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Climate change is progressively increasing severe drought events
in the Northern Hemisphere, causing regional tree die-off events
and contributing to the global reduction of the carbon sink effi-
ciency of forests. There is a critical lack of integrated community-
wide assessments of drought-induced responses in forests at the
macroecological scale, including defoliation, mortality, and food
web responses. Here we report a generalized increase in crown
defoliation in southern European forests occurring during 1987–
2007. Forest tree species have consistently and significantly altered
their crown leaf structures, with increased percentages of defolia-
tion in the drier parts of their distributions in response to increased
water deficit. We assessed the demographic responses of trees
associated with increased defoliation in southern European forests,
specifically in the Iberian Peninsula region. We found that defolia-
tion trends are paralleled by significant increases in tree mortality
rates in drier areas that are related to tree density and temperature
effects. Furthermore, we show that severe drought impacts are
associated with sudden changes in insect and fungal defoliation
dynamics, creating long-term disruptive effects of drought on food
webs. Our results reveal a complex geographical mosaic of species-
specific responses to climate change–driven drought pressures on
the Iberian Peninsula, with an overwhelmingly predominant trend
toward increased drought damage.
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Global climate change is expected to cause progressively in-
creased frequency and severity of drought events and heat

waves in the Northern Hemisphere (1, 2). Globally, increased
drought impacts have already been recorded over the last several
decades, with anthropogenic forcing widely accepted as the most
plausible cause (2–7). These drought impacts have presumably
altered carbon cycling dynamics over extensive areas, possibly
contributing to the progressive global reduction in the efficiency
of terrestrial sinks (5, 7, 8). Major drought impacts on vegetation
are to be expected in arid and semiarid biomes, which usually
respond to increased water deficit with greater reductions in
productivity, although drought-induced tree mortality occurs
across a broad range of forest types and mean climate conditions
(9). In semiarid and Mediterranean systems, several studies have
recently reported increased plant mortality rates and die-off
events, reduced seedling recruitment, long-term shifts in vege-
tation composition, reduced radial growth, and increased crown
defoliation responses (9–13). Severe droughts also modify forest
biogeochemical cycles by increasing nutrient loss through pre-
mature leaf fall without complete nutrient translocation (14). In
addition, several studies have suggested the existence of impor-
tant drought-induced cascading effects at higher trophic levels,
affecting vertebrate, invertebrate, and fungal consumer pop-
ulations; promoting insect outbreaks; and altering fundamental

mutualistic processes, such as seed dispersal and pollination (10,
11, 15). Overall, the long-term effects of climate change–type
droughts may alter forest physiological responses over extensive
areas (10, 11, 15), potentially leading to extensive tree mortality
and associated consequences for earth system processes (9, 16).
In the Mediterranean basin and meridional Europe, long-term

climatic series and multiproxy studies have demonstrated an un-
precedented and significant increase in heat waves and drought
impacts over the last several decades (6, 12, 17–20). In line with
these findings, the significant increase in the frequency of positive
phases of the North Atlantic Oscillation during winter over the
last several decades has promoted a northward shift of the At-
lantic storm track and possibly triggered droughts and heat waves
in southern Europe (21, 22). Comparisons of observational data
over the last several decades and regional climate change simu-
lations have identified the Mediterranean basin as a hot spot of
hydrological cycle changes, and several regional and global
models have consistently predicted increased drought impacts
and heat waves in this area in the subsequent decades (23, 24).
Droughts produce heterogeneous spatial and temporal impacts,
however, and local studies have reported a wide variety of site-
dependent and species-specific trends, including both positive
and negative physiological responses in forest tree species (14).
These differing findings preclude making generalizations based
on available data at the local scale, and highlight the need for
extensive community-wide assessments of the impacts of drought
(11). We currently lack large-scale, integrative, community-wide
assessments of drought-induced forest responses, such as tree
crown defoliation, mortality, and food web responses.
European national crown condition inventories derived from

the International Cooperative Program on Assessment and
Monitoring of Air Pollution Effects on Forests (hereinafter the
ICP Forest Inventory) provide yearly species-specific measures
of the percentage of defoliation of tree crowns over a wide
geographic area (25). During drought periods, a reduction in
total leaf-transpiration area is a basic response of temperate and
Mediterranean forests (26). Forests affected by drought reduce
overall tree transpiration through adjustments in total leaf area,
allowing improved tree water balance and restoring leaf-specific
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hydraulic conductivity (26). In the present study, we gathered
crown defoliation data from the ICP Forest Inventories (25) to
assess the macroecological impacts of drought on water-limited
southern European forests over the 20-y period of 1987–2006.

Results
We first contrasted the defoliation patterns of southern water-
limited forests relative to central and northern European forests.
According to Fluxnet studies, the gross primary production and
terrestrial ecosystemic respiration of European forests is limited
by water deficit at latitudes below 52°N, whereas temperature
effects predominate at latitudes above 52°N (27). Our analysis of
temporal defoliation dynamics across latitudinal bands demon-
strated a significant increase in crown defoliation rates over
the last two decades only in southern European forests, in con-
trast to the stable and moderate to high defoliation levels seen in
northern and central European forests (Fig. 1). From the mid-
2000s to 2007, the highest defoliation levels were found in
southern Europe.
To quantitatively assess the factors associated with this recent

doubling of crown defoliation rates in southern European forests,
we modeled crown defoliation and drought impacts in the Iberian
Peninsula during 1987–2006. To study drought dynamics, we
applied geographic information system–based interpolation tech-
niques to obtain a monthly sequence of climatic maps for tem-
perature, rainfall, and water deficit during 1951–2006. We then
modeled defoliation responses using a battery of modeling ap-
proaches (Materials and Methods). We assessed the relative effect
on defoliation of (i) climatic and topographic variables (i.e.,
temperature, rainfall, Emberger water deficit index, solar global
radiation, and altitude); (ii) biological interactions (i.e., levels of
vertebrate and insect herbivory, and fungal damage); (iii) soil
structure (i.e., soil type and humus layer depth); (iv) forest
management and fire damage; and (v) interactions between all of
the independent variables explored (SI Appendix, Tables S1–S6).
We also assessed the existence of drought-induced demographic
responses by gathering tree mortality data from the Spanish
National Forest Inventory (Materials and Methods).

We observed a significant tendency for increased mean annual
temperatures and decreased annual rainfall (P < 0.0001) in 1951–
2006, coinciding with recently published meteorological studies of
the study area (28). We studied drought dynamics in the Iberian
Peninsula during 1951–2006 and used time series analysis to
identify trends (SI Appendix, Figs. S1 and S2). We found that
severe droughts occurred in 2005–2006 and during a long period
of drought from 1990 to 1995 that coincided with an anomalous
general circulation situation (4, 22). Coinciding with this long
drought in 1990–1995, we found a strong and generalized crown
defoliation response in all of the tree species examined (Fig. 2).
The increase in crown defoliation during 1987–2006 was statisti-
cally significant for all tree species examined (ordinary least
squares fits, P < 0.001) (SI Appendix, Fig. S3).
The models indicated that drought damage was consistently

the most important factor associated with the generalized in-
crease in defoliation occurring during 1987–2006 (SI Appendix,
Table S4). Associations with drought-related variables were
significant and strongest in species distributed in more xeric
areas (Fig. 3A). To more precisely assess how drought con-
strained the heterogeneity of tree physiological responses along
climatic gradients, we divided the dataset for each species into
quartiles of annual rainfall and independently modeled the de-
foliation and mortality responses to water deficit and tempera-
ture in each quartile (SI Appendix, Materials and Methods). We
found close associations between water deficit and defoliation in
the drier parts of the species’ ranges (Fig. 3A), although each
species demonstrated an idiosyncratic response pattern (SI Ap-
pendix, Fig. S4). The trends for increasing defoliation were
consistent with mortality responses (Fig. 3 C–F). We found
a significant and generalized increase of tree mortality rates
between 1989–1996 and 1997–2007 by comparing the Second
and Third Spanish National Forest Inventories (SI Appendix,
Figs. S5 and S6). In turn, this increase in mortality was signifi-
cantly associated with increased tree density and temperature
effects in the 1997–2007 survey (SI Appendix, Fig. S7).
These results illustrate a complex geographical mosaic of

species-specific responses to increased water deficit pressures.
Our results show that most of the species studied experienced
only partial recovery of crown condition after the 1990–1995
drought (Fig. 2), suggesting long-lasting chronic effects of
drought on crown structure. This reduced capacity for recovery
after drought is possibly due to a combination of limited in-
vestment in leaf production due to chronic stress and the pres-
ence of defoliated or dead modules in the crown that remain as
nonfunctional units for several years (26).
The trophic cascade impacts of climate change–related

droughts at the macroecological scale remain largely unexplored,
although several previous studies have suggested the existence of
important drought-induced cascading effects at higher trophic
levels (10, 11, 15, 29–31). Forest drought usually results in re-
duced shoot growth, reduced nitrogen and water foliar concen-
trations, and increased allocation to secondary defensive
metabolites, such as tannins. The combined effect of these fac-
tors can severely increase the mortality rates of insect herbivores
during severe drought periods (29) and even truncate multiyear
insect outbreak dynamics (32). Similarly, drought can signifi-
cantly reduce the rate of fungal infection and sporulation ca-
pacity (33). We explored the existence of higher trophic-level
effects by mapping insect- and fungal-related defoliation trends
for each tree species, and compared the temporal dynamics of
drought-induced defoliation, fungal damage, and insect herbiv-
ory damage. In the most widespread tree species, Quercus ilex,
we found a sudden decrease in the impact of insect and fungal
defoliation coincident with the abrupt increase of drought effects
on trees in 1994–1995 (Fig. 4). We noted similar significant
trends in insect defoliation in the less common, closely related
species Q. suber (SI Appendix, Figs. S8 and S9). For all other tree
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Fig. 1. A comparison of crown defoliation trends in northern, central, and
southern European forests during 1990–2007. Annual trends in averaged
defoliation per plot (for all species grouped) are plotted for three latitudinal
bands: (A) northern European forests (>58°N of latitude); (B) central Euro-
pean forests (46°N < latitude < 58°N); and (C) southern European forests
(<46°N of latitude).
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species, fungal and insect defoliation patterns were unrelated or
only weakly associated with drought dynamics. These results
suggest the existence of species-specific drought-induced cas-
cading effects at broad scales in the Iberian Peninsula.

Discussion
All of the forest tree species that we examined in the Iberian
Peninsula have experienced a significant increase in crown de-
foliation over the last two decades, attributable mainly to the
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impacts of drought. The observed defoliation trends are consistent
with increased tree mortality rates in drier areas and with sudden
dynamic changes at higher trophic levels. Our results show that
Iberian forests are experiencing long-term chronic effects due to
severe climate change–related droughts, and that these effects are
progressively more pronounced in more xeric localities.
The reported trends toward increasing defoliation and mor-

tality in southern European forests may have positive and neg-
ative effects on the climate system through diverse paths that
remain to be quantified more precisely (34, 35). For instance,
increased crown defoliation in more xeric forested areas might
elevate the albedo of defoliated forests and increase sensible
heat flux to the atmosphere (34, 36). Widespread crown decline
also might reduce the effects of forest evaporative cooling (34),
thereby possibly contributing to the reported declining trend of
global land evapotranspiration (37). Notably, the increase in
crown defoliation might reduce the evaporative cooling capacity
of forests during hot periods and thus have a positive effect on
extreme summer heat waves and long-lasting summer drought
events (38). Moreover, widespread crown condition declines
over large areas potentially could alter local or regional con-
vective uplift dynamics and surface roughness effects (35, 36), as
well as the production of volatile organic compounds and de-
rived aerosols by forests, thereby possibly affecting the solar
radiation balance and cloud formation processes (39).
In terms of chemical cycling dynamics, the trend of increasing

defoliation (Fig. 2) suggests that the effects of drought are likely
reducing the carbon sink efficiency of southern European forests,
thereby contributing to the global reduction in carbon sink effi-
ciency observed in the Northern Hemisphere and at the global
scale (5, 8, 40). These results are in line with the recently

reported global reduction in terrestrial net primary production
over the last decade (7) and suggest that recurrent severe
droughts may directly translate into generalized changes in car-
bon and nutrient cycling dynamics at the macroecological scale in
more xeric Mediterranean areas. Indeed, previous empirical
studies assert that severe defoliation events are also associated
with increased nutrient cycling through leaf fall losses (14).
Similarly, water availability has recently been described as a ma-
jor determinant of terrestrial gross carbon dioxide uptake in
Mediterranean and temperate regions (41). In line with this as-
sertion, European carbon flux anomalies are correlated with
water deficit anomalies (42), terrestrial ecosystems seem to re-
spond to droughts with increased carbon flux to the atmosphere
(27), and dendrochronological studies at the local scale suggest
that important geographic areas in the Mediterranean basin are
already experiencing chronic drought-induced effects on tree
radial growth, growth variability, and crown condition (12, 19). In
the same vein, several empirical studies have reported significant
associations between crown condition decline and fine root
mortality, reduced radial growth, and tree mortality (43–45).
Our present findings add to the increasing number of reports

of drought-induced tree mortality responses, regional forest die-
offs, and vegetation shifts around the globe (9). All of this em-
pirical evidence highlights the need for improved long-term
networks devoted to monitoring the impacts of climate change
on forest health, functional trait variation, genetic variation, and
forest demography (9). Critically, the diverse physiological
mechanisms implicated in the reported defoliation and mortality
responses also remain to be elucidated. These may include long-
distance phloem transport effects, carbon reserve dynamics,
metabolic unbalances, and/or hydraulic failure processes (46).
Finally, our results demonstrate that extreme droughts can

substantially disrupt insect and fungi communities across exten-
sive areas and induce long-term changes in community structure.
These findings are consistent with previous studies that have
reported 10-fold reductions in arthropod richness and abundance
after long-lasting severe droughts and have identified foliage
quantity and quality as important drivers of community structure
(30, 31). Severe persistent droughts produce parallel disruptions
in different groups, affecting ecto-mycorrizal fungi (15), defoli-
ating fungi, herbivore and predator canopy insects, and para-
sitoids (30, 31). Bottom-up effects on vertebrate trophic chains
have been poorly quantified but might occur, given the structural
importance of insect resource channels in vertebrate networks in
the Mediterranean basin (47, 48). Whether large-scale food web
disruptions produced by drought can influence the extinction risk
of vulnerable insect species and secondary consumers is an open
question that warrants further research. This topic may emerge as
a relevant concern related to the conservation of currently en-
dangered biotic communities in the Mediterranean basin (49).

Materials and Methods
Data. Defoliationdata 1987–2007weregathered from the ICP Forests program
(25), mortality data were provided by the Second and Third Spanish National
Inventory (50), and climatic data were derived from records of the Spanish
National Institute of Meteorology (SI Appendix, Materials and Methods).

Climatic and Crown Defoliation Maps. Interpolated climatic and crown defoli-
ation mapswere derived by applyingmixed spatial interpolation methods that
combine global and local interpolations (SI Appendix, Materials andMethods).

Statistical Analyses. For defoliation analyses, we contrasted a battery of
modeling approaches including ordinary least squares, generalized linear
models, spatial simultaneous autoregressive models, generalized estimating
equations, and generalized linear mixed models. First-order autocorrelative
termswere introduced to account for temporal autocorrelation in themodels,
using the CorAR1 function in the R package. Spatial autocorrelation was
assessed by applying Moran’s I correlograms and plotting spatial maps of the
distributions of residuals. Mortality models were based on generalized linear
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Fig. 4. Shift in insect herbivore dynamics associated with drought impacts in
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models with a binomial error distribution (SI Appendix, Materials and
Methods). Times series analyses were applied to assess the significance of
temperature and rainfall trends during 1950–2006 (SI Appendix, Materials
and Methods).
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