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Abstract
We focus on Bayesian variable selection in regression models. One challenge is to search the huge
model space adequately, while identifying high posterior probability regions. In the past decades,
the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these
purposes. In this article, we propose a new computational approach based on sequential Monte
Carlo (SMC), which we refer to as particle stochastic search (PSS). We illustrate PSS through
applications to linear regression and probit models.
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1. Introduction
Let yi denote a response variable and xi = (xi1,…, xip)′ denote a p × 1 vector of candidate
predictors for subject i, i = 1,…, N. Following common notation, let γj = 1 denote that the jth
predictor is included in the model with γj = 0 otherwise. Then, γ = (γ1,…, γp)′ is a predictor
inclusion indicator belonging to a model space Γ, with Γ containing 2p elements
corresponding to all possible subsets of these p candidate predictors. Conditional on γ, the
regression model can be written as

(1)

where xγ,i = {1, xij, j : γj = 1} is the predictor vector, θγ are the parameters, and 
is the number of predictors in model γ.

There is a rich literature on methods for sparse point estimation using methods such as Lasso
<Tibshirani, 1996>, the relevance vector machine <Tipping, 2001> and the elastic net <Zou
and Hastie, 2005>. Although these sparse point estimation approaches often do a good job in
simultaneously selecting predictors and estimating the coefficients, they do not allow for
uncertainty in variable selection. When p is moderate to large, there is substantial
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uncertainty in variable selection, and it is important to allow for this uncertainty in
conducting predictions and inferences about the important predictors. To obtain more
realistic predictive intervals and potentially lowered mean square predictive error, Bayesian
model averaging can be used <Raftery, Madigan, and Hoeting, 1998>. In addition, marginal
inclusion probabilities provide a useful measure of the weight of evidence in the data that a
particular predictor should be included in the model.

To define a Bayesian approach for variable selection, let π(γ) denote the prior probability of
model γ. Updating this prior with information in the data , we
obtain

(2)

with L(y1:N; γ, X1:N) = ∫ L(y1:N; θγ, X1:N)dπ(θγ) the marginal likelihood under model γ and
L(y1:N; θγ, X1:N) the likelihood of y1:N conditionally on the predictors X1:N under (1).
Expression (2) describes the posterior probabilities for each of the candidate models, with
these posterior probabilities providing weights to be used in model averaging or a means by
which to conduct Bayesian variable selection.

In particular, if the goal is to select a single “best” model, then there are two approaches that
are typically used. First, if one chooses a 0–1 loss function in which a loss of 1 is accrued if
an incorrect model is selected and it is assumed that the true model is one of those in the list
Γ, then the model with lowest Bayes risk corresponds to the highest posterior probability
model. Examining expression (2), the posterior probability of model γ is proportional to the
prior probability multiplied by the marginal likelihood under that model. Due to the intrinsic
Bayesian penalty for model dimension <Jefferys and Berger, 1992>, the marginal likelihood
will tend to favor a parsimonious model. However, there are two major problems that arise
in selecting the highest posterior probability model when 2p is large. First, the number of
models that need to be visited in calculating the denominator in (2) rapidly becomes
prohibitively large as p increases, and hence it becomes difficult to accurately estimate π(γ|
y1:N, X1:N). Second, even if an exact estimate could be obtained, no one model will
dominate in large model spaces, and it tends to be the case that many models have similar
posterior probabilities to the best model.

To address these problems, it has become common to instead select predictors based on
thresholding of the marginal inclusion probabilities (MIPs), defined as

(3)

for the jth predictor, j=1,…, p. The MIPs provide a weight of evidence that a given predictor
should be included adjusting for uncertainty in the other predictors in the model, and hence
provide a useful basis for inferences. Barbieri and Berger <2004> showed that the optimal
predictive model under squared error loss often corresponds to the median probability
model, which includes all predictors having MIPs above 0.5. Because it is often not feasible
to visit more than a small fraction of the models in Γ in estimating the MIPs, it is important
to develop algorithms that efficiently find regions of Γ containing high posterior probability
models, with such models also tending to have high marginal likelihoods unless the prior is
overly informative.
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George and McCulloch <1993> proposed a stochastic search variable selection (SSVS)
algorithm for normal linear regression using Gibbs sampling to search Γ for high posterior
probability models. Their approach relies on a mixture of a low and high variance normal
prior centered at zero for each of the regression coefficients, with the low variance
component corresponding to a predictor being effectively excluded due to the coefficient
being close to zero. However, in many applications, this approach is subject to very slow
mixing of the Gibbs sampler and hence poor computational efficiency <George and
McCulloch, 1997>. As reviewed in George and McCulloch <1997>, Geweke <1996>,
Carlin and Chib <1995> and Green <1995> propose alternative methods to improve the
performance of SSVS. As noted in Liu et al. <1994>, an effective strategy for improving
efficiency of MCMC algorithms is marginalization. The most efficient of the available
SSVS algorithms (to our knowledge) relies on marginalizing out the regression coefficients
in updating the variable inclusion indicators <George and McCulloch, 1997>. In particular,
this algorithm iteratively samples the variable inclusion indicator for the jth predictor, γj,
from its Bernoulli full conditional posterior distribution given the other predictors in the
model, γ(−j) = {γl : l ≠ j, l = 1,…, p}, for j = 1,…p.

In this article, we propose a sequential Monte Carlo (SMC) approach for obtaining a
sampling-based approximation to the posterior distribution of γ, providing an alternative to
SSVS and other MCMC-based methods. Although SMC is commonly used for dynamic
models, the application to static models was initially proposed by Chopin <2002>, with Del
Moral et al. <2006> providing a general methodology. However, there has been limited
work on the use of SMC for model selection. Chopin <2007> used SMC for model choice in
hidden Markov models. Toni et al. <2009> proposed an approximate Bayesian computation
method for model selection in dynamical systems using SMC. Zhang et al. <2007>
proposed an SMC-type sequential optimization approach for variable selection, though their
approach does not accommodate uncertainty in the selection process.

Our proposed particle stochastic search (PSS) algorithm relies on introducing a sequence of
particle approximations to the partial posterior distributions , with the
particles sequentially updated through rejuvenating and reweighing operations as subjects
are added to the data set. By adding data sequentially, we initially allow faster exploration of
the model space, as the partial posteriors will be effectively annealed relative to the eventual
target. In addition, the algorithm can take advantage of distributed computing on a cluster
for more rapid computation. In the sequel, we provide details on the PSS approach and
compare it to MCMC algorithms in linear and probit regression.

2. Particle Stochastic Search
Due to the dimensionality problem mentioned in Section 1, we focus primarily on obtaining
accurate estimates of the MIPs, though the proposed algorithm can also be used to identify
high posterior probability models, as we illustrate in Section 3.

2.1. Sequential Monte Carlo for Variable Selection
Sequential Monte Carlo (SMC) relies on a discrete approximation to the posterior
distribution

(4)
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where  is a collection of particles, δγ denotes a degenerate distribution with all its
mass at γ, and  is the probability on particle .

Based on the theory of importance sampling <e.g Liu, 2001, Ch.2>, given a particle

approximation  to the partial posterior distribution π(γ | y1:n−1, X1:n−1),
one can obtain a particle approximation  to the partial posterior distribution
π(γ | y1:n, X1:n) by propagating the particles  and using modified weights

(5)

One can start by drawing , choosing equal weights  to
obtain the initial approximation, and then apply (5) recursively to obtain a particle
approximation (4) for the posterior distribution π(γ | y1:N, x1:N). However, this sequential
weight-updating step has the problem that after several iterations, fewer and fewer particles
maintain significant weights. To address this degeneracy problem, a common strategy is to

remove particles with very low weights by weighted resampling from .
Unfortunately, resampling does not introduce new particles, so this approach leads to few
particles having very high weight.

Let K(γ⋆ | γ) denote a transition kernel with invariant probability distribution π(γ | y1:n,
X1:n),

(6)

Given an initial particle approximation , one can use the modified

approximation . To draw samples from this approximated distribution,
one can first draw a set of indicators  indicating which γm should be used for the
generation of , and then sample  from . The first stage is effectively
resampling and the second step allows the generation of fresh particles <Pitt and Shephard,
1999>, <Carvalho et al. 2010>.

We consider the following choices of the transition kernel K(γ⋆ | γ):

1. Metropolis Hasting kernel:

a. Generate a candidate γ⋆ from probability distribution q(γ⋆; γ).

b. Accept the candidate γ⋆ with probability

(7)

2. Gibbs sampling transition kernel: Let γ(j) = (γ1,…, γj−1, γj+1,…, γp), and τ=(τ1,…,
τp) denote some permutation of {1, 2,…, p}. Then for j = τ1, τ2,…, τp:
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(8)

with

In order to introduce more fresh particles which have less dependence with the previous
particles, we can use strategies commonly used for improving the convergence of MCMC.
For example, one can use a blocked Gibbs sampling transition kernel. In the following
algorithm, the Metropolis Hastings kernel is applied within a particle iteratively p times.

In choosing between transition kernels, a useful measure of the efficiency is the effective
sample size (ESS), defined as

(9)

with var(w) the variance of the importance weights with respect to the proposal distribution.
The ESS(N) provides an estimate of the number of independent samples from the target
probability measure, which would provide the same estimation precision as the particle
approximation. It is common to only resample when ESS(N) becomes low.

We propose two alternative PSS algorithms below.

Algorithm 1.

i. Initialization: Start with sampling the particles  from the prior distribution
π(γ).

ii. For n = 1, 2,…, N, add the nth observation (yn, xn) and cycle through

a. Reweighting: update the weights of the particles:

(10)

and set  for m=1,…, M.

b. Calculate the ESS(M) (9) based on the updated weights. Once ESS(M) <
M=2:

b1) (Resample) Resample  with replacement using weights
 using an efficient sampling strategy. Reset the

weights .

b2) (Rejuvenation) For any m, replace  with a sample from
 where Kn(· | γ) defines a transition kernel with

invariant probability distribution π(γ | y1:n, X1:n).
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Del Moral et al. <2006> proposed alternatives to sequential adding of observations. For
simplicity and to facilitate extensions, we do not consider such approaches here.

2.2. Generalization to Latent Variable Models
For the normal linear regression model, the marginal likelihood is available in closed form
when π(θγ) is chosen as a multivariate normal-gamma prior. However, for generalized linear
models, the marginal likelihood is typically analytically intractable. Albert and Chib <1993>
and Holmes and Held <2006> demonstrated auxiliary variable approaches for binary
regression models. In this section, we describe the modification of the auxiliary variable
approach to our PSS algorithm.

To begin, consider a probit regression model

(11)

with Φ(·) the cumulative distribution function of a standard normal random variable. A well
known augmented formulation for Model (11) is

(12)

The advantage of (12) is that, for Gaussian π(β), we can obtain the marginal likelihood
conditionally on the latent variables z but marginalizing out β. Thus, we can extend our PSS
algorithm to probit regression models by including the model index γ and the latent
variables z within the particles.

Theorem 1. (Liu <2001>) Let π0(x, y) and π1(x, y) be two probability densities, where the
support of π0 is a subset of the support of π1. Then,

(13)

where π1(x)=∫ π1(x, y)dy and π0(x)=∫ π0(x, y)dy are marginal densities.

Based on Theorem 1, we should obtain better performance of the PSS method by avoid
putting in the regression parameters specific to each model within the particles and instead
marginalizing out these parameters. Marginalization is a common technique for reducing
autocorrelation in MCMC algorithms; for example, refer to Holmes and Held <2006> in the
setting of SSVS using data augmentation in binary response models.

Let  denote a transition kernel with invariant distribution π(z1:n, γ | y1:n,
X1:n) which can be factorized as

(14)

We consider the following choice of 

1. Gibbs sampling kernel:
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(15)

For probit regression models with a Gaussian prior, we can directly sample from

 which is a truncated normal distribution.

2. Gibbs sampling or Metropolis Hasting kernels for  as in Section 2.1.

Algorithm 2

i. Initialization: Start with sampling the particles  from the prior distribution
π(γ).

ii. For n=1,…, N, add the observation (yn, xn) and cycle through:

a. Reweighting: update the weights of the particles:

(16)

and set  for m=1,…, M.

b. Propagating: Sample the next latent variable zn for each particle m:

(17)

with the particle system updated to .

c. Calculate the ESS(M) (9) based on the updated weights. If ESS(M) < M=2:

c1) (Resample) Resample  with replacement
using weights  based on an efficient sampling strategy.
Reset the weights .

c2) (Rejuvenation) For any m, replace  with a sample
from a transition kernel with the invariant distribution π(z1:n,
γ | y1:n, X1:n).

Compared with MCMC, PSS has the advantage of avoiding mixing problems, such as a
tendency to remain for long intervals within a local region of the model space Γ. However,
the tradeoff in SMC algorithms such as PSS is the risk of degeneracy and the potential need
to use enormous numbers of particles to obtain an accurate approximation. It is
straightforward to extend PSS beyond linear regression and probit models to other models in
which marginal likelihoods are available analytically after augmentation. For example, the
nonparametric mixture regression models of Chung and Dunson <2009> fall in this class.
PSS can be implemented either in serial or in parallel, though a primary advantage of PSS is
the ability to accommodate high-dimensional cases through the use of parallel computing.

2.3. Prior Specification and Extensions
The PSS algorithms described above assume that the marginal likelihood L(y1:N;γ, X1:N) can
be obtained in closed form, which places some constraints on the priors that can be
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considered. For example, in normal linear regression, we have assumed that a multivariate
normal-gamma joint prior is placed on the regression coefficients and residual precision.
This is a standard choice in the literature. SSVS algorithms that rely on marginalizing out
the model parameters also require a closed form marginal likelihood, so have similar
restrictions on the prior. For both PSS and SSVS, the class of priors and models that can be
considered can be expanded by using approximations to the marginal likelihood, such as
Laplace.

There are some disadvantages of the multivariate normal-gamma prior, such as lightness of
the tails leading to lack of robustness. A number of alternative priors have been proposed,
which place hyper-priors on one or more parameters in the multivariate normal-gamma
prior. One example is the mixture of g-priors considered in Liang et al. <2008>. In MCMC-
based SSVS algorithms, it is straightforward to include hyper-priors on parameters that are
common to the different models, and then update these parameters in separate steps from the
model index updating steps. In PSS, we can similarly allow richer classes of priors by
including the hyper-parameters ψ common to the different models directly in the particles
along with the model index γ. The algorithm would remain essentially the same as described
above, but in the rejuvenation step we would need to apply an invariant transition kernel for
the joint posterior of (γ, ψ). For example, we could use a Gibbs transition kernel.

2.4. Bayesian Inference from the Particles
As described in Section 1, there are a variety of approaches available for selecting predictors
based on posterior model probabilities, with our emphasis here being on the median
probability model that selects those predictors having marginal inclusion probabilities
(MIPs) greater than 0.5. However, in many applications it is not necessary to formally select
predictors and may be more useful to present a ranked list of the predictors having the
highest MIPs along with their MIPs. As the MIPs provide a weight of evidence that a
variable should be included as a predictor, such a summary provides more information than
simply a list of selected predictors.

After obtaining a particle approximation  to the complete posterior
distribution π(γ | y1:N, X1:N) over the model space using PSS, the MIP for the jth predictor
can be estimated as

(18)

After selecting a model based on thresholding of the estimated MIPs, the posterior
distribution of the coefficients and residual variance in the selected model can be obtained
easily.

3. Examples
3.1. Normal Linear model

We illustrate PSS and compare results to SSVS using simulated examples with the first
example taken from George and McCulloch <1997>. To calculate the marginal likelihood
L(y1:N;γ, X1:N) in both methods, we use a simple multivariate normal-gamma prior
distribution for θγ, which includes both the regression coefficients βγ and the residual
precision σ−2 in the linear regression case,
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with  equal to the classical least square estimate of σ2 based on the full model as an
empirical Bayes approach to set the scale <George and McCulloch, 1997>. In addition, we
assumed that the elements of γ are iid Bernoulli(0:5) in order to assign equal prior
probability to inclusion or exclusion of each predictor.

Algorithms that efficiently discover models with high log-marginal likelihoods will also
tend to find models with high posterior probabilities, because the posterior probability is
proportional to the prior probability times the marginal likelihood. Hence, we record the log
marginal likelihoods of the models visited by PSS and SSVS as one measure of
performance, while also estimating MIPs for each of the predictors and the median
probability model. Ideally, the MIPs would be close to one for predictors that should be
included and close to zero for predictors that should be excluded. However, when important
predictors are highly correlated, the MIPs for these predictors will tend to be substantially
less than one and may even be less than 0.5. Bayesian variable selection automatically
attempts to find a parsimonious model that has good predictive performance, and from this
perspective it is often optimal to select one of a correlated set of predictors. The outcomes
from all the simulations below are standardized to have mean 0 and unit variance. All of the
algorithms are coded in C++, with the PSS algorithms implemented using parallel
computation.

Example 1.

Generate Z1, Z2,…, Z15, Z from N100(0, I), and set the covariate Xi to satisfy Xi=Zi+2Z for
i=1,3,5,8,9,10,12,13,14,15 with X2=X1+0.15Z1, X4=X3+0.15Z4, X6=X5+0.15Z6,
X7=X8+X9−X10+0.15Z7 and X11=X14+X15−X12−X13+0.15Z11. The regression coefficients
are β= (1.5, 0, 1.5, 0, 1.5, 0, 1.5, 1.5, 0, 0, 1.5, 1.5, 1.5, 0, 0)′. The final observation variables
are drawn from  with σ2=2.5. Under this construction, there is a strong
multicollinearity among the predictors and the correlations between Xi and Xi+1 are as high
as 0.998.

We start with this simple example in order to test the performance of PSS in a case in which
the true posterior model probabilities and marginal inclusion probabilities (MIPs) can be
calculated precisely. As there are 215 = 32, 768 models in Γ in this case, it is feasible to
calculate the marginal likelihood for every model in the list. For a short run, we set the
initial number of particles for PSS to be M=1000. However, our hope is that we can still
obtain reasonably accurate estimates of the MIPs and identify many of the top posterior
probability models based on a modest number of particles. SSVS also typically relies on
many fewer samples than there are models in Γ. Matching implementation time
approximately, we ran SSVS for 5000 iterations.

We obtained 50 simulation replicates in order to judge performance across many data sets.
For each simulation, both PSS and SSVS found the true highest posterior probability model.
Since the true MIPs can be obtained in this case, we can calculate root mean square errors
(RMSE) of the estimated MIPs and other summaries of performance. Let γ̂E(α) = {1(ζj > α),
j = 1,…, p} denote the model selected by including predictors having exact MIPs larger than
a threshold of α. To assess the relative performance of PSS and SSVS at efficiently
approximating exact Bayesian variable selection, we use the following two summaries
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with ζj and ζ̂j the true and estimated MIPs for predictor j, respectively. Here, Ip(α) denotes
the proportion of predictors in model γ̂E(α) that are appropriately included in the model
selected using the estimated MIPs, while Ep(α) denotes the proportion of predictors not in
model γ̂E(α) that are appropriately excluded. Table 1 shows summaries of the RMSE of the
estimated MIPs, the means of the Ip and Ep with the standard deviations in the parentheses
for both PSS and SSVS. Both PSS and SSVS have excellent performance in terms of
accurately approximating Bayesian variable selection based on thresholding of the exact
MIPs.

By adding 85 predictors X16:100 with zero coefficients, we extended p from 15 to 100 and
reapplied PSS and SSVS. In this case the number of models in Γ is too large to calculate the
marginal likelihood for all models, so the highest posterior probability model and MIPs
cannot be calculated exactly. Hence, we instead compare the relative performance of PSS
and SSVS in identifying high log-marginal likelihood models, in estimating MIPs that are
high for predictors that should be in the model and in estimating a median probability model
that is close to the true model. Table 2 gives the median, 75th percentile, 95th percentile and
maximum for the log-marginal likelihoods found in those methods. In this high dimensional
case, PSS with 10,000 particles finds slightly higher posterior probability regions than
20,000 SSVS iterations. Table 3 shows the indexes of the predictors in the estimated models
based on different thresholdings. The model selected is sensitive to the choice of the
thresholding α, with α = 0.5 often an optimal choice in terms of predictive performance
<Barbieri and Berger, 2004>.

3.2. Probit Regression Model
We also apply PSS to the following probit regression model with details listed in the
Appendix. The prior distribution we used for βγ | γ is N(bγ, vγ) with bγ = 0 and vγ=Ipγ×pγ in
examples.

Example 2:

Choose the covariate matrix X(p)=(1, X) with X the same as the covariate matrix in the
normal linear regression example with 100 predictors. The response variables are drawn
from model (11) with  and β(p) = (1.5, β) with β also
being taken from p=100 normal linear regression example.

As the marginal likelihood for the probit model is not available analytically, we instead use
the complete data marginal likelihood here, which is available for the simulation as we have
generated z. In this example, we compare our PSS algorithm with MCMC. As is illustrated
in Table 4, PSS with 10,000 particles found slightly higher posterior regions than 20,000
MCMC iterations. The models selected based on different thresholds α on the MIPs are
listed in Table 5. If the model selected is (1, 2, 3), it corresponds to ηi=β0 + β1X1 + β2X2 +
β3X3 in (11).

4. Conclusion
This article has proposed an SMC algorithm for Bayesian variable selection. Our goal in
using SMC was to obtain an alternative to MCMC-based SSVS, which may have advantages
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in certain cases. First, the proposed PSS algorithm has an automatic annealing feature that
results from the sequential addition of subjects. This annealing leads to more rapid
exploration of the model space initially and then a more concentrated search as subjects are
added. Although annealing is also commonly used within MCMC algorithms to limit
problems with stickiness when the posterior is multimodal, the performance of such
algorithms tends to be quite sensitive to difficult to choose tuning parameters, such as
temperature ladders. PSS incorporates an implicit temperature sequence through making the
target more concentrated as subjects are added, so avoids the need to choose tuning
parameters.

A second beneficial feature of PSS is that the approach can take advantage of parallel
computing environments to simultaneously explore many regions of the model space
starting with widely-dispersed particles sampled from the prior. This tends to limit the
chance of getting stuck for long intervals in a local region of the model space, and makes it
more likely to discover promising regions. Unlike simply implementing SSVS in parallel,
PSS automatically communicates across the particles and will discard particles in
unpromising low probability regions. Our simulation in the p = 100 case provided some
initial evidence that PSS has better performance in finding the top models in large predictor
spaces, though more extensive simulations and theoretical studies are needed.

This article is meant as an initial description of a promising new class of algorithms for a
very challenging and important problem. Certainly, the challenges of attempting posterior
computation in a model space with 2p elements when p is large should not be
underestimated. PSS is by no means a perfect alternative to SSVS in that accurate
approximation of the posterior of the model index γ when p is large would seem to
necessitate using an enormous number of particles, which may not be computationally
feasible. However, MCMC faces a similar problem in requiring an infeasible number of
samples. Hence, it is important to keep in mind that these algorithms are designed to search
for good models and not to accurately approximate the posterior for large p. Our hope is that
the current PSS algorithm will provide a competitive alternative to SSVS that does better in
certain applications, while stimulating additional work in this area. In particular, we suspect
that more efficient transition kernels can potentially be chosen to improve performance of
PSS.

Appendix
PSS implementation details for the probit model under the prior β ~ N(b, v). Define

1. Reweighting: After marginalizing out the latent variable for the new observations,
the weight (16) satisfies

with

Shi and Dunson Page 11

Stat Probab Lett. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Propagating: Sample the latent variable zn for the observation yn from a truncated
normal distribution, (17) satisfies :

with An = (−∞, 0] for yn=0 and An = (0, +∞) for yn=1, where NA(μ, σ2) is the N(μ,
σ2) distribution truncated to A.

3. Rejuvenating:

a. To sample from (15), cycle though i=1,…, n:

with

and hi is the ith diagonal element of , z(i) = (z1,…,
zi−1, zi+1,…, zN)

b. To sample , we can use the Gibbs sampling kernel or the
Metropolis Hasting kernel mentioned in Section 2.1.
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Table 2

Summaries of the log-marginal likelihoods for the top models in the linear regression case: PSS with Gibbs
kernel (PSSG), PSS with MH kernel (PSSMH), SSVS with Gibbs (SSVSG) and SSVS with MH kernel
(SSVSMH).

Median 75% 95% Maximum

PSSG −281.4936 −280.8975 −280.5607 −280.5072

PSSMH −281.4626 −280.8909 −280.5721 −280.5072

SSVSG −281.5759 −280.9630 −280.6783 −280.6013

SSVSMH −281.5197 −280.9188 −280.6127 −280.5607
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Table 3

The models selected based on different thresholds on the estimated marginal inclusion probabilities for the
linear regression case: PSS with Gibbs kernel (PSSG), PSS with MH kernel (PSSMH), SSVS with Gibbs
(SSVSG) and SSVS with MH kernel (SSVSMH).

α=0.45
PSSG 2, 3, 5, 6, 7, 9, 14, 15 SSVSG 1, 2, 3, 5, 7, 9, 12, 13, 14, 15

PSSMH 2, 3, 5, 6, 7, 9, 14, 15 SSVSMH 2, 3, 5, 7, 9, 13, 14, 15

α=0.50
PSSG 2, 3, 5, 7, 9, 14, 15 SSVSG 2, 3, 5, 7, 9, 13, 14, 15

PSSMH 2, 3, 5, 7, 9, 14, 15 SSVSMH 2, 3, 5, 7, 9, 14, 15

α=0.55
PSSG 3, 5, 7, 9, 14, 15 SSVSG 3, 7, 14, 15

PSSMH 3, 7, 9, 14, 15 SSVSMH 3, 7, 9, 14, 15
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Table 4

Summaries of the log complete data marginal likelihood for the top models selected in the probit case: PSS
with Gibbs kernel (PSSG), PSS with MH kernel (PSSMH), MCMC with Gibbs (MCMCG) and MCMC with
MH kernel (MCMCMH).

Median 75% 95% Maximum

PSSG −129.8118 −121.9266 −111.6871 −105.0315

PSSMH −129.7112 −122.3866 −112.4855 −105.0191

MCMCG −131.5902 −124.8271 −115.2204 −105.0118

MCMCMH −131.4937 −125.0411 −115.8446 −105.0548
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Table 5

The models selected based on different thresholds α on the MIPs in the probit case: PSS with Gibbs kernel
(PSSG), PSS with MH kernel (PSSMH), MCMC with Gibbs (MCMCG) and MCMC with MH kernel
(MCMCMH).

α=0.45
PSSG 1, 3, 4, 7, 9, 14, 15 MCMCG 1, 2, 3, 4, 7, 9, 10, 14, 15

PSSMH 1, 3, 4, 7, 9, 10, 14, 15 MCMCMH 1, 2, 3, 4, 5, 7, 9, 10, 14, 15

α=0.50
PSSG 3, 4, 7, 9, 14, 15 MCMCG 2, 3, 4, 7, 9, 14, 15

PSSMH 3, 4, 7, 9, 14, 15 MCMCMH 1, 3, 4, 7, 9, 14, 15

α=0.55
PSSG 3, 4, 9, 15 MCMCG 3, 4, 9, 14, 15

PSSMH 3, 4, 9, 15 MCMCMH 3, 4, 9, 15
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