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Abstract

The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces
several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an
example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring
when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which
predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are
able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing
mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased
heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is
characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and
PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the
molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the
ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial
biogenesis, which might also play an important role for cellular maintenance in other organisms.
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Introduction

The ascomycete Podospora anserina is a filamentous fungus

extensively used as an experimental model organism to study the

molecular basis of organismal ageing [1–5]. During the last

decades it was demonstrated that there is an environmental as well

as a genetic basis of ageing and lifespan control. A hallmark of

ageing in P. anserina WT strains is the reorganisation of the

mitochondrial DNA (mtDNA) accompanied by mitochondrial

dysfunction [6–8]. Stabilisation of the mtDNA results in lifespan

extension. More recent investigations revealed that the type of

respiration has an important impact on the ageing of cultures [9–

15]. Normally, strains respire via a cytochrome-c oxidase (COX,

complex IV) dependent respiratory chain. However, when this

pathway is impaired for different reasons, a compensating

mechanism, termed the retrograde response, is induced and leads

to the expression of a gene coding for an alternative oxidase

(AOX). This enzyme receives electrons from the ubiquinone pool

and reduces oxygen directly, hence by-passing the electron flux

through cytochrome-c reductase (complex III) and COX. Electron

transfer via AOX was found to result in reduced reactive oxygen

species (ROS) levels in isolated mitochondria and protoplasts,

respectively [11,14]. A long-lived P. anserina mutant respiring

predominantly via AOX is grisea [16] which is a loss-of-function

mutant of the Grisea gene that encodes a copper regulated

transcription factor [17]. Since this transcription factor controls

the expression of the high-affinity transporter PaCTR3, copper

uptake in the mutant is restricted to a low affinity uptake system

and results in cellular copper depletion [10,18,19]. Because copper

is needed as a cofactor for COX activity, COX-depending

respiration is impaired and alternative respiration is induced.

Similarly, a deletion of the gene PaCox17 encoding a mitochon-

drial chaperone delivering copper to a subunit of COX results in

respiration via AOX and a pronounced lifespan extension [13].

Although long-lived when cultivated on cornmeal agar, both grisea

and PaCox17::ble are characterized by severe physiological defects,

like strongly decreased growth rate and reduced female fertility

(mutant grisea) or female sterility (PaCox17::ble).

Due to the fact that the switch from the standard to the

alternative type of respiration affects the proton motive force at the

inner mitochondrial membrane, consequences on the efficiency of

both ATP generation and ROS production rates are expected. We

therefore measured different metabolic parameters including ATP

levels, oxygen consumption, and heat production as well as

hydrogen peroxide production, ROS scavenging capacity and

protein levels of mitochondrial quality control components in
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living mycelia or homogenates from the wild type (WT) strain and

compared these data with those of the two long-lived mutants grisea

and PaCox17::ble which are predominantly (grisea) or exclusively

(PaCox17::ble) respiring via the alternative pathway. Finally,

measurements of mitochondrial content of the aforementioned

strains experimentally address the question whether alternative

respiration leads to changes in mitochondrial biogenesis.

Methods

Strains and media
In this study, WT ‘s’ [3], mutant grisea [16] and mutant

PaCox17::ble [13] were analysed. Juvenile cultures were derived

from mononucleate ascospores incubated on germination medium

as previously described [19]. Pieces of mycelium were subsequent-

ly transferred onto cornmeal agar plates and cultivated at 27uC.

After 8 d of growth, 20 pieces of the front of the mycelium were

grown on a fresh cornmeal agar plate. After two days of growth,

the mycelium was scraped off the plate and transferred to

Erlenmeyer flasks containing liquid complete medium and shaken

at 27uC. Three days later, the mycelium was harvested by filtering

through gaze. 100 mg aliquots were stored at 280uC for

determination of the different parameters. Living mycelium was

used for the measurement of oxygen consumption and heat

production. Protoplasts for the measurement of mitochondrial

content were prepared as described previously [13].

Metabolic measurements
Metabolic output was measured by applying oxygen consumption

and heat production measurements, respectively. Consumption of

dissolved oxygen by 20–50 mg of suspended mycelium in 1 ml liquid

complete medium (CM) was monitored polarographically using

Clark electrodes (Strathkelvin, North Lanarkshire, UK), at 27uC.

Heat production by 20–50 mg of mycelium in 1 ml CM medium

was measured by microcalorimetry in the ‘Thermal Activity

Monitor’ (Thermometric, Parthenia St. Northridge, CA) at 27uC.

ATP levels were measured on flash frozen mycelium samples. We

used the luciferin-luciferase assay kit (ATP Bioluminescence Assay

Kit CLS II, Roche Diagnostics, Mannheim, Germany) adapted for

use in a microtiter plate format as described previously [20]. This

assay is based on the reaction: luciferin + ATP + O2 R oxyluciferin

+ AMP + pyrophosphate + CO2 + light. The frozen mycelium

samples (100 mg) were taken from the 280uC freezer and

immediately submersed in a boiling water bath for 25 minutes to

destroy ATPase activity and to allow diffusion of ATP out of the

mycelium. After 15 minutes of boiling, the samples were smashed

with glass beads (Mini-Beadbeater, Merlin Diagnostic Systems,

Breda, The Netherlands) for two minutes. Dilutions were made

using HPLC grade water (salts interfere with the assay) and the assay

was performed according to the manufacturer’s instructions.

Analysis of mitochondrial morphology
P. anserina mycelia were grown on glass slides that have a central

depression. This depression was filled with a 1:1 mixture of

cornmeal agar and 1% agarose for two days in a wet chamber at

27uC. The mycelium was covered with 1 mM Mitotracker Green

FM (Invitrogen, Carlsbad, CA). After 10 minutes of staining the

samples at 27uC in the wet chamber, mitochondria were visualized

using a fluorescence microscope equipped with appropriate

excitation and emission filters (DM LB, Leica, Wetzlar, Germany).

Quantitative determination of mitochondrial content
Mitochondrial content was quantified by applying the 10-n-

nonyl acridine orange (NAO) method [21] to P. anserina

protoplasts. 107 protoplasts were stained in 1 ml 1 mM NAO in

TPS buffer (5 mM Na2HPO4 ? 2 H2O, 45 mM KH2PO4, 0.58 M

sucrose, pH 5.5). After 10 min incubation at room temperature in

the dark the sample was centrifuged (10 min, 15000 g). The

protoplasts were washed twice in 1 ml TPS before they were

resuspended in 200 ml TPS. NAO fluorescence of the protoplast

suspension was subsequently measured in a multiplate reader

(Safire2, Tecan, Salzburg, Austria) (excitation: 495 nm, emission:

519 nm). As a loading control, protein content was determined by

the method of Bradford.

MtDNA levels as a marker of mitochondrial quantity were

determined by PCR. Total DNA extracts (10 ng/reaction) were

used as templates. Oligonucleotides binding in the mtDNA gene

encoding the large ribosomal subunit, PaLsu (mtDNA_Q1f: 59-

GGGTACGACTGTTCGTCG-39, mtDNA_Q1r: 59-TTGGGT-

ATACAACAGTACCCC-39), were used in the reaction to analyse

the amount of mitochondrial genomes. Amplification of the

nuclear PaGpd gene [22] was performed to determine the amount

of nuclear genomes (oligonucleotides Gpd_Q1f: 59-ATCATCCC-

CAGCAGCACC-39 and Gpd_Q1r: 59-CACACGTCTGCTG-

TAGCC-39 were used). Amplification products were separated on

1% agarose gels, stained with ethidiumbromide and quantified

using ImageJ (http://imagej.nih.gov/ij/index.html).

PaPORIN levels in total protein extracts were also analysed as a

marker of mitochondrial quantity by SDS-PAGE and Western

blot analysis.

Isolation of mitochondria
Mitochondria of P. anserina cultures were isolated by differential

centrifugation as described previously [14].

Isolation of total proteins
Total proteins were isolated according to the protocol published

in [23].

Isolation of total DNA
P. anserina DNA (i. e., genomic DNA and mtDNA) isolation was

performed according to a previously published protocol [24].

SDS-PAGE and Western blot analysis
80 mg of total protein or 100 mg of mitochondrial protein was

incubated at 95uC for 10 min in loading buffer (0.1 M TRIS

[pH 6.8], 6% SDS, 6% glycerol, 0.6 M b-mercaptoethanol,

0.08% bromophenolblue) and was subsequently separated by

using 12% SDS-PAGE. After electrophoretic separation, proteins

were transferred to a PVDF membrane (Immobilon-FL, Millipore,

Schwalbach, Germany) using an electro-blotting system (Bio-Rad,

Munich, Germany). Membranes were incubated in blocking buffer

(Li-Cor, Lincoln, NE, USA) for 1 h at RT and subsequently

probed with a polyclonal P. anserina PaLON protease antibody

(Anti-PaLON) (1:1500, overnight, 4uC), polyclonal P. anserina

PaPRX1 (mitochondrial peroxiredoxin) antibody (Anti-PaPRX1)

(1:2000, overnight, 4uC), polyclonal P. anserina PaIAP (i-AAA

protease) antibody (Anti-PaIAP) (1:5000, overnight, 4uC), poly-

clonal P. anserina PaCLPP (CLP protease subunit) antibody (Anti-

PaCLPP) (1:400, overnight, 4uC) and a monoclonal HSP60

(mouse) antibody (Anti-HSP60) (1:4000, overnight, 4uC) from

Biomol Stressgen, Hamburg, Germany. Incubation with a

polyclonal antibody against PaPORIN (Anti-PaPOR) (1:5000,

overnight, 4uC) was performed as loading control for mitochon-

drial protein preparations or to determine mitochondrial content

in total protein extracts. Labelling was detected with IRDye 800

conjugated goat-anti-rabbit antibody or IRDye 680 conjugated
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goat-anti-mouse antibody (1:10000, 1 h, RT) and scanning the

blots with an Odyssey infrared scanner (Li-Cor, Lincoln, NE,

USA). For densitrometric analysis of signal intensities the software

package supplied with the Odyssey scanner was used according to

the developer’s instructions.

Hydrogen peroxide production measurements
Qualitative determination of hydrogen peroxide release from

mycelia was performed by monitoring oxidation of diaminobenzi-

dine (DAB, Sigma Aldrich, St. Louis, MO) according to previously

published protocols [25,26].

SOD and catalase activity
The activities of SOD and catalase were measured in

homogenates that were prepared by bead-beating 100 mg frozen

mycelium samples for 90 seconds after adding 300 ml of 50 mM

Na/K-phosphate buffer (pH 7.0). SOD activity was measured by

an assay based on the inhibition of superoxide-induced lucigenin

chemiluminescence by SOD [27]. Aliquots of 6.7 ml were taken

from a homogenate dilution series and added in duplicate to the

wells of a microtiter plate. Next, 20 ml aliquots of xanthine oxidase

(XO) reagent (XO diluted in double distilled water such that the

blank reaction containing 6.7 ml water, 20 ml XO dilution and

174 ml reaction mixture yielded approx. 1.26105 counts/s) and

174 ml of reaction mixture (5.2 ml 0.1 M glycine, 1 mM EDTA,

adjusted to pH 9.0 with NaOH, 10 ml 0.108 mM xanthine,

2.1 ml 1 mM lucigenin, 1.2 ml water for a total of 18.5 ml) was

added quickly by using a multichannel pipette. Luminescence was

measured for 0.1 s during the time span required for 25

consecutive plate measurements at 25uC using a Victor2 Multi-

label Counter (Perkin Elmer, Waltham, MA). One unit of SOD

activity is defined as the amount of SOD able to reduce the

luminescence intensity by 50%. The homogenate fraction

(dilution) reducing luminescence by 50% was derived mathemat-

ically from plots of the luminescence intensities measured as a

function of the homogenate fraction [28] The sensitivity of this

assay is superior to the standard cytochrome c assay [29,30] and

the numerical values of SOD activity are not comparable.

Catalase activity was assayed at 25uC according to the method of

[31], adapted for use in microtiter plate format. Briefly 6.9 ml

sample volumes were added to the wells of a 96-well flat bottom UV

transparent microtiter plate (UV-Star, Greiner, Frickenhausen,

Germany). The reaction was started by adding 200 ml substrate

(11.4 mM hydrogen peroxide in 50 mM Na2HPO4 ? KH2PO4

(Sorensen) buffer, pH 7.0) using a multichannel micropipette. The

decrease in absorbance was monitored at 240 nm (Spectramax 190,

Molecular Devices, Sunnyvale, CA) for 25 reads (12 s interval, total

measuring time: 4 min, 17 s). The amount of peroxide decomposed

was calculated using a molar coefficient of e240 nm, 1 cm = 39.4. The

enzyme activity decomposing 1 mmole of hydrogen peroxide per

min equals 1 unit catalase activity.

Statistical analysis
All quantitative analyses were performed using at least three

different isolates from each strain. Statistical analysis of the results

was performed by applying the Mann-Whitney U test (two-tailed),

if not noted otherwise.

Results

ATP content and metabolic rate in WT and mutants
grisea and PaCox17::ble

Long-lived P. anserina mutants grisea and PaCox17::ble are

characterized by AOX-dependent respiration [13,19]. The flow of

electrons via AOX instead of COX causes fewer protons to be

pumped across the inner mitochondrial membrane due to by-

passing of complexes III and IV. Therefore, it is likely that ATP

levels are strongly reduced in the AOX-respiring mutants.

However, to our knowledge, ATP levels have not yet been

measured in AOX-respiring mutants. Consequently, we set out to

determine the actual effects of AOX-dependent respiration on

ATP concentration in homogenates of the WT and the two long-

lived mutants (Fig. 1). The data obtained from these experiments

show that respiration via the AOX pathway does result in a

significantly lowered ATP concentration in grisea and PaCox17::

ble (WT: 1.24 nmol ATP/mg wet weight; grisea: 0.74 nmol ATP/

mg wet weight, p,0.05 vs. WT; PaCox17::ble: 0.64 nmol ATP/mg

wet weight, p,0.05 vs. WT). A possible strategy to compensate for

ATP deficiency is an increase of catabolic rate and total metabolic

rate. Indeed, these two parameters, as determined by measuring

oxygen consumption and heat production of living mycelia, are

significantly increased in the AOX-respiring mutants (oxygen

consumption: WT: 0.016 mmol/h mg wet weight; grisea:

0.064 mmol/h mg wet weight, p,0.05 vs WT; PaCox17::ble:

0.076 mmol/h mg wet weight, p,0.01 vs. WT; heat production:

WT: 0.91 mW/h mg wet weight; grisea: 3.38 mW/h mg wet

weight, p,0.05 vs WT; PaCox17::ble: 3.47 mW/h mg wet weight,

p,0.01 vs. WT) (Fig. 2A, B).

The mutant genotype does not influence the CR (calorimetric/

respirometric) ratio, indicating that catabolic pathways are not

significantly shifted towards fermentation (Fig. 2C). Collectively,

these results demonstrate that increased catabolic and metabolic

rates are found in mutants grisea and PaCox17::ble although WT

levels of ATP content are not reached.

Mitochondrial morphology and content
A straightforward option to increase catabolic rate and total

metabolic rate is the increase of mitochondrial content in the

mycelia. Are indeed more mitochondria present in grisea and

PaCox17::ble? In order to experimentally address this question we

performed a qualitative analysis by fluorescence microscopy

analysis of Mitotracker Green (MTG) stained mycelia and

quantified the mitochondrial content in the WT and mutants

grisea and PaCox17::ble by NAO fluorescence analysis. MTG is a

dye that is reported to stain mitochondria even when their

membrane potential is very low [32]. For the study of

Figure 1. Determination of ATP content in mycelial homoge-
nates. ATP levels were measured by a luminescence based assay.
Mutants grisea and PaCox17::ble contain significantly less ATP than the
WT. The age of the mycelia from which the homogenates were
prepared is 10 d. Data represent mean 6 standard error. *: p,0.05.
doi:10.1371/journal.pone.0016620.g001
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mitochondrial content this is a desirable property. Otherwise it

might be possible that a portion of cellular mitochondria are not

observable. MTG-stained mitochondria of the WT and mutant

grisea display a mostly filamentous morphology (Fig. 3A). Mutant

grisea seems to contain shorter mitochondria than the WT. In

mutant PaCox17::ble, filamentous mitochondria are more difficult

to observe due to relatively high background fluorescence. Our

results show that for quantification of mitochondrial content MTG

staining analysis using whole P. anserina mycelia is not sufficient. As

an alternative we used the dye 10-n-nonyl acridine orange (NAO)

which binds to cardiolipin in the inner mitochondrial membrane.

We found that NAO does not penetrate efficiently into intact

mycelia. This effect might be due to the existence of the cell wall

which can act as a barrier for certain compounds, including

fluorescent dyes. Therefore we had to prepare protoplasts (i. e.,

fungal cells which have their cell wall removed by enzymatic

digestion). When measuring NAO fluorescence as a marker for

mitochondrial content, we found that mutants grisea and

PaCox17::ble indeed contain significantly more mitochondria than

the WT (WT: 100%, grisea: 160% [p,0.001 vs. WT],

PaCox17::ble: 217% [p,0.001 vs. WT]) (Fig. 3B).

To verify these results with additional experimental methods,

we measured the ratio of mtDNA/nuclear DNA as a marker of

mitochondrial quantity by PCR analysis (Fig. 3C) and the level of

the outer mitochondrial membrane protein PaPORIN (Fig. 3D).

These experiments substantiate our NAO analysis because they

show that both mutants, grisea and PaCox17::ble, are characterized

by a significantly higher mtDNA/nuclear DNA ratio and

PaPORIN levels compared to the wild type (Fig. 3C, D).

Hydrogen peroxide production
In all organisms investigated so far, there is no clear correlation

between cellular mitochondrial content and ROS production. In

some studies using human fibroblasts and murine lymphoma cells,

respectively, increased mitochondrial content was reported to lead

to elevated ROS production [33,34]. On the other hand, there are

also analyses on various mammalian tissues reporting that a

reduction of mitochondrial content leads to an increased

‘workload’ of individual mitochodria which results in a higher

inner membrane potential and elevated ROS production [35–38].

Consequently, in order to determine the effect of increased

mitochondrial content on ROS production in mutants grisea and

PaCox17::ble we measured the production of hydrogen peroxide.

Hydrogen peroxide dissipated by living mycelium was measured

by adding diaminobenzidine (DAB), which is oxidized by

hydrogen peroxide to form a brownish precipitate. The reaction

was performed on middle-aged living mycelium. We found that

hydrogen peroxide production is significantly increased in

PaCox17::ble compared to the WT (Fig. 4). We also observed that

the DAB oxidation is mainly observed in the growth medium;

suggesting that the mutant releases the H2O2 into the medium.

Contrary to the situation in PaCox17::ble, hydrogen peroxide

production is decreased in mutant grisea which becomes clearly

evident when the DAB assay incubation time is increased to 2.5 d

(Fig. 4). Taken together, our measurements on oxidative stress

show that increased mitochondrial content in the mutant

PaCox17::ble is correlated with elevated production of hydrogen

peroxide but not in mutant grisea. However, it cannot be ruled out

that there are sources of H2O2 production in the plasma

membrane or cytoplasm beside mitochondria that are responsible

for the observed effects.

ROS scavenging
From previous investigations it is known that grisea and

PaCox17::ble display pronounced qualitative variations in their

ability to synthesize functional SODs in in gel activity assays

[10,13,19]. To analyze whether the observed differences in ROS

generation are due to changes in anti-oxidant capacity of the three

strains, we utilized quantitative assays to measure total SOD and

catalase activity. PaCox17::ble homogenates are characterized by a

highly elevated SOD activity (Fig. 5A, 2.48 U/mg wet weight,

p,0.01 vs. WT) which can be explained by the high amount of

PaSOD1 present in this mutant [13]. It is certainly possible that

PaCox17::ble produces more H2O2 due to the highly increased

SOD (especially PaSOD1) activity.

Moreover, there are also no significant differences regarding

catalase activity in grisea compared to the WT (Fig. 5B). Taken

together, our results demonstrate that the increased mitochondrial

content in the AOX-respiring mutants grisea and PaCox17::ble

does not necessarily correlate with changes in the activity of two

Figure 2. Metabolic rates of live mycelia. A Respirometry reveals
that mutants grisea and PaCox17::ble are characterized by elevated
oxygen consumption compared to the WT. B Assessment of heat
production by calorimetry is also increased in the two mutants. C
However, the mutant genotype does not influence the calorimetric/
respirometric (CR) ratio. Data represent mean 6 standard error.
*: p,0.05; **: p,0.01; n. s.: not significant.
doi:10.1371/journal.pone.0016620.g002
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anti-oxidant defence systems, although total SOD activity is

significantly increased in PaCox17::ble.

Analysis of components of the protein quality control
machinery

It has been demonstrated that the quality control efficiency of

mitochondrial proteins (i. e., LON protease) affects the lifespan of

P. anserina [39]. In order to investigate the levels of components of

the mitochondrial quality control machinery in the long-lived

mutants grisea and PaCox17::ble compared to the WT, we

performed immunodetection analyses (Fig. 6). Mitochondrial

proteins were isolated and electrophoretically separated on SDS

gels. After transfer of the proteins to PVDF membranes they were

decorated with antibodies against key components of quality

control systems. No significant differences were found between the

three strains when levels of the i-AAA protease PaIAP, CLP-

Protease (PaCLPP) [40] and mitochondrial peroxiredoxin

(PaPRX1) [41] were investigated (data not shown). Interestingly,

both mutants show higher amounts (factor ,2) of mitochondrial

HSP60 (Fig. 6A) which has been shown to be an important factor

Figure 3. Mitochondrial content. A Mycelia were stained with Mitotracker Green and analysed by fluorescence microscopy. Representative
hyphae are shown. Scale bar: 2 mm. B Protoplasts prepared from mutants grisea and PaCox17::ble contain significantly more mitochondria than the
WT as revealed by NAO staining. Mitochondrial content in the WT was set to 100%. C Determination of the mtDNA/nuclear DNA ratio as a marker for
mitochondrial quantity by PCR. left: representative 1% agarose gel showing separated PaGpd (nuclear DNA) and PaLsu (mtDNA) amplification
products stained with ethidiumbromide, NC: negative control, pd: primer dimers. right: densitometric analysis of band intensities. The mtDNA/nuclear
DNA ratio in the WT was set to 1. D Western blot analysis to detect PaPORIN levels in total protein extracts from the wild type strain and the two
mutants. As a loading control the Coomassie-stained transfer membrane is shown. Data represent mean 6 standard error. *: p,0.05; ***: p,0.001,
Student’s t test, two-tailed.
doi:10.1371/journal.pone.0016620.g003
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for the proper folding of proteins imported into mitochondria of

the nematode Caenorhabditis elegans [42]. Also the mitochondrial

LON protease (PaLON) (Fig. 6B), which is involved in the efficient

removal of oxidatively modified proteins [39], is present in higher

amounts in the two mutants. Taken together, our experiments

indicate that the two long-lived mutants contain higher protein

levels of HSP60 and PaLON.

Discussion

To gain insight into the changes of different metabolic

parameters (i. e., ATP levels, oxygen consumption and heat

production), hydrogen peroxide production, ROS scavenging,

mitochondrial content and changes in protein levels of quality

control components due to induction of alternative oxidase

respiration in P. anserina we performed a comparative study

between isolates of the WT strain and two long-lived mutants,

grisea and PaCox17::ble. Whereas the former mutant displays

residual cytochrome-c oxidase activity [43,44], the latter is

characterized by exclusive PaAOX-dependent respiration [13].

Both mutants are long-lived, although there are pronounced

differences regarding the effect on lifespan. Whereas grisea is only

moderately long-lived (+60% compared to the WT), PaCox17::ble

displays a very high increase of mean life-span: forty out of sixty

isolates were still alive after 320 d [13]. Like most other mutants

utilising PaAOX, these strains exhibit severe phenotypical defects.

PaCox17::ble displays an even more compromised phenotype than

grisea because its growth rate is strongly decreased and it is not

able to form female reproductive organs (protoperithecia) at all,

resulting in sterility of the mycelium. It was assumed that the

deficiencies of grisea and PaCox17::ble are due to insufficient

generation of ATP by the PaAOX-dependent respiratory chain

since two of the three sites which transfer electrons across the inner

mitochondrial membrane (i. e., cytochrome-c reductase and

cytochrome-c oxidase) are by-passed, resulting in a lowered

proton motive force.

Our results show that mutant grisea and PaCox17::ble are

indeed characterized by a decreased ATP content compared to the

WT. Remarkably, in both mutants oxygen consumption of the

mycelia is strongly increased. There does not seem to be a change

in the use of metabolic pathways or mitochondrial coupling

efficiency because the CR ratio, which expresses the amount of

heat that is released per mol oxygen consumed, is not significantly

changed compared to the WT. Furthermore, our results are in line

with a former study in which the respiration rates of isolated

functional mitochondria from mutant grisea were found to be

significantly increased [14]. This suggests that the respiration of

mycelium from mutant grisea is higher because of the added

Figure 4. Mycelial hydrogen peroxide production. H2O2 production in WT and mutants grisea and PaCox17::ble as measured by mycelial DAB
precipitation. While the amount of H2O2 is slightly reduced in mutant grisea compared to the WT, it is strongly increased in PaCox17::ble.
doi:10.1371/journal.pone.0016620.g004

Figure 5. Total superoxide dismutase and catalase activity. A
The measurement of SOD activity shows a significant increase in
PaCox17::ble compared to the WT. B Catalase activity is not significantly
changed between the WT and mutants grisea and PaCox17::ble,
respectively. Data represent mean 6 standard error. **: p,0.01; n. s.:
not significant.
doi:10.1371/journal.pone.0016620.g005

AOX Respiration Increases Mitochondrial Content
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effects of a greater number of mitochondria and increased

mitochondrial respiration (mitochondrial mass-specific respiration).

Interestingly, mutant grisea has been originally described as a

slow-growing mutant on cornmeal agar (growth-rate: 230%

compared to the wild type [16]). However, we found that freshly

isolated grisea spores give rise to mycelia that grow as fast as the

wild type on cornmeal agar. It is possible that more than twenty

years of storage at low temperature induced physiological

alterations in the grisea stock culture which lead to the formation

of more mitochondria. Therefore one could argue that mutant

grisea had lower levels of ATP and fewer mitochondria than it has

nowadays. This hypothesis is supported by the fact that a few years

ago the slow-growing mutant grisea had comparable oxygen

consumption to the wild type [13]. Another explanation is that a

secondary suppressor mutation in the original grisea strain

appeared which leads to the wild type-like growth rate. However,

it was not possible to isolate slowly growing monokaryotic progeny

bearing the grisea gene from a genetic cross between the wild type

and the mutant (unpublished results). Possibly the secondary

mutation (if it exists) is linked to the locus of grisea and not

separated by genetic crosses.

From studies in yeast it is known that there is a retrograde

response pathway which signals mitochondrial dysfunction to the

nucleus [45]. This induces changes in gene expression which

ultimately allow for a compensation of mitochondrial defects. It is

likely that a similar pathway in mutant grisea and PaCox17::ble

results in increased mitochondrial biogenesis to achieve increased

respiration and ATP production. Alternatively, an elevated down-

regulation of mitochondrial degradation (e. g., by autophagy or

mitophagy) in the mutants is also possible. Experimental strategies

to address this question would be (i) measuring the activity of key-

regulators of mitochondrial biogenesis like ‘peroxisome prolifera-

tor activated receptor gamma coactivator-1a’ (PGC-1a) or (ii)

analysing mitochondrial turn-over in the WT and the PaAOX-

respiring mutants used in this study.

PaCox17::ble produces more hydrogen peroxide than the WT in

contrast to mutant grisea which produces less H2O2 (Fig. 4). It was

shown that submitochondrial particles (SMPs) prepared from

mutant grisea mitochondria produce less superoxide when an

epinephrine based reduction assay is utilized [14]. For example, it

is also known from tobacco cells that ROS production is

significantly lowered in AOX-respiring cells [46]. The elevated

hydrogen peroxide formation rates in PaCox17::ble are therefore

surprising. One hypothesis to explain this finding is that mutant

PaCox17::ble contains so many mitochondria that an elevated

H2O2 production is the result. In p532/2 murine lymphomas it

was demonstrated that increased mitochondrial content is

associated with elevated oxidative stress [33]. Oxidative stress

and mitochondrial mass were also found to be positively correlated

in human lung fibroblasts (MRC-5) [34]. On the other hand, it is

suggested that an increase of mitochondrial content under

conditions of caloric restriction leads to biogenesis of more

efficient mitochondria with decreased oxidative stress as an

adaptive mechanism in human skeletal muscle [47]. Therefore,

the question whether the increased production of hydrogen

peroxide in PaCox17::ble is indeed due to elevated mitochondrial

content or not cannot be answered at present. Nonetheless, it is

plausible that the high content of hydrogen peroxide might lead to

the observed phenotypic defects (i. e., lowered growth rate,

sterility) in the AOX-respiring PaCox17::ble mutant. How can the

differences in hydrogen peroxide production between mutant

grisea and PaCox17::ble be explained? Due to the low cellular

copper levels, Cu/Zn-SOD (PaSOD1) is not active in grisea

[19,48]. By contrast, PaCox17::ble strongly up-regulates PaSOD1

activity [13]. The dismutation of superoxide radicals leads to the

formation of hydrogen peroxide. The high levels of H2O2 in

PaCox17::ble are likely explained by its pronounced PaSOD1

activity. Although there is a change in direction towards increased

catalase levels in PaCox17::ble compared to the WT, these

differences are not significant. It seems that an adequate up-

Figure 6. Western blot analysis of mitochondrial PaLON protease and the molecular chaperone HSP60. A Mitochondrial proteins in WT
and mutants grisea and PaCox17::ble were analysed with antibodies against HSP60 after transfer to a PVDF membrane. HSP60 levels are increased in
the two mutants. B Protein levels of LON protease (PaLON) are moderately increased in the mutants compared to the WT. Below each
immunodetection a densitometric analysis of signal intensities (x-fold level compared to the WT) is shown. Intensities of the PaPORIN signals were
used for normalisation. UniProt accession numbers: PaLON: B2AZ54; PaHSP60: B2B270 and PaPORIN: B2B736.
doi:10.1371/journal.pone.0016620.g006
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regulation of catalase or other H2O2 detoxifying enzymes (e. g.,

peroxidases) is not realised in PaCox17::ble. Importantly, several

long-lived P. anserina strains using AOX in addition to mutant

grisea were found to produce less ROS than WT isolates (e. g.,

PaCox5::ble [11] and cyc1-1 [49]).

If mutant PaCox17::ble produces more H2O2, why is it long-

lived? And why does the ‘low ROS’ mutant grisea not have a

higher lifespan than PaCox17::ble? Regarding the comparison

between the WT and PaCox17::ble one could argue that the

increase in SOD and catalase is a hormetic response to elevated

hydrogen peroxide levels. A significant advantage of mutant

PaCox17::ble over mutant grisea might be its very high activity of

Cu/ZnSOD (PaSOD1) [13]. As stated above, this might also be

responsible for the high levels of released H2O2. However, it is also

possible that the released H2O2 is not that problematic for cellular

function. Perhaps pronounced release of H2O2 is a mycelial

defence mechanism in order to reduce the hydrogen peroxide

concentration in the hyphae. It is possible that increased hydrogen

peroxide levels also activate other stress response genes not

investigated in the present study.

Contrary to the observations made in qualitative in gel activity

assays using total protein preparations [19,48], our results show

that mutant grisea has no significant difference in total SOD

activity compared to the WT. This is probably explained by the

existence of a mitochondrial manganese SOD (PaSOD3) [41]

which is not detected in total protein extracts but only in enriched

mitochondrial protein fractions when these are analysed using in

gel activity assays.

At present, the question whether the ‘Mitochondrial Free

Radical Theory of Ageing’ [50] is to be rebutted or not is

intensively discussed [51–53]. For example, in the nematode

Caenorhabiditis elegans it was shown that the manipulation of genes

coding for SODs leads to no major effects on lifespan, suggesting

that the superoxide radical is not an important factor for lifespan

determination [54]. Whatever the role of oxidative stress on the

ageing process of the AOX-respiring mutants grisea and

PaCox17::ble is, it is clear that alternative respiration and

increasing mitochondrial mass to compensate for low ATP levels

is no viable strategy for the realisation of ageing without functional

impairments. Pathways that lead to healthy ageing in P. anserina

and are not related to AOX-dependent respiration include (i)

increase of mitochondrial fusion [26,55], (ii) over-expression of the

O-methyltransferase PaMTH1 to counteract deleterious metal-

catalysed oxidations [23,56] and (iii) improving mitochondrial

protein quality control by over-expression of the LON protease

[39].

The analysis of components of the quality control machinery by

Western blot detection showed that grisea and PaCox17::ble seem

to contain more LON protease and HSP60 than the WT.

Therefore, at least in the two investigated mutants, there is a

correlation between AOX dependent respiration and elevated

levels of components of the molecular quality control machinery.

HSP60 is known to be up-regulated during heat shock as well as

during various cellular stresses [57,58]. Interestingly, levels of

HSP60 have been found to influence the levels of mitochondrial

matrix proteases in a human cell line, indicating a mechanistic link

in the regulation of chaperone and protease activity [59].

Mutants grisea and PaCox17::ble contain also moderately

increased levels of the mitochondrial LON protease. Recently,

experimental interventions into PaLon expression in P. anserina

were demonstrated that support the importance of a functional

PaLON protease in ageing [39]. Constitutive over-expression of

PaLon resulted in transgenic strains with increased ATP-dependent

serine protease activity. Notably, these strains display (i) lower

levels of oxidatively modified proteins, (ii) reduced secretion of

hydrogen peroxide and (iii) a higher resistance against exogenous

oxidative stress. They are characterized by an extended lifespan

without impairments of vital functions like growth and fertility.

Collectively, these data demonstrate a beneficial effect of

increasing PaLON protease abundance on stress resistance which

could partially contribute to the longevity phenotype in mutants

grisea and PaCox17::ble. However, it should be noted that

PaCox17::ble excretes substantially more H2O2 than the wild type

although it has higher PaLON levels.

Taken together, our data demonstrate significant increases of

mitochondrial content in the long-lived mutants grisea and

PaCox17::ble which both utilize PaAOX as a terminal oxidase

resulting in increased oxygen consumption. We further found that

mutant PaCox17::ble but not grisea produces more H2O2 than the

WT. Although presumably not influencing lifespan, it is possible

that the elevated oxidative stress leads to the phenotypic defects

observed in PaCox17::ble. Thus, modulating pathways involving a

change from COX-dependent respiration to AOX-dependent

respiration does not seem to be a universal option for improving

the functional lifespan (healthspan) of P. anserina.
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