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Abstract

Analysis of untyped single nucleotide polymorphisms (SNPs) can facilitate the localization of
disease-causing variants and permit meta-analysis of association studies with different genotyping
platforms. We present two approaches for using the linkage disequilibrium structure of an external
reference panel to infer the unknown value of an untyped SNP from the observed genotypes of
typed SNPs. The maximum-likelihood approach integrates the prediction of untyped genotypes
and estimation of association parameters into a single framework and yields consistent and
efficient estimators of genetic effects and gene-environment interactions with proper variance
estimators. The imputation approach is a two-stage strategy, which first imputes the untyped
genotypes by either the most likely genotypes or the expected genotype counts and then uses the
imputed values in a downstream association analysis. The latter approach has proper control of
type | error in single-SNP tests with possible covariate adjustments even when the reference panel
is misspecified; however, type | error may not be properly controlled in testing multiple-SNP
effects or gene-environment interactions. In general, imputation yields biased estimators of genetic
effects and gene-environment interactions, and the variances are underestimated. We conduct
extensive simulation studies to compare the bias, type | error, power, and confidence interval
coverage between the maximum likelihood and imputation approaches in the analysis of single-
SNP effects, multiple-SNP effects, and gene-environment interactions under cross-sectional and
case-control designs. In addition, we provide an illustration with genome-wide data from the
Wellcome Trust Case-Control Consortium (WTCCC) [2007].
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INTRODUCTION

The rapid improvement of high-throughput genotyping technology and the precipitous drops
of genotyping cost have led to the widespread use of genome-wide association studies
(GWAS) in elucidating the genetic basis of complex human diseases. Because the current
genotyping platforms assay only a small fraction of single nucleotide polymorphisms
(SNPs) in the human genome, many disease-susceptibility loci will inevitably be untyped
(i.e. not genotyped). Thus, it is highly desirable to conduct association analysis at untyped
SNPs. Such analysis can help localize causal variants and facilitate selection of SNPs for
follow-up studies. Such analysis also allows investigators to compare or combine results
from studies that use different genotyping chips. As untyped SNPs are not measured on any
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study subject, the missing information cannot be recovered from the study data alone.
Fortunately, the linkage disequilibrium (LD) structure observed in an external reference
panel, such as the HapMap [The International HapMap Consortium, 2005], can be used to
predict untyped variants from typed variants.

A variety of methods have been developed for the statistical analysis of untyped SNPs. In
particular, de Bakker et al. [2005#x0005D;, Nicolae [2006], and Zaitlen et al. [2007] used
the haplotype frequencies of tag SNPs to estimate the allele frequencies of the untyped SNP
for cases and controls. This strategy, although simple and intuitive, is not statistically
efficient and is confined to case-control comparisons without environmental factors.

In a similar spirit of tagging, Lin et al. [2008] proposed a likelihood-based method for the
analysis of untyped SNPs in case-control studies with or without environmental factors. The
likelihood integrates the study data and external data while reflecting the biased sampling
nature of the case-control design. This method yields consistent and efficient estimators of
genetic effects and gene-environment interactions, and the variance estimators fully account
for the uncertainties in inferring the unknown variants.

A simpler approach is to impute the unknown values of the untyped SNPs for each subject
and then use the imputed values in a downstream association analysis. Statistically speaking,
this two-stage strategy, which is called single imputation in the missing data literature, is
less satisfactory than the maximum likelihood because of its bias and inefficiency [Little,
1992]. However, single imputation has a practical advantage: once the missing data are
imputed, the association analysis can be readily carried out (for any traits and study designs)
in standard software packages.

Given the operational convenience of (single) imputation and the statistical optimality of
maximum likelihood, comprehensive comparisons of these two approaches are sorely
needed. This article provides such comparisons under cross-sectional and case-control
designs. We expand the approach of Lin et al. [2008] to encompass both cross-sectional and
case-control studies. In addition, we develop a tagging-based imputation strategy. We
establish the theoretical properties of the proposed imputation method and conduct extensive
simulation studies to evaluate the performance of the imputation and maximum-likelihood
methods in testing/estimating genetic effects and gene-environment interactions. We apply
the two methods to the GWAS data from the Wellcome Trust Case-Control Consortium
(WTCCCQ).

METHODS
IMPUTATION

Suppose that we are interested in a particular untyped SNP, whose genotype is denoted by
G,. Let Y denote the phenotype of interest, which can be quantitative or qualitative. Also, let
X denote a set of environmental factors. We characterize the effects of genetic and
environmental factors on the phenotype through the conditional density function Py, g «(Y|Gy,
W), where W consists of X and the genotypes of the typed SNPs, and a, p and & pertain to
the intercept, regression parameters, and nuisance parameters (e.g. error variance),
respectively. (If we are interested in the marginal effect of G, then W is an empty set.) We
formulate Py, g «(Y|Gy, W) through a generalized linear regression model with linear
predictor a+p' z (G, W), where 2 (G, W) is a vector-function of G, and W under a
particular mode of inheritance. We assume the additive mode of inheritance in this article,
although all the formulas can be easily modified to accommodate other modes of
inheritance. For a quantitative trait, we specify the linear regression model:
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Y=a+BYZ(G,, W)+e,

where ¢ is zero-mean normal with variance o2. For a binary trait, it is natural to use the
logistic regression model:

ea+ﬂT Z(Gu, W)

Pr(Y=1|G,, W)=——————.
G Wz ()

We use the LD information from a reference panel to select a set of (M—1) typed SNPs that
provides the most accurate prediction of the untyped SNP, where M is a small number,
which is set to five in this article. The accuracy of prediction is measured by R? of Stram
[2004]. The M-locus genotype G consists of G, and Gy, where G; is the genotype of the (M
—1) typed SNPs. Suppose that the M SNPs have a total of K haplotypes. Fork =1, ..., K, let
hy denote the kth haplotype, and m, denotes the frequency of hy. Assume that the Hardy-
Weinberg equilibrium (HWE) holds. For a reference panel of fi trios, the likelihood for z =
(mq, ..., ‘ItK)T is

n
L, (71‘):1—[ Z TTOTT Ty
Jj=1 (/Ik,]I]thlJl,/ ~Gj (2)

where Gj = (GFj, GM;j, GC;) is the genotype data for the jth trio with the M-locus genotypes
GFj, GM; and GC; for the father, mother and child, respectively, and (hy, hy, h, hy) ~ G;
means that (hy, hy) is compatible with GF;, (hy, hy) is compatible with GM;, and (hy, hy), (h,
hy), (hy, hy), or (hy, hy) is compatible with GC;.

By maximizing Lgr(r) given in Equation (2) via the EM algorithm, we obtain the maximum-
likelihood estimator (MLE) z = (1, ..., k) T. Assuming that the haplotype frequencies are
the same between the study population and the external panel, we can estimate the
probability distribution of G, from the observed values of G; for each study subject
according to the formula

ka.h,h(c,guzg»nkm

Pr(G,=g|G; 7;):

, 8=0,1,2,
Zg':o,J,zz , k7T

(hyh G Gy=g) 3)

where (hy, h) ~ (G, G, = g) means that (hy, hy) is compatible with (G, G, = g). We use this
(estimated) probability distribution to impute the unknown value of G, either as the
expected count (i.e. dosage) or the most likely value of G,. We replace the unknown values
of G, by the imputed values for all study subjects to create a “complete” data set, which is
then analyzed by standard regression methods.

In the Appendix A, we prove that the above imputation method yields a valid test of the null

hypothesis Hp:Bg = 0 under the linear predictor a+4,, G,,+/3{.W, where B, and Byy pertain
to the effects of G, and W, respectively, provided that G; is independent of Y conditional on
W. This result holds for both cross-sectional and case-control studies, even when the
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reference panel and the study sample are drawn from different underlying populations.
However, the estimator of Bg,, is generally biased with underestimated variance when Bg,, #
0, and type I error may not be properly controlled for other hypotheses.

MAXIMUM LIKELIHOOD

Let H denote the diplotype associated with the M-locus genotype G. We write H = (hy, h)) if
the diplotype consists of haplotypes hy and h;. In the previous subsection, we formulate the
effects of G and X through the conditional density function P, g =(Y|Gy, W), where W
consists of G; and X. In this subsection, we represent the same regression model in the form
of Py, p,c(Y|9(hk, hy), X), where ¢(h, hy) denote the genotype G induced by the diplotype (hy,
h;). We assume that H and X are independent.

Let n denote the total number of study subjects. Fori=1, ..., n, let Y;, Gy, and X; denote the
values of Y, G¢, and X on the ith subject. For a cross-sectional study, the likelihood for 6 =
(o, BT, ET)T and = takes the form

n

L@m=[]| >, Pape¥iGhu. h), Xmm
i=1 (b )~Gi (4)

where (hg, h)) ~ G means that the diplotype (hy, hy) is compatible with genotype Gi;.

For case-control studies, we assume the logistic regression model given in (1) with the linear
predictor a+pT z (9(hy, hy), X). Because the sampling is conditional on the case-control

n
status, the likelihood takes the retrospective form nleP(G”" XilY2), If there are no
environmental factors and the disease is rare, then this likelihood becomes

n ¥B ZG ) 1

L@, m)= 1—1 (hyeh)~Gyj

T
i=1 ije}ﬁ Z(G(]Ik-h’))ﬂ'kﬂ']

(5)

where 0 = . In the presence of X, the retrospective likelihood involves the unknown
distribution of X, which is high-dimensional. We eliminate the distribution of X by the
profile-likelihood approach [Lin and Zeng, 2006] and replace (5) with the following profile
likelihood:

n Yilu+BT Z(G eI X))

L., ”):l_[ (hgehp~Gyj

BT -
=1 Zk.],ye)m*—ﬁ Z(G Iy Iy )~Xl)}]'[kﬂ']

VYL

where 8 = (1,BT)T, p is an unknown constant, and the summation in the denominator is taken
overk,I=1,...,Kandy=0,1.

The likelihood that combines the study data and the reference panel is Lc(0,7) =
Ls(0,m)LR(m), where Lr(x) is given in Equation (2). We maximize this combined likelihood
via the Newton-Raphson algorithm. We set the initial value of & at z, the maximizer of
Lr(z). To improve numerical stabilities, we exclude the haplotypes whose estimated
frequencies are 0 or very close to 0, i.e. less than max(2/n, 0.001). The MLE of (0, x) is
consistent, asymptotically normal, and asymptotically efficient.

Genet Epidemiol. Author manuscript; available in PMC 2011 December 1.
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Note that the likelihood for case-control studies was previously given in Lin et al. [2008]
and is reformulated in this section to conform with the notation for the imputation method.
The likelihood for cross-sectional studies is new.

SIMULATION STUDIES

We carried out extensive simulation studies to evaluate the performance of the MLE and
imputation methods in realistic settings. We generated genotype data for various sets of five
SNPs according to the LD patterns observed in the HapMap CEU sample. For each SNP set,
we chose one SNP to be untyped in the study data. For some SNP sets, we picked more than
one SNP to be untyped, one at a time, each representing a different scenario. Table | lists the
nine scenarios used in the simulation studies, with R? [Stram, 2004] ranging from 0.41 to
0.98.

We explored three types of association: (1) single-SNP effects, (2) gene-environment
interactions, and (3) multi-SNP effects. For each type of model, we considered both cross-
sectional and case-control designs. Since the case-control design naturally requires a binary
trait, we focused on quantitative traits for cross-sectional studies. Thus, there were six series
of simulation studies. For each setup, we simulated 10,000 data sets with 2,000 study
subjects and 60 trios. Under the case-control design, we set the overall disease rate to be
approximately 1% and selected an equal number of cases and controls. We chose 60 trios for
the reference panel so as to approximate the CEU sample in the current version (i.e. phase 3)
of the HapMap database, which consists of 44 trios, 8 duos, and 17 singletons. For each
simulated data set, we applied the MLE and imputation approaches. For the latter approach,
we imputed the unknown genotype by both the dosage and the most likely genotype, which
are referred to as the IMP-DOS and IMP-MLG methods, respectively. All the analysis was
based on the Wald statistic.

Our first series of simulation studies was concerned with the (marginal) effect of an untyped
SNP on a quantitative trait in a cross-sectional study. We generated the trait value from the
linear regression model

Y=a+BG,+¢,

where ¢ is standard normal and o = 0. Table 11 displays the results for various values of 3.
As expected, the MLE is virtually unbiased in all cases. IMP-DOS also shows negligible
bias, which is not surprising because conditional mean imputation is known to yield
consistent estimators of regression parameters under the linear model [Little, 1992]. The
estimator of B produced by IMP-MLG is seriously biased toward zero and the bias can be as
much as 25% of the true parameter value. For non-zero B, both IMP-DOS and IMP-MLG
tend to underestimate the variances, so their confidence intervals have poor coverage
probabilities. Under scenario S8, in which RZ = 0.98, the coverage probability of the 99%
confidence interval of IMP-DOS is only 98% when 8 = 0.9. IMP-MLG is much worse than
IMP-DOS because it suffers from both biased estimation of parameter and underestimation
of variance; see S1-S3. As predicted by our theory, both IMP-DOS and IMP-MLG have
appropriate type I error. In some cases (i.e. S2, S3, and S5), IMP-DOS is slightly more
powerful than MLE. This phenomenon is attributed to the underestimation of variance by
IMP-DOS. When R? is large (e.g. S7-S9), all methods have the same power.

Genet Epidemiol. Author manuscript; available in PMC 2011 December 1.
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In our second series of studies, we simulated case-control data under the logistic regression
model

a+PBG,

Pr(Y=1IGu)=T"—756.

where o was set to —4.6 to yield disease rates of approximately 1%. The results are
summarized in Table I11. Unlike linear regression, IMP-DOS can produce substantial bias
under logistic regression; see S1-S3 and S5. MLE is now uniformly more powerful than
both IMP-DOS and IMP-MLG,; this feature can be seen more clearly in Figure 1. The power
gain of MLE over imputation persists as RZ approaches 1 because MLE exploits the HWE
assumption, whereas imputation does not. When RZ is low, the bias of imputation (under
non-linear models) also affects its power. Again, all three methods have accurate control of
type | error. As in cross-sectional studies, both IMP-DOS and IMP-MLG tend to
underestimate the variances (for non-zero B) and thus yield poor confidence interval
coverage, especially when B is large and R? is low.

Our third and fourth series of studies were focused on gene-environment interactions under
the cross-sectional and case-control designs, respectively. We generated data from the same
models as in the first two series but with the linear predictors o+, G +B2X+B3G X, where X
is Bernoulli with Pr(X = 1) = 0.4. The results for cross-sectional studies are displayed in
Table 1V. For detecting interactions, both IMP-DOS and IMP-MLG produce confidence
intervals with poor coverage probabilities, especially when the effects are large and the LD
is low; see S1-S6. Both may lose control of type | error and are substantially less powerful
than MLE. The power gain of MLE is largely attributed to its incorporation of gene-
environment independence. The power difference decreases as R? increases. In the extreme
case of RZ = 1, the summation in (4) disappears and MLE is equivalent to imputation. The
results for case-control studies are shown in Table V. Both imputation methods yield biased
estimates, poor confidence interval coverage, and diminished power. The power difference
between MLE and imputation is further illustrated in Figure 2. The power gain of MLE is
again largely attributed to its use of gene-environment independence. If we analyzed the
imputed genotypes (either the dosage or the most likely genotype) by the method of
Chatterjee and Carroll [2005], which also exploits gene-environment independence, then the
power gain of MLE was reduced considerably (results not shown).

Our last two series of studies dealt with multi-SNP effects. We set the untyped SNP to be
causal and included all five SNPs in the joint analysis. For making inference on the effect of
the untyped SNP, the performance of IMP-DOS and IMP-MLG is similar to the first two
series of studies (results not shown). In particular, type I error is properly controlled. This is
not surprising because our theory indicates that imputation yields a valid test of the untyped
SNP even when there are environmental factors or typed SNPs in the model. On the other
hand, if the untyped SNP is associated with the trait, the bias in the estimation of its effect
can cause bias in estimating the null effects of the typed SNPs. Indeed, both IMP-DOS and
IMP-MLG can have inflated type | error in testing the effects of the typed SNPs and the
inflation of type I error becomes more severe as the effect of the untyped SNP increases.
Figures 3 and 4 display these results for cross-sectional and case-control studies,
respectively. As before, MLE has accurate control of type | error.

WTCCC DATA

We considered WTCCC data on type 1 diabetes (T1D). The database contains 1,963
subjects with T1D and 2,938 controls. For the typed SNPs, we applied the standard

Genet Epidemiol. Author manuscript; available in PMC 2011 December 1.
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Armitage trend test. For the untyped SNPs that are cataloged in the HapMap phase 3
database, we applied both MLE and IMP-DQOS, with the phase 3 HapMap CEU sample as
the reference panel. For each untyped SNP, we first identified the typed SNPs within 100 kb
and then found a set of four that yields the largest R2. If there were fewer than eight SNPs
within 100 kb, we enlarged the window until a minimum of eight SNPs were located. If
there were more than 20 SNPs within 100 kb, we restricted our attention to the closest 20
SNPs so as to reduce computation time.

As shown in Figure 5, MLE and IMP-DOS produce nearly identical quantile-quantile (Q-Q)
plots for the untyped SNPs, which are similar to that of the typed SNPs. The deviations of
the test statistics from the null distribution are minor except in the extreme tails, which
correspond to significant associations. The over-dispersion parameter (i.e. the genomic
control &) was estimated at approximately 1.05 for all three plots. These results illustrate
that, for single-SNP analysis, both MLE and imputation have correct type | error.

Figure 6 displays the results of the association tests for both typed and untyped SNPs on
chromosomes 1, 6, and 12, which have the strongest evidence of association. Both MLE and
IMP-DOS were able to identify untyped SNPs that are more strongly associated with the
disease than typed SNPs, but MLE picked out those SNPs more clearly. This is not
surprising since MLE is expected to be more powerful than imputation.

DISCUSSION

We have presented two approaches to the analysis of untyped SNPs and investigated their
properties both theoretically and numerically. The maximum-likelihood approach yields
approximately unbiased parameter estimators, proper confidence intervals, and accurate
control of type I error. It tends to be more powerful than the imputation approach, especially
for case-control studies and in testing gene-environment interactions. The maximum-
likelihood method requires the study sample and reference panel be generated from the same
underlying population and may be numerically unstable when the haplotype frequencies are
low.

We have assumed gene-environment independence in the maximum-likelihood approach.
This assumption is satisfied in most applications and can substantially improve the
efficiency of association analysis, especially in case-control studies [Chatterjee and Carroll,
2005]. It is possible to allow gene-environment dependence, but the analysis will be more
complicated and less efficient.

The imputation approach has some advantages over the maximum-likelihood approach.
Numerically, the former is more stable than the latter. For single-SNP tests, imputation has
proper control of type | error even if the reference panel does not match the study
population. For testing other hypotheses, however, imputation may have inflated type |
error. In general, imputation yields biased parameter estimators and incorrect variance
estimators. Because the bias can be upward and the variance is underestimated, imputation
can sometimes be more powerful than maximum likelihood. Thus, maximum likelihood and
imputation are complementary to each other. One possible strategy is to use imputation
(with the dosage as the imputed value) in the initial single-SNP tests and to use maximum
likelihood for more complex analysis once a region of disease association has been
identified.

For cross-sectional studies, Xie and Stram [2005] showed that the score test based on the
dosage of the risk haplotype is asymptotically valid. We have shown that imputation is
asymptotically valid for single-SNP tests under both cross-sectional and case-control
designs whether the untyped SNP is imputed by the dosage or the most likely genotype.

Genet Epidemiol. Author manuscript; available in PMC 2011 December 1.
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Note that the haplotype analysis does not involve external data, whereas the analysis of
untyped SNPs does.

Because it ignores the random variation of the reference panel, the imputation approach
generally underestimates the variances of the parameter estimators. As the size of the
reference panel increases, the underestimation of variance becomes less severe and thus
confidence intervals have better coverage probabilities. The size of the reference panel,
however, has little influence on the bias of imputation. On the other hand, increasing the size
of the reference panel reduces the variance of the MLE. Indeed, the power of maximum
likelihood improves at a faster rate than imputation as the reference panel becomes larger,
especially under the case-control design (results not shown).

Both MLE and imputation are computationally fast, and the relevant software is available at
our website. It took about 8 hr on a 64-bit, 30-GHz Intel Xeon machine (Chapel Hill, NC) to
perform the MLE analysis on chromosome 1 of the WTCCC GWAS data. Imputation was
slightly faster. The computational savings of imputation will be more substantial if there are
multiple traits of interest because the untyped SNPs only need to be imputed once.

For computational expediency, we used the significance level of 0.01 in our simulation
studies. The relatively small number of replicates required for obtaining accurate summary
statistics at this significance level allowed us to explore a very wide variety of scenarios. It
would be formidable to conduct extensive simulation studies at the significance level of
104 or lower, which would require at least 1 million replicates. We repeated some of our
simulation studies using the significance level of 1074, and the basic conclusions regarding
the relative merits of MLE and imputation remained the same.

We have focused on tagging-based imputation. An alternative approach is to use hidden-
Markov models (HMM) [Browning and Browning, 2007; Marchini et al., 2007; Li et al.,
2008, submitted]. The latter approach, which explores the LD information over a larger
region and incorporates population genetics knowledge, can yield more accurate prediction
of untyped genotypes in certain situations. We chose tagging over HMM in this article for
several reasons: (1) using the same amount of information to infer missing genotypes
ensures that the maximum likelihood and imputation methods are compared on equal
footing; (2) an investigation by the imputation working group of GAIN [The GAIN
Collaborative Research Group, 2007] revealed that tagging is nearly as accurate as HMM
(unpublished data); and (3) tagging is much simpler and faster than HMM and can handle
much larger studies. We are currently trying to incorporate HMM into the maximum-
likelihood framework. The conclusions of this article regarding the relative merits of the
maximum likelihood versus imputation approaches are expected to hold when tagging is
replaced by HMM.
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APPENDIX A: THEORETICAL PROPERTIES OF IMPUTATION

We are interested in the effect of the untyped SNP genotype G, on the phenotype Y adjusted
for the effects of covariates W (if there are any). The covariates, which are required to be
fully observed, may include environmental factors and typed SNPs and are allowed to be
correlated with the untyped SNP. The linear predictor is assumed to take the form of

a+B,, G+ W, where B, and Py represent the regression effects of G, and W,

respectively. Write ,B=(BGH,B§)T. We are particularly interested in testing the null hypothesis
Ho: BGU =0.

Let n denotes the total number of study subjects. Fori=1, ..., n, letY;, G, and W; denote
the values of Y, G, and W on the ith subject. We replace G; by G, where G; is the
imputed value of G based on Equation (3), and then apply standard likelihood methods to
the imputed data set (Y;, Gy, W;) (i = 1, ..., n). The validity of such analysis does not follow
from the standard likelihood theory because the n imputed values {G,}(i = 1, ..., n) are
correlated due to the presence of the estimator x in them.

We first consider cross-sectional studies. The “likelihood” for 0 = (o, BT, £7)T based on the

n —
imputed data set takes the form L(G)=I—[i:1P o8£(YilGui Wi), Denote the resulting estimator
by 8. As mentioned above, standard likelihood theory is not applicable to & because the n
terms in L(0) are not independent.
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Under Ho: Bg, =0, Y is related to W only and is independent of G, given W. Assume that
Gt is independent of Y given W. (This assumption holds if Gt is independent of Y or is part
of W.) Then Gy, which is a function of G; and =, is also independent of Y given W,
regardless of the value of z. In other words, the regression effects of G, and W on Y are the
same as those of G, and W under Hyp. Denote the reference panel by R. Conditional on R,
the imputed values are uncorrelated, so that, under Hg, the random vector 1V2()(8 — 0)
converges to a multivariate normal distribution with mean zero and identity covariance
matrix, where 1(0) = —32 log L(0)/962. Because the limiting distribution does not depend on
R, the convergence also holds unconditionally. Thus, standard likelihood methods can be
used to test Hp (even if the study sample and reference panel are drawn from different
populations).

The above result hinges critically on the null hypothesis Ho: Bg,, = 0 under the linear

predictor a+8;, Gl,+ﬁ‘T‘,W, which ensures that & converges to the true value of 6 conditional
on R. If Bg, # 0, then the asymptotic distribution of 8 conditional on R depends on R, so that
the inverse information matrix 171(8), which ignores the variability in the reference panel,
will underestimate the true variation of §. Thus, the confidence intervals for B, will not
have proper coverage probabilities unless B, = 0. It should also be pointed out that the
validity of association testing is not guaranteed if the linear predictor does not take the form

of a+8,, G, +BL W.

We now consider the analysis of case-control data under the logistic regression model

a4, c;l,Jr/s'{V w

Pr(Y=1/G,, W)=———.
F=1Gu W=

Write 6=(a, 8, . ;{,)T. If Gy, were observed on all study subjects, then the maximum-
likelihood estimator of @ (based on the prospective likelinood) would converge to 8" and its
covariance matrix would be consistently estimated by the inverse information matrix, where
0" is the same as 0 except that o is replaced by a different constant [Prentice and Pyke,
1979]. Let 8 be the maximizer of the (prospective) likelihood based on the imputed data:

n_ Yia+Bg GutBy, Wi
LO=| | ————————

-
i1 1+ea+ﬂGuG’“+ﬁwW'

It then follows from the above arguments for cross-sectional studies that, under Ho: g, =0,
the random vector 11/2(8)(® — ™) converges to a multivariate normal distribution with mean
zero and identity covariance matrix, where 1(0) = —92log L(6)/262. Thus, the association
testing is valid. Again, the variance is underestimated by the inverse information matrix if
B, # 0, and the association testing may not be valid for other types of hypotheses.
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Fig. 1.

Power of testing the effect of an untyped SNP at the 1% nominal significance level under
the case-control design. The solid, dashed, and dotted curves pertain to MLE, IMP-DOS and
IMP-MLG, respectively. SNP, single nucleotide polymorphism; MLE, maximum-likelihood
estimator.
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Power of testing gene-environment interactions at the 1% nominal significance level under
the case-control design. The solid, dashed, and dotted curves pertain to MLE, IMP-DOS and
IMP-MLG, respectively. MLE, maximum-likelihood estimator.
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1.5

2 25

Type | error for testing the null effect of a typed SNP on a quantitative trait at the 1%
nominal significance level in the joint analysis involving a causal, untyped SNP under the
cross-sectional design. The solid, dashed, and dotted curves pertain to MLE, IMP-DOS and
IMP-MLG, respectively. SNP, single nucleotide polymorphism; MLE, maximum-likelihood

estimator.
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Type | error for testing the null effect of a typed SNP at the 1% nominal significance level in
the joint analysis involving a causal, untyped SNP under the case-control design. The solid,
dashed, and dotted curves pertain to MLE, IMP-DOS and IMP-MLG, respectively. SNP,

single nucleotide polymorphism; MLE, maximum-likelihood estimator.
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Fig. 5.

Q-Q plots for the single SNP analysis of the T1D data from the WTCCC study: (A)
Armitage trend test for typed SNPs, (B) MLE for untyped SNPs, and (C) IMP-DOS for
untyped SNPs. Chi-squared statistics exceeding 30 are truncated. The black curve in (A)
pertains to 392,746 typed SNPs that pass the standard project filters, have MAF >1% and
missing data rates <1%, and have good cluster plots. The black curves in (B) and (C) pertain
to 819,727 untyped SNPs that are cataloged in Phase 3 of HapMap with MAF >1%. The Q-
Q plots, which exclude all SNPs located in the regions of association listed in Table I11 of
the WTCCC [2007] paper, are superimposed in blue. The blue curves show that departures
in the extreme tails of the distributions of test statistics are due to regions with strong signals
for association. WTCCC, Wellcome Trust Case-Control Consortium; SNP, single nucleotide
polymorphism; T1D, type 1 diabetes; MAF, minor allele frequencies; MLE, maximum-
likelihood estimator; Q-Q, quantile-quantile.
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Fig. 6.

Results of single-SNP association tests for the WTCCC study of T1D. The log;g P-values
for typed SNPs and untyped SNPs are shown in blue circles and red dots, respectively. The
three rows correspond to chromosomes 1, 6 and 12, which have the strongest evidence of
association. The left column corresponds to the trend test for the typed SNPs and the MLE
method for the untyped SNPs. The right column corresponds to the trend test for the typed
SNPs and the IMP-DOS method for the untyped SNPs. All typed SNPs pass the standard
project filters, have MAF >1% and missing data rate <1%, and have good cluster plots. All
untyped SNPs have MAF >1% in HapMap. WTCCC, Wellcome Trust Case-Control
Consortium; SNP, single nucleotide polymorphism; T1D, type 1 diabetes; MLE, maximum-
likelihood estimator.
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