Classification coefficients (described below) were
generated with data collected during the calibration phase and subsequently applied during
the online test phase. In each phase, participants were provided target items to select. In the
calibration phase, items were displayed at the top of the monitor with the next item-to-spell
(the target item) indicated in parentheses at the end of the word. As shown in Figure 1A, if
the assigned word was “DRIVING,” it would appear at the beginning of the run as:
DRIVING (D). The participant’s task was to attend to (or count) the number of times the
item in parentheses flashed. After the first item, there was a 3.5-second pause before the
next target appeared in parentheses (e.g. DRIVING (R)). This process repeated until the
word was complete (one run). Data were collected from five such runs (4 words and 1
numeric string). For both the PS and NS, each set of items flashed for 62.5ms. This was
followed by a 62.5ms inter-stimulus interval. Thus, a flash occurred every 125ms (i.e., 8
flashes/second). For each of the 36 calibration items, five complete sequences (i.e.,
including 10 flashes of the target item) occurred. The flashes were presented using the
checkerboard paradigm (CBP), which presented items in a quasi-random format. The CBP
does not allow adjacent items to flash in the same group nor does it allow any item to flash
without a minimum of six intervening flashes (for more details see Townsend et al., 2010).

During the online test phase of the NS paradigm, participants copied a sentence from a
Notepad “target window” to a blank Notepad “output window” (Figure 1B, top and middle
left). The target sentence consisted of 58 selections, including spaces between words, a
period, and a Sleep command to end the session. At the beginning of the test phase the
output window was blank and the participant’s task was to copy the entire sentence
correctly, lowercase letters were used for the output window to reduce possible confusion
between the target and output windows. After each item selection feedback was presented to
the participant (as a translucent character that filled approximately 30% of the screen), and
the keystroke was entered into the Notepad output window. In the event of an incorrect
selection, the participant was required to use the Backspace (Bs) command to erase the error
and then correct the selection. After each selection a 6 second pause was provided before the
next set of sequences began to flash. This pause was provided to ensure that the participant
had sufficient time evaluate the feedback presented by the BCI, decide what the next item
selection should be, and to find the correct item in the 8×9 matrix.

The online test phase of the PS paradigm was identical to that of the NS except for the
addition of the Quillsoft WordQ2 (version 2.5) predictive spelling program (Figure 1B, left
bottom). BCI2000 (Schalk et al., 2004) includes a UDP that can send output to peripheral
programs. The interface between WordQ2 and BCI2000 was achieved using the
BCIKeyboard, a program written and supported by the BCI2000 software project. Once an
item had been selected and appeared in the output window, the WordQ2 window would
populate with seven words, each preceded by a number. In the event that the participant
desired to select a word from the list, they could “select” the corresponding number in the
8×9 matrix on the next selection by attending to the flashes of the desired number. In Figure
1B, once the “y” had been selected the WordQ2 window generates the word “your” as
choice 1. Thus, to select the word “your” the participant would select the number 1 from the
matrix. Upon selecting the 1 from the matrix, WordQ2 would type the remaining characters
“our” and a space, thus completing the word in the output window. At this time, WordQ2
would populate with the seven most probable words. If the participant’s target word did not
appear in the WordQ2 list, it was necessary to provide additional characters until the word
appeared in the predictive window, or it was completed. As every participant was spelling
the same sentence, the learning vocabulary feature of WordQ2 was disabled to prevent the
program from listing each target word after a single selection. In the event that a word was
incorrectly selected (e.g., 2 was selected instead of 1), the participant could select Escape
(Esc) from the matrix and WordQ2 would undo the selection. Thus, returning the participant
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to the previous location in the sentence. However, if a participant was attending to Esc and
the resulting selection was incorrect, the participant was required to backspace all of the
incorrect characters individually (a limitation of WordQ2 for the current application). In this
way, a predictive speller can provide powerful correct selections with time savings and
powerful errors with time losses.

Not all errors required a correction. Under certain conditions, the predictive speller also
corrected misspelled words. For example, if the output window read “plos” the predictive
speller would still list “please” as one of the options and would correct the errors if “please”
was selected. If End or RtArw was selected the cursor in the output window would not
move; it only cost the participant a single selection. Participants were not required to correct
an error if F5 was selected. In this case, a date/time stamp would appear in the Notepad
window. The participant was asked ignore the mistake and attend to the next selection. Once
this error was observed it was addressed by changing F5 to F6 in the matrix, which has no
output in Notepad thus keeping the error and correct selection count consistent across all
participants.

2.3 Sentence selection
The length of the sentence is typical of a moderately easy sentence in English, the selected
words are representative of the mean length of words in English, and five of the 10 words
are in the 200 most common English words (Brysbaert & New, 2009). Thus, the sentence
used in the online test phase was made up of 50% of the 200 most commonly used words in
the English language.

2.4 Data acquisition, processing
Participants were seated in a chair approximately 1meter from a computer monitor that
displayed an 8×9 matrix of letters, numbers, and other keyboard commands. A 72-item
speller matrix was used because it is similar to the one designed for home use (Sellers et al.,
2010). Moreover, larger matrices have been shown to increase P300 amplitude as the
probability of the desired item is reduced (Allison & Pineda, 2003; Sellers, Krusienski,
McFarland, Vaughan, & Wolpaw, 2006).

Electroencephalograph (EEG) was recorded with a 32-channel electrode cap embedded with
tin electrodes (Electro-Cap International, Inc.). All channels were referenced to the right
mastoid and grounded to the left mastoid. Impedance on each channel was reduced below
10.0 k before testing began. Two g.tec (Guger Technologies) 16-channel biosignal
amplifiers (version 2) were used. The amplifiers have a +/−250 mV input sensitivity and are
amplified to +/−2 V before the ADC converts the signals to digital format. Signals were
sampled at a rate of 256 Hz, high-pass filtered at 0.5 Hz, and low-pass filtered at 30 Hz.
Before analyses EEG data were moving average filtered and downsampled to 20Hz. Thirty-
two channels were collected for the possibility of future analysis, but only electrodes Fz, Cz,
P3, Pz, P4, PO7, PO8, and Oz (Sharbrough, Lesser, Lüders, Nuwer, Picton, 1991) were used
for BCI operation (Krusienski, Sellers, McFarland, Vaughan, & Wolpaw, 2008).

Due to the P300s low signal-to-noise ratio, each item must be flashed multiple times and the
results averaged (Cohen & Polich, 1997). During calibration, the number of target item
flashes was constant across participants and presentation methods. Item sets of six were
flashed in quasi-random groups, with two flashes of each of the 72 items of the matrix
flashing twice per sequence, and 10 times in the 5 sequences of each selection. In the
calibration phase for the PS and NS conditions, 36 target items were presented; each of the
36 item selections contained 120 flashes (360 targets and 3960 non-targets).
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2.5 Classification
Classification coefficients were determined with a stepwise linear discriminate analysis
(SWLDA) algorithm (Draper & Smith, 1981) implemented in MATLAB (version 7.6
R2008a, stepwisefit function). The SWLDA algorithm performs forward and backward
partial regression procedures to select the spatiotemporal features (i.e., features determined
by the combination of electrode location and specific time points during the recording
epoch) that account for the most unique variance. Initially, the single feature that accounts
for the most unique variance is added to the model (forward regression), then the feature
accounting for the most unique remaining variance is added (forward regression). The model
is then tested to determine if each feature of the two-feature model still accounts for a
significant amount of unique variance (backward regression), if so both features remain in
the model and a third is selected. This forward and backward process continues until the
model includes the maximum number of features (set to 60) or until no additional features
reach the criteria for entry or removal from the model (p<.10 for entry and p>.15 for
removal). SWLDA outputs a set of spatiotemporal classification coefficients that are
subsequently applied to the averaged ERP responses during the online phase.

Before the online phase, the number of sequences was optimized for each participant using
the maximum written symbol rate (WSR, or symbols/minute; (Furdea et al., 2009;
Townsend et al., 2010)). This metric determines the number of item selections a participant
can correctly make in one minute, taking into account error correction. Using the WSR,
nearly all participants were presented with fewer than five sequences during the online test
phase. In theory, the calibration phase should yield equal numbers of sequences for each
participant in each paradigm because the calibration tasks are identical for each session.
Given our goal of comparing the PS and NS in an unbiased means, we sought to match the
number of sequences in the PS and NS conditions. Thus, five of the participants were
removed from the study due to having a difference in optimal sequences equal to or greater
than two after calibration. Each sequence of flashes requires three seconds; thus, a difference
of two or more sequences yields a minimum of six additional seconds per selection. Such a
large difference would have confounded the primary goal of the study. By eliminating these
five participants the two paradigms were better matched for time and accuracy.

After the matrix flashed the predetermined number of times during online testing, ERPs
were averaged for each channel and each cell of the 72-matrix item locations, and then the
spatiotemporal coefficients were multiplied by the amplitude value of each model feature.
The matrix item with the highest summed score was selected by the classifier and presented
to the participant as feedback. The method used was analogous to that used by Krusienski et
al, (2008), with the exception that eight channels were used.

The present experimental paradigm derived a classifier for each session independently
because within participant differences between sessions could influence performance. For
example, if a participant has had a variable amount of sleep or caffeine it is possible that
such variables would affect attentional processes and waveform morphology. In addition,
removing and replacing the cap may result in electrodes being located at slightly different
locations, contributing to deleterious effects on classification performance in the subsequent
session. Thus, performing two calibration sessions should have provided classifiers best
suited for a given session.

2.6 Dependent measures
Accuracy was measured by taking the number of correct selections (i.e. feedback matched
the character to which the participant was attending) and dividing this value by the total
number of selections per session. The formula for calculating bit rate described by Pierce
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(1980) incorporates the number of possible targets (N) and the probability that the target is
accurately classified (P):

(1)

the result divided by number of minutes in a session yields bits per minute. The calculation
“selections per minute” was performed by taking the total number of selections and dividing
by the total time of the session. “Output characters per minute” (OCM) was calculated by
taking the 58 total selections in each session (including sleep) and dividing it by the total
time of the PS session. OCM was used to calculate the contribution of the predictive speller
program. This calculation includes the time it took for the participant to correct errors while
the number of correct target selections (58) remained static. Therefore, the more errors a
participant made the more time it took to finish the session, resulting in lower output
characters per minute. However, PS and NS selections per minute were a direct result of sets
per sequence and time, thus not affected by error correction.

3. Results
A 2×2 mixed model analysis of variance (Order: (NS first vs. PS first) X Condition: (NS vs.
PS)) was used to examine if an order effect was present in the data. The results provided
insufficient evidence to reject the null hypothesis (F (1, 22) = 0.185, p = 0.671). Thus, we
collapsed across the conditions and analyzed the data using paired t-tests to examine the
differences between the PS and NS conditions on the measure of mean accuracy, selections
per minute, bit rate, theoretical bit rate, output characters per minute, and waveform latency
and amplitude.

3.1 Online Accuracy, bit rate, and theoretical bit rate
Table 1 shows raw scores and means for accuracy, bit rate and theoretical bit rate. Online
accuracy was significantly higher for NS, (M = 89.80%, SD = 7.78) than for the PS, (M =
84.88%, SD = 10.59), t (23) = 2.15, p = 0.04, d = 0.40. We suspect lower accuracy in PS is
attributed to the higher workload and/or dual task processing requirements of the PS
paradigm. In addition, we found marginal differences between PS bit rate and NS bit rate (M
= 17.71, SD = 5.38, M = 19.39, SD = 5.37, respectively), t (23) = 2.04, p = 0.053, d = 0.39.
Theoretical bit rate (i.e., bit rate with the time between selections removed) is presented for
comparison to studies that report bit rate with the time between selections removed, in this
study six seconds were provided between each item selection.

3.2 Selections per minute
Table 2 shows raw scores and means for PS and NS sets per sequence, time to complete the
sentence, selections per minute and OCM. We compared means of PS selections per minute
against NS selections per minute (M = 3.71, SD = 0.75, M = 3.76, SD = 0.75, respectively)
and found no difference between groups, t (23) = 0.49, p = .62, d = 0.10. Although this
comparison provided null findings, when compared to OCM significant differences were
revealed. OCM was significantly higher than PS selections per minute (M = 5.28, SD =
1.67), t (23) = 6.05, p < .001, d = 0.78. Similarly, OCM was significantly higher than NS
selections per minute, t (23) = 5.61, p < .001, d = 0.76. Moreover in total time to complete
the sentence (in minutes), the PS was significantly faster than the NS paradigm (M = 12.43,
SD = 4.96, M = 20.20, SD = 5.98, respectively), t (23) = 7.52, p < .001, d = 0.84.
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3.3 Waveform Morphologies
The PS and NS produced virtually identical waveforms. Our analyses focused on the
electrodes Cz, Pz, Po7, and Po8 because most of the P300 amplitude change in BCI
applications is captured in these four electrodes (Kaper, Meinicke, Grossekathoefer,
Lingner, & Ritter, 2004; Krusienski et al., 2008). Figure 2A shows average target
waveforms for each of the 24 participants. Figure 2B shows the grand mean waveforms for
the target waveforms (top row) and the non-target waveforms (bottom row). The difference
in the positive peak at electrode location Cz around 200 ms was marginally higher in the NS
than in the PS paradigm (M = 3.45, SD = 1.47, M = 2.82, SD = 1.71, respectively), t (23) =
2.06, p = .051, d = 0.39. Additionally, the NS peak at electrode location Pz around 200 ms
was significantly larger than the PS peak (M = 3.82, SD = 1.49, M = 3.24, SD = 1.81,
respectively), t (23) = 2.34, p = .028, d = 0.43.

4. Discussion
The primary goal of this study was to test the efficiency of a predictive speller program in
conjunction with a P300 BCI. The main hypotheses were that the predictive speller should
improve overall character output and possibly affect waveform morphology. The first
hypothesis was supported, even though accuracy was significantly lower in the PS
paradigm, and bit rate and selections per minute were statistically equivalent in both
paradigms. Despite the NS advantage in accuracy, the PS showed an average time advantage
of 7minutes and 46 seconds over the NS, and OCM were significantly higher for the PS than
the NS by 1.51 characters/minute. Given the current maximum character selection rate of
approximately four selections per minute in P300 BCIs (this work also see (Lenhardt, Kaper,
& Ritter, 2008; Townsend et al., 2010), these results impressively convert to an additional
91.2 output characters per hour, or nearly one and a half per minute. These results suggest
that a predictive speller can provide a substantial advantage to an individual communicating
via a P300 Speller in an online environment.

The significant difference in accuracy between the two paradigms may be a result of
increased workload and/or task difficulty associated with the PS. This hypothesis is
indirectly supported by the finding of lower amplitude responses in the PS condition at the
Cz and Pz electrode locations. Previous P300 research has shown that workload (i.e., the
measure of the interaction between task difficulty and an individual’s ability to perform a
given task (Gopher & Donchin, 1986), and dual task interference can significantly reduce
P300 amplitude and increase P300 latency (Gopher & Donchin, 1986; Isreal, Chesney, et al.,
1980; Isreal, Wickens, et al., 1980; Kramer, Wickens, & Donchin, 1983; Kramer et al.,
1985; Wickens et al., 1983). The relatively small amplitude differences in the current study
may be due to the fact that the increase in workload was discontinuous (i.e., increased
during the time in which target stimuli were not flashing). This is in contrast to studies
investigating workload which typically use continuous increases in task demands (e.g.,
tracking a stimulus). In addition, the AAC literature also suggests that cognitive demand is
increased when a predictive speller is used (Koester & Levine, 1994; Venkatagiri, 1994).

As this study used naïve participants, we believe that with training PS accuracy will
increase, thus increasing OCM. Gopher and Donchin (1986) suggest that the effects of
workload decrease with practice. In addition, the predictive speller can learn to adapt to the
individual over time, which we did not allow in the current study.

Further support of the inefficiency of the naïve participants to use a predictive speller is
shown by the number of selections required for an ideal user to complete the sentence; only
31 selections were necessary using the untrained predictive speller. However, many
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participants failed to select a word from the predictive speller at the first opportunity,
leading to additional unnecessary selections.

5. Conclusions
These results demonstrate the potential efficacy of predictive spelling in the context of BCI.
Future research should be conducted in an ALS population to determine if similar
improvements in output character selections are obtained.
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Figure 1.
A) The 8×9 matrix used during the calibration phase and online spelling phase of the
experiment. In this example, the target item “D” is noted by the letter in parentheses at the
end of the word. Participants are instructed to count the number of time the target item
flashes. After all items have flashed a predetermined number of times, there is a 3.5 second
pause in which the item in parentheses changes to the next letter of the word to indicate the
next target item. B) The 8×9 matrix and additional windows used during the online spelling
phase of the experiment. Right: the flashing matrix used to make item selections. Left top:
the sentence target window. Left middle: the sentence output window. Left bottom: the
predictive spelling window used in the PS condition (see text for details).
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Figure 2.
A) Target waveforms for electrode locations Cz, Pz, Po7, and Po8 for each of the 24
participants; PS paradigm data are presented in black and NS paradigm data are presented in
grey. (Amplitude units are μV.) B) Grand mean waveforms for all 24 participants at
electrode locations Cz, Pz, Po7, and Po8. The top row consists of target responses for both
paradigms, and the bottom row consists of non-target responses for both paradigms. PS data
is presented in black and NS data is presented in grey.
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