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Abstract

Background: We previously reported that the immunogenicity of Hcbtre, a botulinum neurotoxin A (BoNT/A) immunogen,
was enhanced by fusion to an epithelial cell binding domain, Ad2F, when nasally delivered to mice with cholera toxin (CT).
This study was performed to determine if Ad2F would enhance the nasal immunogenicity of Hcbtre in rabbits, an animal
model with a nasal cavity anatomy similar to humans. Since CT is not safe for human use, we also tested the adjuvant
activity of compound 48/80 (C48/80), a mast cell activating compound previously determined to safely exhibit nasal
adjuvant activity in mice.

Methods: New Zealand White or Dutch Belted rabbits were nasally immunized with Hcbtre or Hcbtre-Ad2F alone or
combined with CT or C48/80, and serum samples were tested for the presence of Hcbtre-specific binding (ELISA) or BoNT/A
neutralizing antibodies.

Results: Hcbtre-Ad2F nasally administered with CT induced serum anti-Hcbtre IgG ELISA and BoNT/A neutralizing antibody
titers greater than those induced by Hcbtre + CT. C48/80 provided significant nasal adjuvant activity and induced BoNT/A-
neutralizing antibodies similar to those induced by CT.

Conclusions: Ad2F enhanced the nasal immunogenicity of Hcbtre, and the mast cell activator C48/80 was an effective
adjuvant for nasal immunization in rabbits, an animal model with a nasal cavity anatomy similar to that in humans.

Citation: Staats HF, Fielhauer JR, Thompson AL, Tripp AA, Sobel AE, et al. (2011) Mucosal Targeting of a BoNT/A Subunit Vaccine Adjuvanted with a Mast Cell
Activator Enhances Induction of BoNT/A Neutralizing Antibodies in Rabbits. PLoS ONE 6(1): e16532. doi:10.1371/journal.pone.0016532

Editor: George Deepe, University of Cincinnati College of Medicine, United States of America

Received November 22, 2010; Accepted December 17, 2010; Published January 27, 2011

Copyright: � 2011 Staats et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH grants R01 AI064879, R21 AI059591, R01 AI078938, and Rocky Mountain Research Center of Excellence, NIH U54
AI06537, and in part by Montana Agricultural Station and U.S. Department of Agriculture Formula Funds. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: herman.staats@duke.edu

Introduction

Clostridium botulinum is a spore-forming anaerobe which produces

seven distinct neurotoxin serotypes (A–G). Botulinum neurotoxin

is synthesized as a 150 kDa single chain protein and cleaved by

proteases to yield a 100 kDa heavy chain (Hc) linked by a disulfide

bridge to a 50 kDa light chain (Lc) [1,2] (Figure 1). The Hc

encompasses the neuronal cell binding b-trefoil domain [3] and

membrane translocation units, and the Lc cleaves SNARE

proteins, required for the release of acetylcholine at the

neuromuscular junction. The botulinum neurotoxins (BoNT),

combined with tetanus neurotoxin, comprise the class of clostridial

neurotoxins. Clostridial neurotoxins are the most poisonous

natural substances known to man; oral consumption of as little

as 7 mg or inhalation of 700 ng is predicted to be lethal to a 150 lb

individual [4].

A toxoid vaccine composed of formalin inactivated botulinum

neurotoxin has been used as the botulinum neurotoxin vaccine for

decades [5,6]. The declining immunogenicity of the toxoid vaccine

and the availability of molecular biology techniques to produce

non-toxic subunit immunogens has lead to the development of

next generation botulinum vaccines that are based on recombi-

nant fragments of the heavy chain [5]. A recombinant botulinum

vaccine based on the cell binding domain (Hc) is currently being

tested in human clinical trials (http://clinicaltrials.gov and [5]).

We previously reported that a recombinant immunogen

containing botulinum neurotoxin type A (BoNT/A) Hc b-trefoil

domain (Hcbtre) induced complete protection against a 20,000

LD50 BoNT/A challenge in mice when used as a nasal vaccine

immunogen coadministered with cholera toxin as a mucosal

adjuvant [7]. Additionally, production of a fusion protein

immunogen that contained the Hcbtre fused to the adenovirus

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e16532



type 2 fiber protein as a mucosal targeting ligand (Hcbtre-Ad2F)

exhibited superior immunogenicity when compared to the Hcbtre

subunit immunogen after nasal (or parenteral) immunization of

mice while also inducing complete protection against a 20,000

LD50 BoNT/A challenge [7].

Although our previous study demonstrated the protective

capacity of the Hcbtre and Hcbtre-Ad2F immunogens when

delivered nasally to mice, the use of a mouse model may not be

ideal when evaluating immunogens for nasal delivery to humans.

For example, the mouse nasal cavity is organized to have

organized nasal-associated lymphoid tissue (NALT) in the floor

of the nasal cavity [8–12] while the NALT tissues in larger animals

such as rabbits, non-human primates and humans, likely includes

immune tissues distributed throughout the nasal cavity [13,14] as

well as the tonsils, adenoids and Waldeyer’s ring [15,16].

Therefore, evaluation of nasal vaccines in rabbits, animals that

have a nasal cavity immune system more closely related to

humans, may be an ideal animal model to evaluate the

immunogenicity of vaccines proposed for nasal vaccination of

humans.

Most recombinant protein vaccines lack sufficient immunoge-

nicity and must be formulated with adjuvants to induce maximal

protective immunity. We have recently reported that a novel class of

vaccine adjuvants, mast cell activators, provided safe and effective

vaccine adjuvant activity when delivered nasally [17] or intrader-

mally [18] to mice. Although cholera toxin and the related labile

toxin provide potent mucosal vaccine adjuvant activity, their

numerous adverse effects (induction of IgE, lethal anaphylaxis,

pulmonary inflammation, diarrhea, accumulation in olfactory

tissues and Bell’s Palsy [19–25]) will likely prevent their use in

humans. Therefore, adjuvants that provide safe and effective

adjuvant activity when delivered by a mucosal route are needed for

development of mucosally-administered vaccines for human use.

In this study we evaluated our novel botulinum neurotoxin

immunogens, Hcbtre and Hcbtre-Ad2F, for their ability to induce

BoNT/A-neutralizing antibodies when nasally delivered to

rabbits, a species whose nasal structure more closely resembles

humans. Additionally, we evaluated a novel vaccine adjuvant, the

mast cell activator compound 48/80 (C48/80), for its ability to

enhance the immunogenicity of nasally-delivered BoNT/A

subunit immunogens in rabbits. Our results demonstrate that

Hcbtre-Ad2F is superior to Hcbtre for the induction of BoNT/A

neutralizing antibodies after nasal delivery with adjuvant and that

the mast cell activator C48/80 provides effective adjuvant activity

for nasally-administered vaccines in rabbits.

Materials and Methods

Ethics Statement
All animal research was performed using Duke University

Institutional Animal Care and Use Committee (IACUC) approved

procedures under protocols A256-06-07 and A181-09-06.

Mice and rabbits
Female BALB/c mice (Charles River/NCI) were used to

perform the serum BoNT/A neutralization assay. New Zealand

White (females) and Dutch Belted (females) rabbits were obtained

from RSI Biotechnology (Mocksville, NC).

Recombinant protein expression and purification
Recombinant botulinum neurotoxin type A b-trefoil (Hcbtre)

and the fusion protein containing Hcbtre linked to the adenovirus

type 2 fiber protein (Hcbtre-Ad2F) were produced as described

previously [7]. Briefly, a synthetic gene encoding Hc BoNT/A,

amino acids K1076 to L1295 (GenBank accession no. X52066),

was designed for expression in the yeast, Pichia pastoris, and cloned

into the P. pastoris expression vector, pPICZ B. To produce

Hcbtre-Ad2F, the C-terminal region of adenovirus 2 fiber protein,

spanning amino acids G378 to E582 was cloned from genomic

adenovirus 2 DNA and fused to the Hcbtre plasmid. Recombinant

Figure 1. Schematic representation of Hcbtre-Ad2F fusion protein. A. schematic representation of botulinum neurotoxin type A (heavy and
light chains). B. Schematic of b-trefoil domain of BoNT/A heavy chain (Hcbtre). C. Schematic of fusion protein containing b-trefoil domain of BoNT/A
heavy chain (Hcbtre) and the adenovirus type 2 fiber protein (Hcbtre-Ad2F).
doi:10.1371/journal.pone.0016532.g001
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plasmids were expressed in P. pastoris. Cell homogenates were

cleared by centrifugation, filtered through a 1.2 mm prefilter and

then through a 0.45 mm filter under vacuum. Cleared superna-

tants were applied to a Talon column (BD Biosciences, San Jose,

CA), as per manufacturer’s instruction. Purified proteins were

eluted and titrated. Their quality was assessed by SDS-PAGE and

Coomassie staining.

Immunizations and sample collection
Azide-free cholera toxin (CT) was purchased from List

Biological Laboratories (Campbell, CA). Compound 48/80

(C48/80) and alum were purchased from SIGMA (St. Louis,

MO). Botulinum neurotoxin A (BoNT/A) toxoid and heavy chain

(Hc) were purchased from Metabiologics (Madison, WI). New

Zealand White female rabbits were sedated with acepromazine

(1 mg/kg) and anesthetized with isoflurane (4% isoflurane at 4

liters/minute oxygen) before intranasal immunization on days 0,

14 and 28 with equimolar doses of BoNT/A Hcbtre (10 mg) or

BoNT/A Hcbtre-Ad2F (20 mg) alone or combined with the

adjuvants, CT (2 mg) or C48/80 (120 mg). The nasal vaccine

formulation was prepared to a total volume of 250 ml with 125 ml

delivered to each nostril. Rabbits were held on their backs for

nasal immunization and maintained on their backs for approxi-

mately 30 seconds after nasal delivery before being returned to

their cage. Rabbits were upright and conscious, although sedated,

after being returned to their cage. For the alum control groups,

awake rabbits were immunized intramuscularly (100 ml) with

BoNT/A toxoid (10 mg) formulated with alum (350 mg) on days 0,

14 and 28. Serum was collected on days 0, 27 and 40. Dutch

Belted female rabbits were sedated with acepromazine (1 mg/kg)

and anesthetized with isoflurane (4% isoflurane at 4 liters/minute

oxygen) before intranasal immunization on days 0, 14, 28 and 91

with equimolar doses of BoNT/A Hcbtre (10 mg) or BoNT/A

Hcbtre-Ad2F (20 mg) alone or combined with the adjuvants, CT (2

mg) or C48/80 (120 mg). The nasal vaccine formulation for Dutch

Belted rabbits was prepared to a total volume of 200 ml with

100 ml delivered to each nostril. Serum samples were collected

days 0, 27, 41, 105 and 162. Vaginal lavage and fecal samples

were collected on days 0 and 105.

ELISA detection of antibodies specific for BoNT/A Toxoid,
Hc and b-trefoil

Sera were tested for the presence of antigen-specific IgG

antibodies using an ELISA protocol that utilizes the fluorescent

substrate Attophos (Promega, Madison, WI) as previously reported

by our group using log2 serum dilutions beginning at 1:32 (1:25)

[18,26–28] except that the coating antigens consisted of BoNT/A

toxoid, Hc or Hcbtre. Antigen-specific IgG antibodies were

detected with goat anti-rabbit IgG-alkaline phosphatase (Southern

Biotech, Birmingham, AL). Endpoint titers were defined as the

highest reciprocal dilution of sample giving a fluorescence value 3-

fold over an equally diluted naı̈ve sample from the same animal.

Log2 titers were used for statistical analysis. Samples with no

detectable antibody were assigned a value 1 less than the starting

log2 dilution for statistical analysis.

Avidity ELISA
A modified ELISA assay was utilized to estimate the avidity of

vaccine-induced anti-BoNT/A antibodies using a protocol de-

scribed by others [29–31] with slight modifications. Day 162

serum collected from immunized Dutch Belted rabbits was diluted

so that each sample produced a similar raw data anti-BoNT/A

Hcbtre ELISA value and was added in duplicate to ELISA wells

(as per our normal ELISA, see above) and incubated overnight at

4uC followed by washing and addition of 20 mM phosphate buffer

to one well or 20 mM phosphate buffer containing 3 M

ammonium thiocyanate (SIGMA, Cat. 431354) to another well

followed by incubation for 15 minutes at room temperature.

Following the room temperature incubation, ELISA wells were

washed followed by the addition of goat anti-rabbit Ig-alkaline

phosphatase (Southern Biotech, Birmingham, AL) and the assay

completed as per our normal ELISA protocol. The ELISA raw

data values for each sample were used to calculate the percent

antibody remaining bound in the presence of 3 M ammonium

thiocyanate as compared to phosphate buffer (i.e., 0 M ammoni-

um thiocyanate).

BoNT/A neutralization assay
A serum neutralization assay was utilized with modifications

from that described by others [32] to test serum for its ability to

neutralize BoNT/A. Sera were collected from Dutch Belted

rabbits on days 41 and 105. Individual serum samples were diluted

to the desired dilution to produce a final volume of diluted serum

in 200 ml in PBS with 0.2% gelatin (SIGMA, St. Louis, MO). To

the 200 ml of diluted serum was added 200 ml PBS/gelatin

containing 20 LD50 Botulinum Neurotoxin A (Metabiologics,

Madison, Wisconsin). The serum and toxin mixture were

incubated at room temperature for 1 hour before 200 ml of the

mixture (containing 10 LD50 BoNT/A) was injected intraperito-

neally into naı̈ve, female BALB/c mice. Mice were monitored

after 2 and 6 hours and then daily for signs of morbidity, including

difficulty breathing and lack of mobility. Mice exhibiting

morbidity were euthanized with Duke IACUC approved methods.

Statistical Analysis
Log2 ELISA antibody titers and BoNT/A neutralization titers

were compared by ANOVA, followed by Tukey’s multiple

comparison method. The Mann-Whitney test was used to

compare neutralizing antibody titers grouped by antigen (Hcbtre

+ adjuvant vs Hcbre-Ad2F + adjuvant) to determine if their were

significant differences between adjuvanted Hcbtre or Hcbtre-

Ad2F in their ability to induce BoNT/A neutralizing antibody.

The Mann-Whitney test was also used to compare antibody

avidity (% antibody bound in the presence of 3 M ammonium

thiocyanate) between serum with no BoNT/A neutralization

activity and serum with detectable BoNT/A neutralization

activity. Significant differences were defined as p,0.05.

Results

Ad2F enhances the immunogenicity of BoNT/A Hcbtre in
New Zealand White rabbits after intranasal immunization
with cholera toxin or the mast cell activator adjuvant
compound 48/80

Our previous study [7] demonstrated that a fusion protein

consisting of the botulinum neurotoxin A Hcbtre domain and the

adenovirus type 2 fiber protein (Hcbtre-Ad2F; Figure 1)

exhibited immunogenicity that was superior to that observed for

Hcbtre when both were used as nasal vaccine immunogens. To

determine if Hcbtre-Ad2F exhibited immunogenicity superior to

Hcbtre after nasal delivery to a host with a nasal cavity similar to

humans [13,14], immunogenicity studies were performed in

rabbits. This study was also performed to evaluate the ability of

a novel class of vaccine adjuvants, mast cell activators [17,18] to

provide adjuvant activity in rabbits. Female New Zealand White

rabbits (3–6 rabbits per group) were nasally immunized on days 0,

Mucosally Targeted Botulinum Vaccine
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14 and 28 with equimolar doses of Hcbtre (10 mg) or Hcbtre-Ad2F

(20 mg) alone or combined with the adjuvants, CT (2 mg) or C48/

80 (120 mg). To compare the immunogenicity and antigenicity of

the Hcbtre immunogens to other forms of BoNT/A immunogens,

BoNT/A toxoid and BoNT/A Hc were used as control

immunogens. Rabbits were immunized with BoNT/A toxoid

(10 mg) + alum intramuscularly on days 0, 14 and 28 while BoNT/

A Hc (20 mg) combined with CT (2 mg) or C48/80 (120 mg) was

delivered nasally on days 0, 14 and 28. Serum was collected on

days 0, 28 and 40 and tested for IgG specific for BoNT/A toxoid,

recombinant BoNT/A Hc or the b-trefoil domain of BoNT/A Hc

(Hcbtre) (Figure 1). Serum titers were calculated and reported as

endpoint geometric means for each group.

Nasal immunization with Hcbtre-Ad2F immunogens formulat-

ed with CT or C48/80 as adjuvants induced the highest serum

anti-Hcbtre IgG titers at Day 27 and Day 40 (Figure 2). At Day

27, nasal immunization with Hcbtre-Ad2F + CT induced a serum

anti-BoNT/A btre IgG titer of 1:11,585 while nasal immunization

with Hcbtre-Ad2F + C48/80 induced a serum anti-BoNT/A

Hcbtre IgG titer of 1:813; the only groups with serum anti-Hcbtre

significantly greater than those induced by other vaccines

(Figure 2). Despite nasal immunization with an equimolar dose

of Hcbtre adjuvanted with CT or C48/80, Hcbtre immunogens

failed to induce significantly elevated serum anti-BoNT/A IgG

titers (Figure 2). Nasal immunization with recombinant BoNT/A

Hc adjuvanted with CT or C48/80 also failed to induce

significantly elevated serum anti-BoNT/A Hcbtre IgG titers. Of

particular interest was the observation that intramuscular

immunization with BoNT/A toxoid adjuvanted with alum failed

to induce serum IgG antibodies that recognized the BoNT/A

Hcbtre domain (Figure 2). Similar results were observed at day

40 with serum anti-BoNT/A Hcbtre IgG titers of 1:524,288 and

1:49,097 for rabbits nasally immunized with Hcbtre-Ad2F + CT

or C48/80, respectively. Serum titers induced by C48/80 were not

significantly different than those induced by CT. Our results

demonstrate that Hcbtre-Ad2F, an immunogen designed to

contain a mucosal targeting component, provided nasal immuno-

genicity that was superior to immunogens lacking the mucosal

targeting domain. Additionally, the mast cell activator C48/80

provided significant adjuvant activity after nasal delivery to

rabbits.

Recombinant BoNT/A Hc immunogens are currently in

development as next generation BoNT vaccines [5,33]. Despite

the lack of immunogenicity of Hc when used as a nasal vaccine, as

measured by the induction of anti-Hcbtre IgG titers, it is possible

that Hc immunogens induce antibodies that recognize epitopes

outside of the Hcbtre domain. We therefore tested day 40 serum

collected from the rabbit groups described in Figure 2 for the

presence of anti-BoNT/A Hc antibodies by ELISA (Figure 3A).

The anti-BoNT/A Hc serum IgG titers at day 40 were similar to

the anti-BoNT/A Hcbtre IgG responses with the highest anti-

Hcbtre IgG titers in rabbits immunized intranasally with Hcbtre-

Ad2F + CT (1:23,170) or Hcbtre-Ad2F + C48/80 (1:4,598). Due

to the variability of the anti-BoNT/A Hc antibody responses,

there were no significant differences between any of the groups.

These results support the findings discussed in Figure 2 and

demonstrate that nasal immunization with Hcbtre-Ad2F immu-

nogens and adjuvant (CT or C48/80) induced maximal anti-

BoNT/A Hc antibody responses that were at least 10-fold greater

than antibody responses induced by any other vaccine group

tested.

Since the current investigational vaccine for botulinum

neurotoxin is a toxoid [5,33] and the toxoid may be antigenically

distinct from the recombinant immunogens [34,35], day 40 serum

samples were also tested for the presence of antibodies that

recognize BoNT/A toxoid (Figure 3B). As expected, intramus-

Figure 2. Ad2 fiber protein enhances the nasal immunogenicity of BoNT/A b-trefoil in NZW rabbits. Female NZW rabbits were
immunized on days 0, 14 and 28 with the indicated vaccine formulation. Intramuscular immunization with 10 mg of BoNT/A toxoid combined with
alum (n = 4) served as a control. BoNT/A Hcbtre (10 mg) was nasally delivered in the absence of adjuvant (n = 5) or combined with CT (2 mg; n = 6) or
C48/80 (120 mg; n = 6). BoNT/A Hcbtre-Ad2F (20 mg) was delivered nasally in the absence of adjuvant (n = 5) or combined with CT (2 mg; n = 6) or C48/
80 (120 mg; n = 6). BoNT/A Hc (20 mg) was delivered nasally combined with CT (2 mg; n = 3) or C48/80 (120 mg; n = 3). Serum samples collected on day
27 and day 40 were tested for the presence of anti-BoNT/A b-trefoil IgG by ELISA. Serum antibody titers were compared between groups by ANOVA
followed by Tukey’s multiple comparison test (GraphPad, Prism). a: serum anti-BoNT/A b-trefoil IgG titers significantly greater than those induced by
intramuscular immunization with toxoid, nasal immunization with Hcbtre, nasal immunization with Hcbtre + CT, nasal immunization with Hcbtre +
C48/80, nasal immunization with Hcbtre-Ad2F, nasal immunization with Hc + CT and nasal immunization with Hc + C48/80. b: serum anti-BoNT/A
b-trefoil IgG titers significantly greater than those induced by nasal immunization with Hcbtre + CT and nasal immunization with Hcbtre + C48/80.
c: serum anti-BoNT/A b-trefoil IgG titers significantly greater than those induced by intramuscular immunization with toxoid, nasal immunization with
Hcbtre, nasal immunization with Hcbtre-Ad2F, nasal immunization with Hcbtre + CT, nasal immunization with Hcbtre + C48/80, nasal immunization
with Hc + CT and nasal immunization with Hc + C48/80. d: serum anti-BoNT/A b-trefoil IgG titers significantly greater than those induced by
intramuscular immunization with toxoid, nasal immunization with Hcbtre, nasal immunization with Hcbtre + CT, immunization with Hcbtre + C48/80,
nasal immunization with Hcbtre-Ad2F and nasal immunization with Hc + C48/80.
doi:10.1371/journal.pone.0016532.g002
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cular immunization with BoNT/A toxoid + alum induced

significantly increased serum anti-BoNT/A toxoid IgG titers

(1:50,535) that were significantly greater than all other vaccine

groups tested. In agreement with published literature [34,35], our

results demonstrate that the antigenicity of BoNT/A toxoid is

significantly different than recombinant forms of immunogens

since immunization with BoNT/A toxoid induced antibodies able

to recognize toxoid but not BoNT/A Hcbtre or Hc.

Ad2F enhances b-trefoil immunogenicity in Dutch Belted
rabbits after intranasal immunization with cholera toxin
or the mast cell activator adjuvant C48/80

To determine if the superior immunogenicity of Hcbtre-Ad2F

and the adjuvant activity of C48/80 could be confirmed in a

second rabbit strain, we repeated the intranasal immunization

protocol using BoNT/A Hcbtre or Hcbtre-Ad2F 6 CT or

C48/80 in Dutch Belted rabbits. Four rabbits per group were

immunized on days 0, 14, 28 and 91 with the same molar doses of

Hcbtre (10 mg) or Hcbtre-Ad2F (20 mg) alone or combined with CT

(2 mg) or C48/80 (120 mg). Sera collected on days 27, 41 and 105

were evaluated for the presence of b-trefoil specific IgG antibodies

by ELISA (Figure 4). On day 27, the only groups with significantly

increased serum anti-BoNT/A Hcbtre IgG titers were rabbits

nasally immunized with Hcbtre-Ad2F + CT (1:23,170) or Hcbtre-

Ad2F + C48/80 (1:32,768). These results demonstrate that the

addition of Ad2F as a mucosal targeting ligand when combined with

adjuvant (CT or C48/80) enhanced the immunogenicity of the

Hcbtre immunogen and improved the induction of serum anti-

Hcbtre IgG responses after nasal vaccination. The serum anti-

Hcbtre IgG titers induced by nasal immunization with Hcbtre-

Ad2F + C48/80 were significantly greater than titers induced by

nasal immunization with Hcbtre-Ad2F alone (p,0.05) demonstrat-

ing the mucosal adjuvant activity of C48/80 (Figure 4).

The day 41 serum anti-Hcbtre IgG profile (2 weeks after the day

28 booster dose) was similar to the day 27 responses and the only

groups that generated significantly increased serum anti-Hcbtre

IgG titers were Hcbtre-Ad2F + CT (1:623,487) or Hcbtre-Ad2F +

C48/80 (1:185,364). The serum anti-Hcbtre IgG titers induced by

nasal immunization with Hcbtre-Ad2F + CT were significantly

greater than anti-Hcbtre IgG titers induced by nasal immunization

with Hcbtre, Hcbtre + CT, Hcbtre + C48/80 (Figure 4, p,0.05).

Serum anti-Hcbtre IgG titers induced by nasal immunization with

Hcbtre-Ad2F + C48/80 were significantly greater than anti-

Hcbtre IgG titers induced by nasal immunization with Hcbtre or

Hcbtre + C48/80 (Figure 4, p,0.05). For each vaccine

formulation tested (i.e., antigen alone, antigen + CT or antigen

+ C48/80), the presence of the Ad2F domain increased the

induction of serum anti-Hcbtre IgG antibody titers. For example,

nasal immunization with Hcbtre alone induced a serum anti-

Hcbtre IgG titer of 1:76 while nasal immunization with Hcbtre-

Ad2F induced a serum titer of 1:11,585. When administered with

CT, nasal Hcbtre induced a serum titer of 1:2,048 while nasal

immunization with CT and Hcbtre-Ad2F induced a serum titer of

1:623,487. Finally, when administered with C48/80, nasal

immunization with Hcbtre induced a serum anti-Hcbtre IgG titer

of 1:108 while nasal immunization with Hcbtre-Ad2F induced a

serum titer of 1:185,364. Our results demonstrate that the

presence of Ad2F greatly enhanced the immunogenicity of Hcbtre

when used as a nasal vaccine immunogen.

Serum collected on day 105 and tested for the presence of anti-

Hcbtre IgG titers demonstrated that the anti-Hcbtre IgG titers had

increased in all groups although the serum titers induced by nasal

immunization with Hcbtre-Ad2F adjuvanted with CT or C48/80

remained the highest (1:524,288 and 1:131,072, respectively).

Ad2F as a mucosal targeting ligand enhances the
induction of BoNT/A neutralizing antibodies after nasal
immunization with Hcbtre immunogens

We sought to determine whether the antibodies generated by

our Hcbtre vaccines could protect against BoNT/A toxin

challenge and whether the addition of Ad2F enhanced the

induction of BoNT/A neutralizing antibodies. A mouse neutral-

ization assay [32] was used to measure BoNT/A neutralizing

antibodies in day 41 serum (after three doses of vaccine). None of

Figure 3. BoNT/A Hcbtre immunogens induce antibodies that recognize epitopes distinct from those induced by BoNT/A toxoid.
Day 40 sera from a subset of rabbits included in Figure 1 were tested for the presence of antibodies specific for BoNT/A Hc or BoNT/A toxoid by ELISA.
a: serum anti-BoNT/A toxoid IgG titers significantly greater than those induced by all other groups. There were no other significant differences
between groups.
doi:10.1371/journal.pone.0016532.g003
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the vaccines tested induced toxin-neutralizing serum antibodies at

day 41(data not shown).

Serum collected on day 105 (after a total of 4 vaccinations) was also

tested for the presence of BoNT/A neutralizing antibodies. One rabbit

nasally immunized with Hcbtre + CT had measurable BoNT/A

neutralizing antibodies (titer of 1:8) while all other rabbits in that group

and none of the rabbits nasally immunized with Hcbtre, Hcbtre +
C48/80 or Hcbtre-Ad2F had measurable serum BoNT/A neutraliz-

ing antibodies. Rabbits nasally immunized with Hcbtre-Ad2F + CT

had a geometric mean serum BoNT/A neutralizing titer of 1:45.25

while rabbits nasally immunized with Hcbtre-Ad2F + C48/80 had a

serum BoNT/A neutralizing titer of 1:26.91 (Figure 5A). Serum

BoNT/A neutralizing antibody titers induced by nasal immunization

with Hcbtre-Ad2F + CT or Hcbtre-Ad2F + C48/80 were significantly

greater than the neutralizing antibody titers measured in rabbits nasally

immunized with Hcbtre, Hcbtre + CT, Hcbtre + C48/80 or Hcbtre-

Ad2F; ANOVA and Tukey’s multiple comparison (Figure 5A,
p,0.05). By combining serum BoNT/A neutralizing antibody titers

induced by nasal immunization with Hcbtre + CT or C48/80

(Figure 5B, Hcbtre + adjuvants) and comparing their serum

neutralization titer to those induced by nasal immunization with

Hcbtre-Ad2F + CT or C48/80 (Figure 5B, Hcbtre-Ad2F +
adjuvants), we determined that the presence of Ad2F significantly

improved the induction of BoNT/A neutralizing antibodies

(p = 0.0006), regardless of the adjuvant used. These results demonstrate

that the use of Ad2F as a mucosal targeting ligand as well as the use of

adjuvant (CT or C48/80) was required for effective induction of serum

BoNT/A neutralizing antibody responses. Additionally, C48/80

provided effective nasal adjuvant activity in rabbits that was

comparable to that provided by CT.

Antibody affinity correlates with protective immunity
The binding avidity of antibodies for their antigen may

influence their neutralization capacity [36-38]. To determine if

antibody affinity for Hcbtre correlated with its neutralization

activity, we measured the relative avidity of serum anti-Hcbtre Ig

using a thiocyanate elution ELISA similar to that described by

others [29–31]. In this assay, the amount of antigen-specific

antibody remaining bound in the presence of 3 M ammonium

thiocyanate, calculated as a percentage of antibody bound in the

absence of ammonium thiocyante, is used to estimate the relative

avidity of the antibodies. The percentage of antibody remaining

bound in the presence of 3 M ammonium thiocyanate increases as

the avidity of the antibody increases. The relative avidity of anti-

Hcbtre Ig in Day 162 serum was tested for all samples that had

measurable anti-Hcbtre serum antibodies (Figure 6). Due to the

variation in the relative avidities measured in the various groups,

there was no significant difference in antibody avidity between the

different groups (Figure 6A). However, grouping of the serum

samples based on their neutralization capacity demonstrated that

serum samples with BoNT/A neutralization activity had an anti-

Hcbtre Ig relative avidity that was greater than that in samples

without BoNT/A neutralization activity (p = 0.0239; Figure 6B).

Discussion

In this study we have demonstrated that the b-trefoil domain of

BoNT/A (Hcbtre) can be used as an immunogen for nasal

vaccination in rabbits to induce serum antibodies that protect

against BoNT/A challenge. Our results show that production of

the Hcbtre immunogen as a fusion protein with the mucosal

targeting ligand, Ad2F, enhanced its immunogenicity and the

induction of Hcbtre-specific, BoNT/A-neutralizing antibodies.

Additionally, the mast cell activator adjuvant C48/80 was as

effective as CT for the induction of BoNT/A-neutralizing

antibodies when used as a nasal vaccine adjuvant in rabbits.

These results confirm similar observations in mice [7,17].

Adjuvants and vaccination regimens suitable for nasal immu-

nization are desirable for a number of reasons. First, one goal of

the World Health Organization is to have vaccines administered

needle-free [39–43], such as nasal immunization, since the re-use

Figure 4. Ad2 fiber protein enhances the nasal immunogenicity of BoNT/A b-trefoil in Dutch Belted rabbits. Female Dutch Belted
rabbits (4 per group) were nasally immunized on days 0, 14, 28 and 91 with the indicated vaccine formulation. Serum collected on days 27, 41 and
105 was tested for the presence of anti-BoNT/A b-trefoil IgG by ELISA. a: serum anti-BoNT/A b-trefoil IgG titers significantly greater than those
induced by nasal immunization with Hcbtre or nasal immunization with Hcbtre + C48/80. b: serum anti-BoNT/A b-trefoil IgG titers significantly greater
than those induced by nasal immunization with Hcbtre, nasal immunization with Hcbtre + C48/80 or nasal immunization with Hcbtre-Ad2F. c: serum
anti-BoNT/A b-trefoil IgG titers significantly greater than those induced by nasal immunization with Hcbtre, nasal immunization with Hcbtre + CT,
nasal immunization with Hcbtre + C48/80. d: serum anti-BoNT/A b-trefoil IgG titers significantly greater than those induced by nasal immunization
with Hcbtre or nasal immunization with Hcbtre + C48/80. e: serum anti-BoNT/A b-trefoil IgG titers significantly greater than those induced by nasal
immunization with Hcbtre.
doi:10.1371/journal.pone.0016532.g004
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of needles in developing countries contributes to the transmission

of infectious diseases. Second, nasal immunization offers a

beneficial alternative for patients with needle-phobia and may

prevent their avoidance to vaccination [44–46]. Third, nasal

immunization has the ability to induce antigen-specific secretory

IgA (S-IgA) responses in mucosal secretions, while parenterally

delivered vaccines rarely induce S-IgA [47–49]. A major benefit of

mucosal immunization is the presence of pathogen-specific S-IgA

in mucosal secretions offering an added layer of protection against

pathogens that primarily infect via a mucosal surface. Such

capacity to induce vaccine-specific S-IgA as well as the ease of

needle-free immunization warrants continued research to optimize

adjuvants and antigen formulations for nasal subunit vaccines.

The form of antigen used as a vaccine immunogen significantly

influences the immune responses induced. To evaluate the

performance of Hcbtre immunogens as compared to other BoNT/

A immunogens, we utilized BoNT/A toxoid and BoNT/A Hc

immunogens as controls for subcutaneous or intranasal immuniza-

tion, respectively. Of all immunogens tested, only Hcbtre-Ad2F

combined with adjuvant (CT or C48/80) induced significantly

Figure 5. Ad2 fiber protein enhances the induction of BoNT/A-neutralizing antibodies in nasally immunized rabbits. Female Dutch
Belted rabbits (4 per group) were nasally immunized on days 0, 14, 28 and 91 with the indicated vaccine formulation. A. Serum collected on day 105
was tested for the presence of BoNT/A-neutralizing antibodies using a mouse neutralization assay. a: serum BoNT/A-neutralizing activity significantly
greater than the neutralizing activity measured in rabbits nasally immunized with Hcbtre, Hcbtre + CT, Hcbtre + C48/80 or Hcbtre-Ad2F; ANOVA and
Tukey’s multiple comparison, p,0.05. b: serum BoNT/A-neutralizing activity significantly greater than the neutralizing activity measured in rabbits
nasally immunized with Hcbtre, Hcbtre + CT, Hcbtre + C48/80 or Hcbtre-Ad2F; ANOVA and Tukey’s multiple comparison, p,0.05. B. Hcbtre-Ad2F is
superior to Hcbtre for the induction of BoNT/A neutralizing antibodies when delivered with CT or C48/80 as adjuvants. a: p = 0.0006, Mann-Whitney
test.
doi:10.1371/journal.pone.0016532.g005

Figure 6. Adjuvants enhance the avidity of anti-BoNT/A b-trefoil IgG antibodies. The relative avidity of anti-BoNT/A IgG serum antibodies
was measured using day 162 serum using a modified ELISA as described in Materials and Methods. A. The percent antibody bound in the ELISA in the
presence of 3 M ammonium thiocyanate is indicated for individual serum samples that had measurable anti-b-trefoil IgG. A higher percent antibody
bound represents a greater relative avidity for vaccine-induced, antigen-specific antibody. N: represents serum anti-b-trefoil IgG with no detectable
BoNT/A neutralizing activity. #: represents serum anti-b-trefoil IgG with detectable BoNT/A neutralizing activity. B. Average percent antibody bound
when samples were organized by the neutralization capacity of the serum. Vaccine-induced BoNT/A neutralizing antibody has significantly greater
avidity than non-neutralizing antibody. a: % antibody bound significantly greater than in the no neutralization group. Two-tailed Mann Whitney,
p = 0.0239.
doi:10.1371/journal.pone.0016532.g006
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elevated serum anti-Hcbtre IgG titers. Despite using BoNT/A Hc as

an immunogen at the same dose as Hcbtre-Ad2F and formulated

with CT or C48/80 as adjuvants, Hc did not induce significantly

elevated serum anti-Hcbtre or anti-Hc IgG titers, even though the

Hcbtre domain represents a significant portion of the Hc

immunogen. BoNT/A toxoid delivered intramuscularly with

alum induced significantly elevated serum anti-BoNT/A toxoid

IgG antibodies while inducing minimal serum IgG antibodies

specific for Hcbtre or Hc. This result confirms published

reports describing the altered antigenicity of BoNT/A toxoid as

compared to native immunogens [34,35] and supports the use of

recombinant subunit immunogens as next generation BoNT

vaccines.

The immunization regimens utilized in this study used relatively

low antigen doses. We selected a dose of 10 mg of Hcbtre per

vaccination and an equimolar dose of 20 mg Hcbtre-Ad2F to

increase the sensitivity of the experiment to determine if the use of

the mucosal targeting ligand Ad2F was able to significantly

enhance the immunogenicity of Hcbtre. In our previous mouse

study, Hcbtre-Ad2F exhibited superior nasal immunogenicity

when compared to Hcbtre based on the induction of ELISA

binding antibodies but both immunogens induced BoNT/A

neutralizing antibody responses when used at 25 mg of Hcbtre

per dose and 50 mg of Hcbtre-Ad2F per dose [7]. In the present

study, nasal immunization with Hcbtre-Ad2F adjuvanted with CT

or C48/80 induced serum neutralization titers in Dutch belted

rabbits that ranged from 1:16 to 1:128 with each rabbit being

immunized with a total of 80 mg of Hcbtre-Ad2F combined with

adjuvant. The neutralization assay tested diluted serum for its

ability to neutralize 10 LD50 of BoNT/A using a mouse

neutralization assay. Others have reported that immunization of

rabbits intradermally with a total dose 750 mg of BoNT/A Hc

(residues 871-1295) adjuvanted with complete (priming) and

incomplete (booster doses) Freund’s adjuvant in five doses induced

serum BoNT/A neutralizing antibodies with a neutralization

capacity that ranged from 56105 to 76105 mouse LD50 per mL

serum [32]. Given in these terms, our adjuvanted Hcbtre-Ad2F

vaccine exhibited a BoNT/A neutralization capacity ranging from

1.66103 to 1.286104 mouse LD50 per ml of serum while using

only 80 mg of total antigen and nasal delivery. One rabbit

immunized with a Hcbtre and CT had a serum BoNT/A

neutralization capacity of 800 mouse LD50 per ml of serum

demonstrating the ability of Hcbtre to induce BoNT/A neutral-

izing antibodies. Our use of higher doses of Hcbtre or Hcbtre-

Ad2F would likely have induced more potent BoNT/A neutral-

izing antibody responses.

The exact mechanism utilized by Ad2F to augment the

immunogenicity of nasally-delivered Hcbtre is not clear. We

originally selected Ad2F as a mucosal targeting ligand and

demonstrated its ability to mediate antigen binding at the

epithelial surface in the mouse nasal cavity [7]. Therefore, it is

possible that Hcbtre-Ad2F immunogens bind to the epithelial

surface after nasal delivery to rabbits resulting in enhanced antigen

retention within the nasal cavity allowing more antigen to be

available for induction of Hcbtre-specific immune responses. This

conclusion is supported by recent studies in our group demon-

strating that nasal vaccination regimens in rabbits that enhance

retention of the vaccine within the nasal cavity enhance the

induction of antigen-specific serum antibodies [50]. Studies in the

mouse that demonstrate superior induction of BoNT/A neutral-

izing antibodies when using vaccine formulations that result in

continued adherence of the vaccine to the nasal epithelium also

support this conclusion [51]. Although antigen retention within

the nasal cavity may contribute to the enhanced immunogenicity

of Hcbtre-Ad2F immunogens, the ability of Ad2F to induce

cytokine and chemokine expression after binding to its receptor,

the coxsackie-adenovirus receptor (CAR), may also contribute to

the superior immunogenicity of Hcbtre-Ad2F [52].

Induction of BoNT/A-neutralizing antibodies required the use

of an adjuvant. We utilized CT as a classic mucosal vaccine

adjuvant to determine if the mast cell activator C48/80 [17]

provided effective adjuvant activity in the rabbit comparable to

that provided by CT. C48/80 provided effective adjuvant activity

that was comparable to that provided by CT after nasal

immunization with Hcbtre-Ad2F. We have previously reported

the C48/80 provided effective adjuvant activity in mice while not

inducing antigen-specific IgE responses or other adverse effects

such as induction of anaphylactic reactions [17,18]. Although

antigen-specific IgE responses were not monitored in this rabbit

study, the use of C48/80 was not associated with the induction of

adverse effects such as immediate immunization site reactions or

hypersensitivity reactions. While additional studies are needed to

thoroughly evaluate the preclinical toxicity of C48/80, no adverse

effects have been observed to date. Our results are the first to

demonstrate that mast cell activators provide safe and effective

mucosal vaccine adjuvant activity in rabbits.

Many factors such as antibody concentration, specificity and

avidity may contribute to the biological activity of vaccine-induced

antibodies. Attempts at mapping linear epitopes recognized by

Hcbtre and Hcbtre-Ad2F vaccine-induced antibodies were

unsuccessful (data not shown) suggesting that the antibodies

induced by the Hcbtre immunogens recognize conformational

epitopes. By measuring the relative avidity of anti-Hcbtre serum Ig

with the use of a modified ELISA [29–31] that tests serum at

similar antibody concentrations, we determined that serum

samples with BoNT/A neutralization activity exhibited a relative

binding avidity that was significantly higher than the relative

avidity of non-neutralizing antibodies. Our results are in

agreement with observations that the biological activity of

antibodies is positively correlated with their binding avidity for

their specific antigen [37,38,53–55]. Induction of high avidity,

BoNT/A-neutralizing antibodies required the use of adjuvants

(CT or C48/80) and future studies will work to optimize vaccine

formulations and adjuvants for their ability to induce high-avidity

antibodies.

Nasal immunization with Hcbtre or Hcbtre-Ad2F in Dutch

belted rabbits induced minimal vaginal or fecal anti-Hcbtre IgA

responses (data not shown). Although we have demonstrated in

mouse models that nasal vaccination is an effective method of

immunization for the induction of antigen-specific mucosal IgA

[7,50,56–59], our nasal immunization studies in non-human

primates [59,60] and rabbits [50] have failed to consistently induce

mucosal IgA responses in fecal samples or vaginal secretions. Our

results in rabbits are supported by published reports from others

that also failed to induce significant mucosal IgA responses after

nasal immunization [61,62]. Our use of low antigen doses may

have contributed to the poor induction of mucosal IgA in rabbits

after nasal immunization with Hcbtre immunogens since antigen

dose has been demonstrated to influence the induction of mucosal

IgA responses after nasal immunization [63]. Collectively, these

results suggest that the conditions required for induction of

mucosal IgA in non-rodents requires further studies.

While the live-attenuated influenza vaccine (LAIV) provides a

convincing example that nasally-administered vaccines may be

approved by the U.S. Food and Drug Administration (FDA) and

are able to safely induce the desired immune responses in humans

[64–66], additional pre-clinical studies are needed to develop nasal

subunit vaccines for use in humans. For example, the potential for
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vaccine-induced inflammation in the lungs is a significant concern

when considering the development of nasally-administered

vaccines for use in humans since murine nasal immunization

studies have demonstrated the induction of antigen-specific IgE

and airway inflammation when potent adjuvants such as cholera

toxin are used [22,67]. Clear advantages of using our vaccine

formulation are the lack of vaccine-induced IgE or anaphylactic

reactions by C48/80 when used as a nasal vaccine adjuvant in

mice [17] and the lack of sensitivity reactions in rabbits. To avoid

potential lung inflammation, nasal immunization methods must

include in its design a means to retain the vaccine in the nares,

while simultaneously preventing subsequent deposition into the

lungs. This can be accomplished by limiting the vaccine to the

upper respiratory tract by nasal sprays that deliver large droplets

[67] or the use of dry powder vaccine formulations with large

particles (i.e., approximately 10 mm) that are directed only to the

upper respiratory tract and unable to reach the lung [68]. Since

humans are repeatedly exposed to natural upper respiratory tract

infections that induce inflammation and antigen-specific immune

responses with no obvious deleterious effects to the host, it seems

unlikely that adjuvant-dependent or antigen-specific immune

responses induced by nasal immunization would initiate adverse

effects in the host. Additional preclinical studies are needed to

evaluate the safety and toxicity of nasally-delivered subunit

vaccines.

To summarize, recombinant BoNT/A immunogens utilizing

the Hcbtre domain are effective immunogens that contain BoNT/

A neutralizing epitopes. When expressed as a fusion protein with

Hcbtre, the mucosal targeting ligand Ad2F significantly improved

the nasal immunogenicity of Hcbtre and enhanced the induction

of BoNT/A neutralizing antibodies with increased avidity when

delivered with adjuvants. The chemical mast cell activator C48/80

provided adjuvant activity for nasally administered Hcbtre-Ad2F

that was comparable to the adjuvant activity of cholera toxin.

Collectively, our results suggest that the use of the mucosal

targeting ligand Ad2F and the novel adjuvant C48/80 are effective

methods to augment the immunogenicity of nasally-delivered

subunit immunogens for the induction of antibodies with increased

avidity and biological activity.
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