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Abstract
We describe an algorithm for finding approximate seeds for DNA homology searches. In contrast
to previous algorithms that use exact or spaced seeds, our approximate seeds may contain
insertions and deletions. We present a generalized heuristic for finding such seeds efficiently and
prove that the heuristic does not affect sensitivity. We show how to adapt this algorithm to work
over the memory efficient suffix array with provably minimal overhead in running time.

We demonstrate the effectiveness of our algorithm on two tasks: whole genome alignment of
bacteria and alignment of the DNA sequences of 177 genes that are orthologous in human and
mouse. We show our algorithm achieves better sensitivity and uses less memory than other
commonly used local alignment tools.
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I. Introduction
Finding local matches between two long sequences is a fundamental problem in
computational biology. For example one might want to find similar regions in the genome
sequence of two organisms. Due to differences in the genome sequence of different
organisms or to sequencing error we have to look for approximate matches. Many
algorithms and tools have been created that address this need, yet finding local alignments
still remains one of the most computationally intensive steps in biological sequence analysis.

We define the local alignment search problem as follows: Given two strings S1 and S2 of
lengths n1 and n2, a minimum match length l and a maximum distance k, find all pairs of
substrings of S1 and S2 of length l that are within distance k. We assume all strings are from
a finite alphabet Σ of size σ. A few popular distance metrics are Hamming distance, unit-cost
edit distance (Levenshtein distance) and general edit distance based on a substitution cost
matrix.

A string matching problem is called offline if we are allowed to pre-process the text and
make an index data structure, and online if we are not allowed to pre-process the text. The
exact alignment problems can be solved optimally (meaning the running time is bounded by
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a linear function of the size of input strings) using eg. the KMP algorithm for the online and
suffix trees for the offline case. In this paper we will focus on the offline problem.

The online local alignment problem can be solved in O(n1 · n2 · l) time by using each length
l substring of S2 as a pattern and using a variation of well known Smith-Waterman [14]. This
running time, however, is impractical for the size of the data-sets commonly encountered in
practice.

In practice the most common solution to the inexact local alignment problem is to find seeds
and try to extend them to longer local alignments [2], [4], [6]. A seed is a short substring of
one sequence that matches closely to a substring of the other sequence. Seed and extend
algorithms are fast because they avoid trying to align every region of the two sequences and
only focus on the regions that are likely to align well. Two most common type of seeds used
are exact seeds and spaced seeds. Exact seeds need to match perfectly, whereas spaced seeds
allow mismatches at some positions. Neither allow insertions and deletions within the seed.
In this work we look at more general inexact seeds that are based on the same notion of
similarity as in Smith-Waterman [14]. We describe an algorithm for finding these inexact
seed, and show that an implementation of this algorithm has good performance in practice.
Since our algorithm is based on dynamic programming it can use a general substitution cost
matrix for distance computation.

Seed finding algorithms are evaluated by their sensitivity and specificity. Sensitivity
corresponds to fraction of true local alignments that are found by the seeds. Specificity
corresponds to fraction of reported seeds that can be extended to true local alignments.

In the case of exact seeds, their sensitivity and specificity depends on only parameter: seed
length. Spaced seeds provide an additional parameter - weight - the number of characters
within the seed that must match within the aligned strings. For the same weight spaced seeds
achieve better sensitivity than exact seeds without sacrificing specificity. Computing
sensitivity of a spaced seed is, however, NP-hard [10]. Most spaced seed tools use a pre-
computed seed or set of seeds, making it difficult to tune their parameters at run-time in
order to achieve the best trade-off between sensitivity and specificity for a given alignment
task.

We will prove that our seed finding algorithm is perfectly sensitive i.e. if a good enough
local alignment is present it will be detected by our seeds. Furthermore since we allow
inexact seeds, by using longer seeds we can achieve better specificity too. With our
algorithm the user can pick any seed length and similarity at running time without the need
to re-compute the index.

Most of the tools used in practice today are based on one of two index data structures for
large strings; inverted k-mer index and the family of indexes related to suffix trees (suffix
arrays and Burrows-Wheeler index.) BLAST [2] uses an inverted index of exact seeds.
MUMmer [5] is a whole genome alignment tool that uses suffix trees. Bowtie [9] uses a
Burrows-Wheeler index of the human or other genome and can align short reads with few
differences to the reference. Our algorithm uses a suffix array index.

II. Suffix Array Search Algorithm
Our algorithm systematically tries to compute dynamic programming score (similar to
Needleman-Wunsch [13]) for aligning every pair of substrings of S1 and S2. We assume the
“cost” of aligning two characters is zero if they are identical and is some positive number
otherwise. What makes this algorithm fast is that it gives up as soon as it notices that the
alignment cost (i.e. distance or score) is getting “too high”.
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A. Recursive Search of Suffix Trie
It is easier to explain our algorithm using the Suffix Trie data structure. A suffix trie is a
rooted tree data structure that stores every suffix of a string. Unfortunately this
representation requires up to Θ(n2) space in general which makes it impractical for long
sequences. In the next section we will adapt this algorithm to use suffix array which require
only linear space. Let us assume we have built a suffix trie for each of S1 and S2. A
representation of an example suffix trie is shown in Figure 1. Each node of the suffix trie
corresponds to a substring of the original string that is spelled out by the labels of the edges
on the unique path from root to that node. An exact search algorithm starts at the root and
follows down the edges labeled with the same character in both trees. In other words, if the
search function is called on some internal node u from the first trie and v from the second
trie, then for each letter of the alphabet if both u and v have a child labeled with that letter
the search function is called recursively on the corresponding child nodes. After traversing l
edges down from the root (reaching depth l) the leaves under the internal node of each tree
represent suffixes from each sequence that share the first l characters exactly. Thus, we find
exact “alignments” of length l.

In the case of approximate search however we may have to follow edges labeled with
characters that are different in the two suffix tries. Therefore we have to call the search
function recursively for every pair of children of u and v. Without limiting the number of
mismatches allowed this recursive search (which is called for every pair of children) will try
to align every substring of length l from S1 to every substring of S2. A simple solution is to
stop following down branches from a pair of internal nodes as soon as the distance between
the two strings corresponding to those nodes is already greater than some threshold (also
when we reach depth l of course). i.e. as soon as the alignment cost becomes “too high” we
simply return from recursion and will not call search function for the children of current
nodes. We calculate distance by updating a dynamic programming table on the fly as
illustrated in Figure 3. We only need to update one row and one column of the dynamic
programming table for each edge traversal. If the distance is smaller than the threshold we
recursively call the search function for every pair of children of the two current internal
nodes. When we reach depth l we report all pairs of leaves under the two nodes. The cost
threshold can either be a constant or for example a function of the length of the alignment so
far.

A naive choice is to use a constant threshold equal to k, i.e. to stop when the distance
between strings corresponding to the two current nodes is greater than k. This strategy is
slow in practice however, because for most practical sequences the top levels of the suffix
trie are nearly full (each node has nearly σ children), whereas deep nodes (depth ≥ logσ n) of
the trie have about one child on average. The constant threshold strategy will spend lots of
time traversing top levels of the trie allowing many errors in the first few characters of the
alignment. In fact for example, in the unit-cost edit distance model, it aligns every substring
of length k of the first sequence to every substring of length k of the other sequence. The
main intuition is that we can look for shorter seeds with the desirable property that they do
not have many differences in the beginning. This causes the algorithm to backtrack more
easily on the first few levels of the tree and significantly improves the running time.

We show in Lemma 1 that if L1 and L2 (e.g. substrings of S1 and S2, respectively) of length l
match with distance ≤ k then there exists a seed E1 of length e (1 ≤ e < l) in L1 that matches
a substring E2 in L2 in such a way that the cost of edits necessary to match any prefix of E1
to some prefix of E2 is never more than  times the length of the prefix. This is a
generalization of exact seeds. This lemma proves that our seed heuristic does not affect the
sensitivity of the algorithm at all.
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After finding the seeds one should verify that they can be extended to alignments of length l.
(It is also possible to use these seed directly in a chaining algorithm if we desire a global
alignment). This can be done in a post-processing step. But we assume for sufficiently long
seeds (e ≥ logσ n) the number of seed hits are small enough that the running time will be
dominated by the seed search phase. Of course this is not true for highly repetitive
sequences.

Lemma 1—If L1 of length l matches L2 with cost ≤ k, then for any seed length e, 1 ≤ e < l
there exists a seed E1 a substring of L1 of length e and E2 a substring of L2 such that for
every prefix of E1 of length j, E1 [1..j] matches some prefix of E2 with  distance.

Proof: Given an alignment of L1 to L2 with distance ≤ k let f (i) be a the edit distance of L1
[1..i] from the prefix of L2 to which it is aligned. See Figure 4. It is easy to see that f is a
non-decreasing function, and by definition f (l) ≤ k and f (0) = 0.

We need to show that there exists an i ∈ {0, …, l − e} such that for all j = 1 … e,
.

As a way of contradiction assume for all i = 0 … (l − e), there exists j ∈ {1 … e} such that
 or equivalently .

In particular for i1 = 0 there exists j1 such that , and for i2 = (0 + j1)
there exists j2 such that , and so
on up to some z such that l − e < 0 + j1 + j2 + … + jz ≤ l. We have:

Which implies f (l) > k which is a contradiction.

B. Adapting the Algorithm to Suffix Arrays
A suffix array [12] is the list of indexes all suffixes of a string in lexicographically sorted
order, as illustrated in Figure 2(b). A suffix array can be built in linear time 1 and occupies n
log2 n bits. Even though theoretically asymptotic memory requirements of suffix arrays and
suffix trees is the same, in practice highly optimized implementations of suffix trees require
over 10 bytes of memory per input character [8] whereas a basic suffix array implementation
requires just 4+1 bytes per character2. Space requirements of suffix arrays can be further
reduced to O(n) bits using compressed suffix arrays. Finally it has been shown that by
storing some auxiliary tables, Enhanced Suffix Arrays [1] can be used to simulate any type
of traversal of suffix trees in the same time complexity.

Our algorithm over suffix arrays is inspired by the simplest exact search algorithm on a
suffix array which is in essence a binary search. The main property of the suffix array that
our algorithm takes advantage of is that if some prefix of the suffix pointed to by ith element
of suffix array is equal to that of the suffix pointed to by j the element of suffix array, then

1Assuming log n is smaller than the word size of the machine and operations on them takes constant time
2Assuming length of input string can be stored in a 32 bit integer.
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for every k ∈ [i … j], every suffix pointed to by the kth element of suffix array shares the
same prefix. This property easily follows from the fact that the suffixes are lexicographically
sorted. The recursive algorithm described over suffix tries can be adapted to work on suffix
arrays with at most a log2 n factor increase in running time as will be shown in Lemma 2.
The main algorithm is as follows: We maintain two windows of the two suffix arrays and
the depth (length of the prefix) that we have aligned so far, If the characters at this depth
from both sides of the current window match (for each window of the two suffix arrays),
there is only one character to follow down in this window so we update the dynamic
programming table and call search for depth+1, otherwise we simply divide the window (for
which the characters from both sides at current depth do not match) in two equal windows
and recursively find the matches on both halves. The window size will always remain
greater than or equal to one.

The main search function

void

 sasearch (

int

 l1, 

int

 r1,
 

int

 l2, 

int

 r2, 

int

 depth);

recursively finds all approximate matches between two windows of the two suffix arrays ([l1
… r1] in the first suffix array and [l2 … r2] in the second) assuming the first “depth-1”
characters in each window are the same. And the distance between the shared prefix of
suffixes in first window and shared prefix of suffixes in the second window is stored in a
global dynamic programming table like Figure 3.

Lemma 2—The number of calls to the recursive suffix array search function is at most log2
n times the number of suffix trie nodes visited by recursive search algorithm, where n is the
length of string.
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Proof: let p be the number of nodes visited by the suffix trie recursive search algorithm. The
key point is to note that each internal node of the suffix trie corresponds to a window [il …
ir] on the suffix array. So the p nodes of the suffix trie that contain every path from
themselves to the root can only “cut” the suffix array in at most p positions. We need to
bound the number of times to recursively cut the suffix array of length n in half that is
needed to realize a partitioning of the suffix array in p given positions. (Note that we are free
to e.g. continue cutting one half and leave the other half alone). Let us denote the number of
cuts made by our recursive suffix array halving algorithm by g (n, p).

g(n, p) is bounded by the following recurrence (where pr and pl are two non-negative
integers such that pl + pr ∈ {p, p − 1})

We will prove by induction that g(n, p) ≤ p log2 n. Base case is trivial. For the induction step
we have

III. Experimental Results
To examine the practical applicability of this algorithm we have implemented this algorithm
in C++. A key advantage of this algorithm is that it is very easy to implement. For example
the “sasearch()” function mentioned is implemented in 50 lines of code and the whole seed
searching program is less than 200 lines3. This is an experimental implementation of our
algorithm and is not optimized for running time. All tests were run on a single core of a 64-
bit Linux PC.

Figure 5 shows the dot plot results of running the algorithm on the full sequence of genomes
of two bacterial organisms: Streptococcus pneumoniae and Streptococcus thermophilus, in
comparison to the exact algorithm of MUMmer [5]. By default MUMmer finds exact
matches of length 20 or longer between the two genomes, as can be seen in Figure 5(a). For
comparison we have included approximate matches of length 20 with one error Figure 5(b).
Note that the number of false positives increases significantly if we allow just one error in a
20 base pair match. To decrease the number of false positives one can of course increase the
length of the match, an exact match of 64 bases is shown in Figure 5(c). It is clear that we
have decreased sensitivity considerably by increasing the length of the match. Finally our
algorithm which looks for approximate (85%) matches of length 64 bases is shown in Figure
5(d). It can be seen that our algorithm has simultaneously better sensitivity and better
specificity than all variations above. Running time and memory usage for this test are shown
in Figure 6.

3Source code for our implementation can be found at http://www.cs.umd.edu/~ghodsi/sasearch/
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To evaluate the quality of our seeds in a biological sense, we use the ROSETTA’s test set
[3] (also used to validate LAGAN [4]), which contains 117 orthologous annotated genes
with complete intron sequences from human and mouse. These sequences are of interest
because they contain conserved coding regions from relatively distant genomes. Such
regions are approximately similar overall but may not contain long exact seeds because of
silent mutations among other differences. We simply concatenated the orthologous genes in
the same order to make a long sequence of total length 602Kbp for human and 578Kbp for
mouse. We compare our algorithm labeled SASearch (with different parameters) with
MUMmer [6] and nucleotide-BLAST [2] exact seeds and PatternHunter [11] spaced seed as
well as the improved spaced seeds suggested in [7]. Default MUMmer and BLAST seeds are
exact matches of lengths 20 and 11 respectively. PatternHunter’s spaced seed is
111*1**1*1**11*111. Ilie et. al. suggest multiple spaced seeds and produce a set of 16
spaced seeds of weight (number of 1s in the seed) 11 as well as single spaced seed of weight
up to 18. The single seed of weight 18 that we picked for comparison is
11111*1*11**111*11*11111.

The seeds found by each algorithm are evaluated using two criteria: exon-sensitivity and
gene-specificity, which loosely capture the biological sensitivity and specificity of a set of
seeds. Exon-sensitivity is the fraction of 465 human exons that will contain at least one seed.
Gene-specificity is the fraction of seeds that connect only pairs of orthologous genes. (We
calculate specificity at the gene level because we do not have a one-to-one correspondace
between exons.) The results are shown in Table I.

We observe that BLAST, PatternHunter and weight 11 spaced seeds are all very sensitive
(for this data) but also have a very large number of false positives. Essentially they are so
short (or low weight) that they hit at lots of positions by chance. Our inexact seeds of length
30 and with 70% similarity achieve the same sensitivity with a better specificity, because
with our longer seed length random hits are less likely.

MUMmer exact seeds of length 20 and the single spaced seed of weight 18 (length 24) seem
a better choice for these data. However they both miss a large fraction of exons. Our inexact
seeds of length 40 with 80% similarity simultaneously achieve better sensitivity and
specificity that both MUMmer seeds and single spaced seeds. This is due to the fact that our
inexact seeds are longer and less similar and also allow for insertions and deletions in the
seeds.

IV. Conclusion
For local alignment search there are many different tradeoffs: between specificity and
sensitivity, sensitivity and running time, running time and memory, etc. Here we proposed
an algorithm for constructing inexact alignment seeds and we show that our algorithm can
have better sensitivity (than exact seeds based tools) and lower memory usage (than suffix
trees based tools) for the cost of longer running time. The suffix array index we use can be
build once and stored on external memory and reused while allowing for full flexibility in
the choice of alignment parameters. We have, thus, shown that full flexibility in the choice
of alignment seeds can be achieved without a significant penalty in terms of running time.
The use of a substitution cost matrix makes our algorithm applicable to seeding protein
alignments or for other “nonstandard” alignment tasks such as detecting cross hybridization
of probes.
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Fig. 1.
Sample Suffix Trie for String ‘BANANA’
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Fig. 2.
Suffix array index requires 5 · n bytes of memory
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Fig. 3.
Sample dynamic programming table when the algorithm is at depth 3. Only cells marked
by ? need be computed when the algorithm follows down an edge to two children of current
nodes (i.e. depth 4).
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Fig. 4.
For an alignment of L1 to L2 with ≤ k distance, define f(i) as the edit distance of L1[1..i] from
the prefix of L2 to which it is aligned.
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Fig. 5.
Comparison with MUMmer exact seeds. Each + is a seed match at the corresponding
coordinates in the genomes of Streptococcus pneumoniae (vertical, 2.5Mbp) and
Streptococcus thermophilus (horizontal 1.8Mbp)
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Fig. 6.
Comparison of resources used for two bacterial genomes.
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