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Abstract

Background: Sandhoff disease (SD) is a neurodegenerative lysosomal b-hexosaminidase (Hex) deficiency involving
excessive accumulation of undegraded substrates, including terminal GlcNAc-oligosaccharides and GM2 ganglioside.
Microglia-mediated neuroinflammation contributes to the pathogenesis and progression of SD. Our previous study
demonstrated that MIP-1a, a putative pathogenic factor for SD, is up-regulated in microglial cells derived from SD model
mice (SD-Mg) through activation of Akt and JNK.

Methodology/Principal Findings: In this study, we first demonstrated that prostaglandin E2 (PGE2), which is one of the lipid
mediators derived from arachidonic acid and is known to suppress activation of microglia, reduced the aberrant MIP-1a
production by SD-Mg to the same level as by WT-Mg. PGE2 also attenuated the activation of Akt and JNK. The inhibition of
MIP-1a production and the activation of Akt and JNK occurred through the EP2 and 4/cAMP/PKA signaling pathway in the
murine microglia derived from SD model mice.

Conclusions/Significance: We propose that PGE2 plays a role as a negative regulator of MIP-1a production in the
pathogenesis of SD, and that PGE2-EP2 and 4/cAMP/PKA signaling could be a target pathway for therapy for SD.
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Introduction

Sandhoff disease (SD) is an inherited lysosomal storage disease

caused by a defect of the b-hexosaminidase (Hex) b-subunit gene

(HEXB) associated with deficiencies of HexA (ab) and HexB (bb)

[1,2]. In SD patients, excessive accumulation of undegraded

substrates including GM2 ganglioside (GM2) with a terminal N-

acetylgalactosamine residue and oligosaccharides with a terminal

b-linked N-acetylglucosamine residue (GlcNAc-oligosaccharides) is

observed, particularly in neurons, due to the deficiencies of HexA

and HexB, which leads to neurological symptoms in the central

nervous system (CNS), such as the startle response, mental

retardation, spasms and quadriplegia.

Microglia-mediated inflammation is involved in the pathogenic

mechanisms underlying several neurodegenerative diseases, in-

cluding Alzheimer’s disease, human immunodeficiency virus

(HIV)-associated dementia and Parkinson’s disease [3,4]. In the

brains of Sandhoff disease model mice (SD mice) at the

symptomatic stage [5], microglial activation is also a cause of

neuroinflammation in the CNS of the mice [6–9]. Our earlier

studies demonstrated that macrophage inflammatory protein-1a
(MIP-1a is up-regulated selectively in the brains of SD mice during

the pathogenesis, and in microglial cells derived from SD mice

(SD-Mg) [10,11]. Wu and Proia also demonstrated that MIP-1a is

responsible for recruitment of macrophage/microglia from the

periphery in the pathogenic process of SD, and that deletion of the

MIP-1a gene increases the life span of SD mice [12]. These studies

suggest that MIP-1a should be one of the putative pathogenic

factors for SD, and down-regulation of the abnormal production

of MIP-1a in the brain should delay the onset or progression of

SD. However, no therapeutic approach to reduce the production

of MIP-1a in the brain of SD has been reported.

PGE2 is one of the lipid mediators derived from arachidonic

acid. PGE2 is widely known as an inflammatory mediator; a

pivotal mediator in the induction of inflammation and anti-

inflammation [13,14]. The complexity of the function of PGE2

depends on the PGE2 receptor subtype, i.e. EP1, EP2, EP3 or

EP4, due to their distinct and antagonistic signaling cascades. The

EP2 and EP4 receptors couple to Gs to increase intracellular

cAMP, whereas EP3 couples to Gi to decrease the cAMP level;

EP1 couples to Gq to activate phospholipase C and increase the

intracellular calcium concentration [15]. Several studies indicated

that the PGE2-EP2 signaling cascade mediates neuroinflammatory

response in neurodegenerative models [16,17]. Interestingly, the
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PGE2-EP2 receptor is also involved in preventing LPS-induced

inflammation in microglia [18], and has neuroprotective effects on

glutaminate toxicity and cerebral ischemia [19,20].

Recent studies on the periphery indicated that PGE2 inhibits

the production of MIP-1a by dendritic cells and macrophages

stimulated with LPS [21,22]. However, the inhibitory effects and

the underlying mechanism in the CNS are poorly understood. In

this study, we examined whether PGE2 could suppress the MIP-

1a production in SD-Mg and possess the therapeutic potential or

not. We demonstrated for the first time that PGE2 can suppress

the production by attenuating the activation of Akt and JNK

through the EP2 and 4/cAMP/PKA pathway in SD-Mg.

Materials and Methods

The animal experiments in this study were approved by the

Animal Research Committee of the University of Tokushima

(Approval ID: Tokudoubutsu10106).

Materials
PGE2, Butaprost, PGE1 alcohol, Sulprostone, AH6809 and

GW627368X were purchased from Cayman Chemicals (Ann

Arbor, MI). Forskolin and adenosine 39, 59-cyclic monophosphate,

N6-benzoyl sodium salt (6-Bnz-cAMP) were from Calbiochem

Corp. (La Jolla, CA). 8-(4-Chlorophenylthio)-29-O-methyladeno-

sine 39, 59-cyclic monophosphate monosodium hydrate (8-pCPT-

29O-Me-cAMP) was purchased from Sigma Chemical Co. (St.

Louis, MO.).

The mouse anti-phosphorylated Akt (Ser473) antibody, rabbit

anti-phosphorylated SAPK/JNK, and rabbit anti-Akt and anti-

SAPK/JNK antibodies were obtained from Cell Signaling

Technology (Beverly, MA). The horseradish peroxidase (HRP)-

labeled anti-mouse and HRP-labeled anti-rabbit IgG antibodies

were from Amersham Pharmacia Biotech (Uppsala, Sweden) and

GE Healthcare Bio-Sciences (Little Chalfont, UK), respectively.

Cell culture
Microglial cell lines were prepared from the cerebra of 1-day-

old SD (Hexb–/–) [5] and WT (Hexb+/+) mice as described

previously [11]. Briefly, the cerebra were passed through a

300 mm nylon mesh in Hank’s balanced salt solution (HBSS) using

a cell scraper (Sumitomo Bakelite Medical, Tokyo, Japan), and

then the cell suspension was plated on Q100 mm dishes. The

mixed glial culture, including astrocytes and microglia, was

maintained in Dulbecco’s modified Eagle’s medium (DMEM),

supplemented with 10% fetal bovine serum (FBS), 5 mg/mL

insulin and antibiotics, under 5% CO2 at 37uC for about 2 weeks.

Then the mixed glial culture was maintained in presence of 1 mg/

mL granulocyte-macrophage colony-stimulating factor (GM-CSF)

for a certain period. The floating GM-CSF-responsive microglial

cells were collected and maintained in DMEM containing 10%

FBS, 5 mg/mL insulin, 1 mg/mL GM-CSF and antibiotics, to

establish the microglial cell lines. The obtained cell lines were

maintained in DMEM supplemented with 10% FBS, 5 mg/mL

insulin, 1 mg/mL GM-CSF and antibiotics.

Enzyme-linked immunosorbent assay for MIP-1a
production

SD-Mg plated on 96-well plates (26104 cells/well) were treated

with reagents including PGE2, PGE2 analogs and cAMP analogs

for 6 h. The conditioned medium (CM) was centrifuged at

Figure 1. PGE2 reduces MIP-1a production by SD-Mg. A: SD-Mg was treated with the indicated concentrations of PGE2 for 6 h. The amounts
of MIP-1a protein in CM were determined by ELISA. B: Cell viability was determined 6 h after treatment with PGE2. C: mRNA expression levels of MIP-
1a in SD-Mg treated with PGE2 for 3 h were determined by RT-PCR. Values represent the means 6 SD for three independent experiments.
Significance was evaluated by means of Student’s t-test. **P,0.01 versus controls (t-test).
doi:10.1371/journal.pone.0016269.g001

Down-Regulation of MIP-1 by PGE2 in SD Microglia
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2,3006g for 5 min. The MIP-1a levels in aliquots of the CM were

measured with a mouse MIP-1a immunoassay kit (DY450; R&D

Systems, Minneapolis, MN). In this assay, cell viability was also

evaluated by means of the Tetra Color One cell proliferation assay

system (Seikagaku Kogyo,Tokyo, Japan).

Reverse transcription–polymerase chain reaction
(RT-PCR) analysis

Total RNA was isolated from SD- and WT-Mg (each 56105

cells/dish) using TRIsure (Bioline, London, UK), and 1 mg of

RNA from each sample was transcribed using ReverTra Ace-a-

(TOYOBO, Osaka, Japan) according to the manufacturer’s

protocol. RT products were diluted three-fold. PCR for murine

MIP-1a and glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) mRNAs was performed as follows: MIP-1a and

GAPDH mRNAs were amplified in reaction mixtures consisting

of 5 mL of Go Taq reaction buffer (Promega, Madison, WI),

0.5 mL of 10 mM dNTPs, 0.625 U of Go Taq DNA polymerase

and 0.5 mM of each primer. The primer sets used for MIP-1a were

described previously [11]. The primer sequences for GAPDH

were 59-TTCATTGACCTCAACTACATG-39 (forward) and 59-

GTGGCAGTGATGGCATGGAC-39 (reverse). The PCR con-

ditions were as follows: 5 min at 94uC for denaturation, then 30–

33 cycles of denaturation at 94uC for 30 sec, annealing at 60uC for

30 sec and extension at 72uC for 30 sec, followed by incubation at

72uC for 7 min. The amplified products were loaded onto a 1%

agarose gel in Tris-acetate buffer for electrophoresis, stained with

ethidium bromide, and then visualized under UV light.

Immunoblotting
WT- and SD-Mg were plated on 100 mm dishes (1.56106 cells/

dish) and then incubated overnight. The cells were washed twice

Figure 2. PGE2 attenuates activation of Akt and JNK in SD-Mg. A, B: Cell lysates were prepared with lysis buffer containing 1% SDS and 1%
Triton X-100, and then subjected to immunoblotting using antibodies against Akt, JNK, phosphorylated Akt and JNK. C, D: SD-Mg was treated with
10 nM PGE2 for the indicated time periods. Phosphorylation of Akt and JNK was analyzed by immunoblotting. The histogram on the bottom panels
represents the ratio of phorphorylated protein to total protein measured by densitometry. Values represent the means 6 SD for three independent
experiments. Significance was evaluated by means of Student’s t-test. *P,0.05 and **P,0.01 versus WT-Mg or untreated SD-Mg.
doi:10.1371/journal.pone.0016269.g002
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with cold phosphate-buffered saline (PBS), and then 100 mL of lysis

buffer [10 mM Tris-HCl (pH 7.5) containing 1% SDS, 1% Triton

X-100, 1 mM NaF, 1 mM Na3VO4 and protease inhibitors

(Complete protease inhibitor cocktail, Roche Diagnostics, Ger-

many)] was added to them. The cells were harvested and then

sonicated to prepare cell lysates. The protein concentration in each

lysate was measured using a BCA protein assay kit (Pierce,

Rockford, IL), and then an equal amount of protein was subjected

to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) on a 10% acrylamide gel. Proteins were visualized by

immunostaining with rabbit anti-signal transducer antibodies,

HRP-labeled anti-mouse and rabbit IgG antibodies, and a

chemiluminescence reagent (Immunobilon Western Reagent,

Millipore, Bedford, MA). Immunoreactive bands on the blotts

were quantified with a densitometer, LAS3000 (Fuji Film, Tokyo,

Japan).

Data analysis
Student’s t-test was performed to evaluate the significance of the

data. P,0.05 was considered statistically significant.

Results

PGE2 reduced MIP-1a production by SD-Mg
In a previous study, we demonstrated that MIP-1a, a putative

pathogenic factor for SD, was up-regulated in SD-Mg [11]. To

determine whether or not PGE2 could inhibit the enhanced

production of MIP-1a by SD-Mg, we first analyzed the effect of

PGE2 on the production of MIP-1a by SD-Mg. The amount of

MIP-1a in CM of SD-Mg on treatment with PGE2 was markedly

decreased compared with of untreated SD-Mg (Fig. 1A). The

reduction of the viability after treatment with the PGE2 was

hardly observed (Fig. 1B). We next examined whether the

Figure 3. PGE2 reduces MIP-1a production by SD-Mg via putative EP2 and EP4 receptors. A: SD-Mg was treated with the indicated
concentrations of PGE2, Butaprost, PGE1-alcohol and Sulprostone for 6 h. The amounts of MIP-1a protein in CM were determined by ELISA. B: SD-Mg
was pretreated with the AH6809 and GW627368X at each 20 mM for 30 min, and then treated with 10 nM PGE2 for 6 h. The amounts of MIP-1a
protein in CM were determined by ELISA. C, D: Cell viability was determined 6 h after treatment with the drugs. Values represent the means 6 SD for
three independent experiments. Significance was evaluated by means of Student’s t-test. *P,0.05 and **P,0.01 versus controls.
doi:10.1371/journal.pone.0016269.g003
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inhibition of the enhanced MIP-1a production by PGE2 is under

transcriptional control or not. As shown in Fig. 1C, PGE2

significantly reduced expression of the MIP-1a gene (Fig. 1C).

These results indicate that PGE2 inhibits the production of MIP-

1a by SD-Mg at both the transcriptional and translational levels.

PGE2 attenuates activation of Akt and JNK involved in
MIP-1a production by SD-Mg

We previously indicated that the enhanced activation of Akt and

JNK mediated the enhanced production of MIP-1a [11]. To

determine the mechanism underlying the reduction of MIP-1a in

SD-Mg, the effects of PGE2 on the activation of Akt and JNK was

analyzed. We defined the phosphorylation states of Akt and JNK in

both WT- and SD-Mg by immunoblotting with anti-signaling

molecules antibodies. The amounts of total and phosphorylated Akt

protein were greater in SD-Mg than these in WT-Mg, and the ratio

of phosphorylated Akt to total Akt in SD-Mg was significantly

increased compared with that in WT-Mg (Fig. 2A). The total

amounts of JNK protein in SD-Mg were also increased compared

with that in WT-Mg (Fig. 2B). The phosphorylated JNK in WT-Mg

was hardly detected, while that in SD-Mg was clearly detected. The

ratio of phosphorylated JNK to total JNK in SD-Mg was significantly

increased compared with that in WT-Mg (Fig. 2B). We next assessed

the phosphorylation states of Akt and JNK in SD-Mg after treatment

with PGE2 by immunoblotting. PGE2 significantly attenuated the

phosphorylation of Akt and JNK in SD-Mg (Fig. 2C, D), suggesting

that PGE2 reduces MIP-1a production by preventing the enhanced

activation of Akt and JNK in SD-Mg.

PGE2 reduced MIP-1a production by SD-Mg through
binding with the EP2 and EP4 receptors

PGE2 is known to possibly bind to four receptor subtypes (EP1,

EP2, EP3 and EP4), inducing distinct signaling cascades [15]. To

determine the detail mechanism underlying the reduction of MIP-

1a in SD-Mg, we examined which PGE2 receptor subtypes

contribute to the prevention of MIP-1a production by SD-Mg. We

analyzed the effects of PGE2 analogs, Butaprost (EP2-selective

agonist), PGE1 alcohol (EP3 and 4-selective agonist) and

Sulprostone (EP1 and 3-selective agonist), on MIP-1a production

by SD-Mg by means of ELISA. Butaprost and PGE1 alcohol

significantly reduced the MIP-1a production, while Sulprostone

had little effect on it (Fig. 3A). Reduction of the viability after

treatment with all analogs was hardly observed (Fig. 3C). In

addition, we analyzed the effects of EP2 and EP4-selective

antagonists on the inhibition by PGE2 of MIP-1a production.

AH6809 (EP2-selective antagonist) and GW627368X (EP4-

selective antagonist) partially reversed the PGE2-induced suppres-

sion of MIP-1a production, and EP2-selective antagonist was

more effective than EP4-selective one (Fig. 3B). All analogs had no

effect on the viability (Fig. 3D). These results suggest that PGE2

reduces MIP-1a production by SD-Mg through binding with EP2

and EP4, but not EP1 and EP3.

Activation of the adenylate cyclase pathway was
involved in the reduction of MIP-1a production by
SD-Mg

We demonstrated that PGE2 inhibited the induction of MIP-1a
in SD-Mg through binding with EP2 and EP4. As EP2 and EP4

couple to Gas to activate adenylate cyclase (AC) [15], we

examined whether forskolin, an AC activator, mediates the

reduction of MIP-1a production by SD-Mg or not. The level of

MIP-1a secretion by SD-Mg was decreased on activation of AC in

a dose-dependent manner (Fig. 4A). Forskolin had little effect on

cell viability (Fig. 4B). These data suggest that the increase in

intracellular cAMP caused by the activation of AC is involved in

the induction of MIP-1a production by SD-Mg.

cAMP/PKA reduced MIP-1a production by attenuating of
Akt and JNK activation in SD-Mg

The primary transducer of the cellular response to cAMP is

cAMP-dependent protein kinase (PKA), but exchange proteins

directly activated by cAMP (Epac) has been recently discovered

as a signaling protein that bind cAMP and activate the small

Ras-related monomeric G proteins Rap1 and Rap2 [23,24]. To

assess the involvement of PKA or Epac in the reduction of MIP-

1a production, we utilized newly developed cAMP analogs

selective for PKA and Epac, respectively [25,26]. The PKA-

selective cAMP analog significantly reduced MIP-1a production

by SD-Mg, while the Epac-selective one had no effect. In

addition, when SD-Mg was treated with the PKA- and Epac-

Figure 4. Activation of adenylate cyclase inhibits MIP-1a production by SD-Mg. A: SD-Mg was treated with forskolin, an adenylate cyclase
activator, for 6 h at the indicated concentrations. The amounts of MIP-1a protein in CM were determined by ELISA. B: Cell viability was determined
6 h after treatment with forskolin. Values represent the means 6 SD obtained for three independent experiments. **P,0.01 versus untreated control
(t-test).
doi:10.1371/journal.pone.0016269.g004
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selective analogs in combination, no additive effect was observed

on reduction of MIP-1a production (Fig. 5A). Cell viability was

confirmed to be well maintained on treatment with the cAMP

analogs (Fig. 5B). These results indicate that the cAMP/PKA

pathway, but not the cAMP/Epac one, mediates the reduction

of MIP-1a production. As shown in Fig. 2, PGE2 reduced MIP-

1a production through attenuation of Akt and JNK signaling in

SD-Mg. It is likely that the attenuation by PGE2 may be

involved in cAMP/PKA activation. We next assessed the

phosphorylation states of Akt and JNK in SD-Mg after

treatment with the PKA-selective cAMP analog by immuno-

blotting. The activation of Akt and JNK was attenuated by

treatment with the PKA-selective cAMP analog (Fig. 5C, D).

These results suggest that activation of the cAMP/PKA pathway

reduced MIP-1a production through attenuation of Akt and

JNK signaling in SD-Mg.

Figure 5. Activation of cAMP/PKA reduces MIP-1a production by SD-Mg through dephosphorylation. A: SD-Mg was treated with cAMP
analogs, the 6-Bnz-cAMP (PKA-selective; PKA-cA) and 8-pCPT-29O-Me-cAMP (Epac-selective; Epac-cA) analogs, at 200 mM alone or in combination for
6 h. The amounts of MIP-1a protein in CM were determined by ELISA. Values represent the means 6 SD for three independent experiments.
**P,0.01 versus untreated controls (t-test). B: Cell viability was determined 6 h after treatment with the cAMP analogs. C, D: SD-Mg was treated with
200 mM PKA-selective cAMP for 30 min. Phosphorylation states of Akt and JNK were analyzed by immunoblotting. The histogram on the bottom
panels represents the ratio of phorphorylated protein to total protein measured by densitometry. Values represent the means 6 SD for three
independent experiments. Significance was evaluated by means of Student’s t-test. **P,0.01 versus WT-Mg.
doi:10.1371/journal.pone.0016269.g005
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Discussion

Microglia-mediated inflammation in the CNS has been

observed in the brains of SD patients and model mice, and

contributes to the pathogenesis and progression of SD [6–9]. Our

previous studies demonstrated that the production of MIP-1a is

enhanced in microglia of SD mice in vivo and in vitro [10,11]. It has

also been reported that an increase in life expectancy was observed

in Hexb2/2 MIP-1a2/2 double knockout mice compared with in

Hexb2/2 mice [12]. These studies suggest that MIP-1a is a critical

factor in the neuropathogenesis of SD, and that it is important to

prevent MIP-1a production by microglia in order to delay the

onset or progression of SD. However, no study on the down-

regulation of the abnormal production of MIP-1a in SD-Mg has

yet been examined. PGE2 has been shown to reduce the

production of MIP-1a by LPS-stimulated immune cells, including

macrophage and dendritic cells [21,22]. In this study, we therefore

investigated the inhibitory effect of PGE2 on the abnormal

production of MIP-1a in SD-Mg. PGE2 reduced MIP-1a
productionby SD-Mg to the same level as by WT-Mg (Fig. 1),

suggesting that PGE2 plays a role as a negative regulator of MIP-

1a production by SD-Mg. Our previous study demonstrated that

the activation of Akt and JNK in SD-Mg mediates the abnormal

production of MIP-1a, as evidenced by a decrease in MIP-1a
production by treatment with the pharmacological inhibitors [11].

In fact, this current study demonstrated that the activation of Akt

and JNK was enhanced in SD-Mg compared with in WT (Fig. 2A).

Interestingly, PGE2 significantly attenuated the enhanced activa-

tion of Akt and JNK in SD-Mg (Fig. 2B), suggesting that PGE2

exerts the inhibitory effect on the MIP-1a production by

normalizing the phosphorylation state of Akt and JNK. Therefore,

the findings suggest that PGE2-mediated signaling pathway is the

potential therapeutic target for reducing the MIP-1a production in

the brain of SD.

PGE2 is widely known as an inflammatory mediator, while it

could also have anti-inflammatory properties [14]. The physio-

logical functions of PGE2 depend on the receptor subtype, EP1-4,

each coupling to the opposing second messenger [15]. It is

important to understand the detail mechanism underlying the

inhibition by PGE2 of MIP-1a production by microglia in order to

prevent an adverse effect in developing the treatment for SD

patients, which has not been studied. We found in this study that

EP2 and EP4, but not EP1 and EP3, could be involved in the

inhibitory effect of PGE2 on MIP-1a production by SD-Mg

(Fig. 3A). The EP2-selective antagonist was more effective in

reversing the production than EP4-selective one (Fig. 3C),

suggesting that EP2 may be responsible for the inhibition by

PGE2. We also demonstrated that reduction of the MIP-1a
production by PGE2 was mediated through the cAMP/PKA

pathway, but not the cAMP/Epac one (Fig. 5A). In addition, it

was shown that the activation of the cAMP/PKA pathway could

attenuate the enhanced activation of Akt and JNK in SD-Mg

(Fig. 5C, D). Taken together, PGE2 can suppress MIP-1a
production by preventing the activation of Akt and JNK through

the EP2 and 4/cAMP/PKA pathway in SD-Mg. In dendritic cell,

PGE2 was reported to inhibit LPS-induced MIP-1a production by

the activation of Akt through the cAMP/Epac pathway, but not

the cAMP/PKA one [27]. It is interesting that the activation of

PKA and Epac can inhibit the production of MIP-1a, although

they have opposite effects on regulation of the activation of Akt.

Difference in their inhibitory effects might be due to the

phosphorylation state of Akt within cells. Although we did not

elucidate the reason why PKA rather than Epac is involved in the

inhibition in microglia, this can be explored in future studies.

However, we first elucidated the mechanism underlying the

inhibition by PGE2 of MIP-1a production in microglia.

Therapeutic approaches for SD have been investigated,

including substrate reduction therapy [28,29], bone marrow

transplantation [30,31], stem cell therapy [32] and enzyme

replacement therapy [33], in which the aim is to reduce the

accumulated substrates. The treatment may be more effective to

delay the progression of SD by a combination therapy with the

reduction of MIP-1a production. In this study, we first

demonstrated that the activation of EP2 and EP4/cAMP/PKA

pathway suppresses the abnormal production of MIP-1a in SD-

Mg. Although further research is necessary, our findings may lead

to the future therapeutic application for SD.
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