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     INTRODUCTION 

 Malaria is the most common vector-borne infectious disease 
in the world, with nearly 250 million estimated clinical cases 
among 3.3 billion persons at risk in 2008 and approximately 
1 million deaths each year. 1  With a vast majority of cases 
(85%) Sub-Saharan Africa carries most of the burden. 1,2  In 
malaria-endemic areas, children < 5 years of age are at highest 
risk for malaria morbidity and mortality. The number of dis-
ability-adjusted life years, a measure of disease burden caused 
by malaria, was estimated to be 34 million for 2004 world-
wide, with 31 million in sub-Saharan Africa. 3  Malaria alone 
costs Africa’s economy more than US$ 12 billion annually. 4  In 
the Ashanti Region of Ghana, malaria is prevalent during the 
entire year and one of the major in-patient causes of death. 5  

 In contrast to a retrogressive trend of malaria morbidity and 
mortality in some areas, malaria burden has been increasing 
in many other areas because of factors such as deteriorating 
health systems, growing drug and insecticide resistance, fail-
ure of water management, and climate, socioeconomic, socio-
demographic, and land-use factors. 1,  6,  7  Simple methods that 
enable accurate forecasting, early warning, and timely case 
detection in low- and high-transmission areas are needed to 
enable implementation of more effective control measures. 8,  9  

 Climate and meteorologic factors (precipitation, temper-
ature, and relative humidity) have considerable impact on 
 Anopheles  vector abundance and the extrinsic cycles that the 
parasites perform inside mosquitoes. Thus, they may affect 
malaria incidence and constitute driving forces of malaria epi-
demics. 10–  12  Therefore, precipitation, which is probably the most 
important climatic factor in tropical areas with relatively con-
stant temperature and humidity, was the focus of our models. 

 Our objective was to investigate the association between 
weekly malaria incidence in children < 15 years of age and 
rainfall in two village clusters of high endemicity during an 
18-month period (end of May 2007 to the end of November 

2008) to assess the extent to which precipitation data can be 
used to predict malaria incidence in a holoendemic area. 

   MATERIALS AND METHODS 

  Study area.   This hospital-based survey was conducted at 
the Child Welfare Clinic and the Pediatric Ward of the Agogo 
Presbyterian Hospital, Asante Akim North District, Ashanti 
Region, Ghana ( Figure 1 ). The district lies within the moist 
semi-deciduous forest belt, although there are some transitional 
zones caused by farming and logging activities. The climate is 
tropical and has a mean annual ambient temperature of 26°C 
and two rainy seasons; the first occurs during May–July and 
the second occurs during September–with monthly rainfall up 
to rainfall in ≤ 400 mm. The dry season or the harmattan (a dry 
and dusty West African trade wind from the arid and dessert 
areas north of Ghana) occurs during December–April and 
is associated with drought conditions. The topography of the 
study district is generally undulating and the altitude variation 
is approximately 600 meters between the lowest area near the 
Volta Lake (152 meters) and the Akwapim-Mampong range 
(≤ 762 meters). The local economy is mainly agriculture; major 
staple food crops include maize, cassava, plantain, cocoyam, 
and yam. 13  

  The main malaria vectors are mosquitoes of the  Anopheles 
gambiae  complex and  An. funestus . Malaria is holoendemic in 
this area,  Plasmodium falciparum  accounts for most (> 90%) 
human malaria infections. 14  

 In this study, two village clusters of four villages were 
included: two (Agogo and Hwidiem) in Greater Agogo 
and two other adjacent villages (Konongo and Odumasi) in 
Greater Konongo ( Figure 1 ). The two areas are approximately 
20 km apart and are connected by a main road. 

 The population figures according to the 2004 census were 
13,559 and 1,402 for Agogo and Hwidiem, respectively, and 
15,383 and 8,502 for Konongo and Odumasi, respectively. 
Greater Agogo has an area of 16 km 2  and an altitude of 
430 meters above sea level. Greater Konongo has an area of 
18 km 2  and an altitude of 230 meters above sea level. 

   Data collection and analysis.   All hospital visits of children 
< 15 years of age from the two village clusters were included. 
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Criteria were an axillary temperature ≥ 37.5°C and a positive 
result for a  P. falciparum  parasitemia (> 0 parasites/μL) during 
the study period of 90 weeks (end of May 2007 to the end 
of November 2008). Parasite examinations were conducted 
according to quality-controlled standardized procedures 
described elsewhere. 15  Children with cases of malaria who 
visited the hospital within 21 days after the initial malaria 
diagnosis were considered as relapses and were not included 
as a new case. The study was reviewed and approved by the 
Committee on Human Research, Publications, and Ethnics, 
School of Medical Sciences, Kwame Nkrumah University of 
Science and Technology, Kumasi, Ghana. 

 For the calculation of cumulative incidences, population 
size, admission rate, proportion recruited, and proportion of 
the population seeking health care in the study hospital were 
considered. We used census data to determine that 42% of the 
population was < 15 years of age. 16  According to a commu-
nity survey conducted in 2007, 93% of persons from Greater 
Agogo and 25% of persons from Greater Konongo were 
seeking health care at the Agogo Presbyterian Hospital. The 
denominator/reference population for the calculation of inci-
dences was corrected for these proportions. Likewise, the ref-
erence population was corrected for the proportion of children 
that met the inclusion criteria but were not recruited (30%). 
Weekly malaria incidences per 1,000 inhabitants < 15 years of 
age were then calculated for each village cluster. 

 Data on daily rainfall in Agogo and Konongo during 
March 2007–November 2008 were obtained from the Ghana 
Meteorological Agency (Accra, Ghana). For both areas, 
weekly precipitation were calculated. 

 To model the association between rainfall and malaria inci-
dence during March 2007–November 2008 in the two clusters by 
linear regression analysis, we used the logarithm of the weekly 
incidence. If the number of weekly malaria cases equaled zero, 
we assumed the logarithm of half of the minimum weekly inci-
dence excluding zero. The cross-correlation function between 
the time series of the weekly precipitation and the log-trans-
formed weekly incidence was analyzed to assess time lags with 

peak correlations between the course of malaria incidence and 
the course of precipitation. These time lags were used in the 
linear regression of precipitation on log-transformed malaria 
incidence. Furthermore, to account for autoregression of the 
incidence time series, autoregressive terms of white noise had 
to be included in the regression model. The following general 
regression model results were used:
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where  I t   = incidence,  R t   = precipitation and  e t   = white noise 
( e ~N(0,1)) at time  t ,  m  = geometric mean of weekly incidence, 
 l ( i ) = i th  lag ( i  =  1,…,k ), and α   i    ( i = 1,…,k ) and β   i    ( i = 1,…,m ), 
respectively, being regression coefficients. 

 The regression models were applied to estimate expected 
incidence. Furthermore, using the estimated and observed 
malaria incidence, we determined that the amount of explained 
variance (R 2 ) could provide a measure of overall goodness-
of-fit. STATA/SE software version 10 (StataCorp LP, College 
Station, TX) was used for calculations. 

    RESULTS 

 During the study period, 7,313 hospital visits by children 
< 15 years were reported: 5,276 cases from Greater Agogo and 
2,037 cases from Greater Konongo. A total of 1,993 (27%) ful-
filled the case definition for malaria and thus were included 
in the analysis. The annual incidence was 270.6 and 144.2 
per 1,000 per year in Greater Agogo and Greater Konongo, 
respectively. The weekly incidence per 1000 inhabitants and 
weekly precipitation varied over time in both village clusters 
( Table 1  and  Figure 2 ). 

       The weekly malaria incidence lagged a few weeks behind 
weekly precipitation ( Figure 2 ). The cross-correlation func-
tions for the two village clusters showed a seasonal pattern of 
the influence of precipitation on the log-transformed incidence 
( Figure 3 ). The cross-correlation function of Greater Agogo 

 Figure 1.    Map of the two village clusters Greater Agogo (Agogo and Hwidiem) and Greater Konongo (Konongo and Odumasi), Asante Akim 
North District, Ashanti Region, central Ghana. Circles indicate the two village clusters, and the solid line indicates mains roads. There are additional 
settlements along the main road.    
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clearly indicated a 26-week cycle. Because of low case numbers, 
the cross-correlation function of Greater Konongo exhibited a 
large fluctuation with respect to a sinusoidal course. However, 
the phase difference, i.e., the time lag between a peak in 

precipitation and in malaria incidence was nine weeks for both 
areas. Additionally, peaks of the cross-correlations functions at 
lags of one week and two weeks in Greater Konongo and in 
Greater Agogo, respectively, indicated a relevant influence of 
preceding rainfall events on malaria incidence. 

  If one considers the results of cross-correlation between 
precipitation and incidence, time lags of nine weeks for both 
village clusters and one and two weeks for Greater Konongo 
and Greater Agogo, respectively, were applied for regres-
sion modeling. A first-order autoregressive term for the white 
noise was sufficient to model the autocorrelation of the inci-
dence. For the village cluster of Greater Agogo, all coefficients 
of the regression model were statistically significant, and the 
model could explain 63% of incidence variation (R 2  = 0.634) 
( Table 2 ). Because of low case numbers in Greater Konongo, 
the regression model could explain only 31% of incidence 
variation (R 2  = 0.311), but with a similar regression coeffi-
cient ( Table 2 ). Observed and expected malaria incidences, 

 Table 1 
  Population, malaria incidence, and precipitation in the two village 

clusters, Ghana  
Characteristic Greater Agogo Greater Konongo

Total population 14,961 23,885
Children < 15 years of age 5140 2008
No. of malaria cases * 1610 383
Total yearly incidences † 270.6 144.2
Minimum weekly incidences ‡ 1.0 0
Maximum weekly incidences ‡ 12.4 7.3
Minimum weekly precipitation § 0 0
Maximum weekly precipitation § 20.3 30.2

  *   No. of cases over the study interval of 90 weeks (end of May 2007–end of November 2008).  
  †   Incidences per year and 1,000 inhabitants.  
  ‡   Incidences per week and 1,000 inhabitants.  
  §   Mean weekly precipitation in millimeters.  

 Figure 2.    Weekly precipitation and four-week average of malaria incidences per week and 1,000 children < 15 years of age two village clusters, 
Ghana.  A , Greater Agogo,  B , Greater Konongo.    
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including 95% confidence intervals, in children < 15 years of 
age according to regression modeling in the two village clus-
ters are shown in  Figure 4 . The time series of expected malaria 
incidences, estimated by the regression models, clearly showed 
a time pattern that closely followed the time pattern of the 
observed incidences. 

         DISCUSSION 

 The analysis of the malaria epidemiology in two village 
clusters in Ghana with high endemicity indicated a strong 

temporal association between rainfall and incidence of 
malaria. The cross-correlation functions gave the most appro-
priate congruence of malaria incidence and precipitation with 
a time lag of 9 weeks (mean = 60 days). This period coincides 
with the theoretical vector-parasite-host cycle of the three 
organisms involved under optimum conditions, assuming that 
the first blood meal of  Anopheles  is on an infected human and 
that the temperature is at mean ≥ 25°C ( Figure 5 ). This cycle 
has three components: 1) the growth of the  Anopheles  vector 
from egg to adults that are able to transmit parasites; 2) the 
development of the  Plasmodium  parasite in the vector from 
gametocytes to sporozoites that are able to infect humans; and 
3) the incubation period in the human host from infection to 
the onset of malarial symptoms. 17,  18  According to this timeline, 
an incidence peak can be expected between day 50 and day 60 
after breeding ( Figure 5 ). 

  Additionally, the cross-correlation functions showed a 
strong association between rainfall and the malaria incidence 
one or two weeks later dependent on the village cluster. This 
shorter time lag might be caused by higher biting activities of 
adult mosquitoes at the beginning of rainy season and in due 
course breeding habitats for the mosquito that soon become 
available. 19,  20  

 The modulation of the estimated and observed incidence 
rates was less coherent in Greater Konongo than in Greater 
Agogo (demonstrated by a smaller R 2  in Greater Konongo), 
which may be explained by the lower case numbers and there-
fore a decreased power. Amplitudes of the expected incidences 
were lower than those of the observed incidences because of 
the phenomenon of the regression to the mean. 

 The regression model was not able to predict a peak inci-
dence in Greater Agogo in May 2008 over a time period of 
4 weeks ( Figure 2A ). This observation may be explained by 
exceptional meteorologic conditions. To validate this possi-
bility, temperature and relative humidity from the area was 
analyzed during March 2007–May 2008. The prevailing tem-
perature in the study area during this period was in the opti-
mum temperature range for  An. gambiae  and  An. funestus , 
which is approximately ≥ 25°C to 30°C. Thus, temperature 
should not have influenced the abundance of mosquitoes. 
Relative humidity, which in Ghana is constantly 85–90% dur-
ing the entire year, also did not show any aberrations during 
this interval. The malaria incidence peak in May 2008 was also 
found in other villages in our study area, which argues against 
temporal-spatial change of exposure. A temporal reporting 
bias is improbable because the number of all hospital admis-
sions or the proportion of children included in the study did 
not increase during this period. 

 Although the reason for the short increase of the malaria 
incidence is unknown, the peak does not contradict the model. 
First, there are certainly temporal and spatial events that influ-
ence the malaria incidence, which are unpredictable in the 
model, e.g., temporal control measures or impassable roads for 
a limited time. Second, not all relevant events can be detected, 
e.g., short but intensive rainfall periods or fluctuations of pop-
ulation and hospital personnel. Third, the amount of rainfall 
per week might not provide all information necessary to pre-
dict the likelihood of mosquito breeding and survival. Thus, the 
optimal conditions for development of breeding sites might be 
determined by the amount of rainfall until a certain threshold. 
There is a minimum amount of rainfall required to maintain 
constant water bodies of a critical size and at other sites, heavy 

 Figure 3.    Cross-correlation between log-transformed malaria inci-
dences of children < 15 years of age and precipitation in the two village 
clusters, Ghana.  A , Greater Agogo.  B , Greater Konongo. The dashed 
lines represent approximations of the cross-correlation functions by 
sinus functions with period length of a half year, i.e., 26 weeks.    

 Table 2 
  Estimated malaria model parameters, Ghana  

Model parameter * 

Greater Agogo Greater Konongo

Coefficient SE  P  † Coefficient SE  P  † 

Mean log incidence 
rate [μ] ‡ 1.366 0.097 < 0.001 0.381 0.158 0.016

lag: 1 week [α 1 ] § – – – 0.042 0.014 0.003
Lag: 2 weeks [α 1 ]  § 0.022 0.009 0.017 – – –
Lag: 9 weeks [α 2 ]  § 0.017 0.009 0.051 0.022 0.014 0.122
White noise [β 1 ] 0.467 0.103 < 0.001 0.262 0.112 0.019
R 2  ¶ 0.634 0.311

  *   For explanation of model parameters, see text (model formula).  
  †   By  t -test.  
  ‡   Unit = 10 −3 /week.  
  §   Unit = mm × 10 −3 /week.  
  ¶   Explained variance by regression model.  
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rainfall can have an opposite effect by rinsing out breeding 
sites. 21  Such a putative threshold might have been achieved at 
the end of February 2008 when an extraordinary high amount 
of rainfall was recorded. 

 Other investigators have also reported a strong temporal 
link between climatic indices and increasing risk for malaria 
disease. In China, increasing monthly malaria incidences were 
positively correlated with monthly mean climatic variables 
(relative humidity, temperature, and precipitation), with a 
one-month lagged effect. 22  In Eastern Sudan, rainfall was a sig-
nificant climatic variable in the transmission of the disease. 23  
However, in a study conducted in central India, no relation-
ship between rainfall and malaria incidence was observed. 24  
Instead, in other malaria-endemic areas, mean or minimum 

temperatures were the best predictors of clinical malaria. 25,  26  
However, most such analyses have been carried out at monthly 
time scale and were not able to provide a time lag on a weekly 
scale. More precise results with a resolution of weeks such as 
this study are rarely reported. 27  

 In addition to climatic factors, the risk for malaria transmis-
sion or mosquito abundance may be influenced by other fac-
tors such as seasonal fluctuations of migrant workers or the 
accessibility of the hospital in the rainy season when roads are 
flooded. However, the study area has a relative stable pop-
ulation, and considerable plantations that would attract sea-
sonal field workers are not present. Additionally, the main 
road, along which the surveyed villages are located, is a well-
constructed tarred road, which is passable in the rainy season. 

 Figure 4.    Weekly malaria incidence per 1,000 children < 15 years of age in the two village clusters, Ghana.  A , Greater Agogo.  B , Greater 
Konongo. Observed incidence (continuous line) and expected incidence by means of regression modeling with precipitation as predictor (dashed 
line) with 95% confidence interval (broad dashed lines).    
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Therefore, seasonal variation in accessibility should not influ-
ence temporal changes of malaria incidence. The importance 
of socioeconomic factors such as ethnic group, parent’s edu-
cation and occupation, use of protective measures, and the 
family’s financial situation on malaria transmission have been 
described in a number of studies. 28–  30  Geographic and environ-
mental factors such as altitude and land cover have also been 
suggested as variables influencing the transmission of malaria. 
The abundance of water bodies and favorable temperatures, 
maize plantings, extensive deforestation, or farmland have 
been associated with increased larval or mosquito abundance 
and thus increased risk for malaria transmission in human 
populations. 31–  34  Other studies have used geographic infor-
mation systems and satellite imagery to investigate environ-
mental factors that potentially drive the dynamics of malaria 
vector populations 34–  36  and other vector-borne and zoonotic 
diseases such as dengue fever or hantavirus. 37–  39  

 It has been shown that the efficacy of control measures such 
as intermittent preventive treatment (IPT) can be strongly 
dependent on the present malaria incidence, 40–  42  and it can 
be assumed that direct and contextual effects increase with 
malaria risk after an intervention. The results of the present 
study highlight that it is feasible in holoendemic areas to pre-
dict fluctuations in the malaria incidence with information 
that is easy to obtain. This enables optimizing the planning of 
malaria interventions. 

 Received July 5, 2010. Accepted for publication November 5, 2010. 
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