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Summary

We propose a broad class of semiparametric transformation models with random effects for the
joint analysis of recurrent events and a terminal event. The transformation models include
proportional hazards/intensity and proportional odds models. We estimate the model parameters
by the nonparametric maximum likelihood approach. The estimators are shown to be consistent,
asymptotically normal, and asymptotically efficient. Simple and stable numerical algorithms are
provided to calculate the parameter estimators and to estimate their variances. Extensive
simulation studies demonstrate that the proposed inference procedures perform well in realistic
settings. Applications to two HIV/AIDS studies are presented.
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1. Introduction

Data on recurrent events arise in longitudinal follow-up studies when each subject may
experience a particular event repeatedly over time. Medical examples of recurrent events
include tumor recurrences, multiple infection episodes, and repeated hospitalizations. In
such studies, investigators are typically interested in evaluating the effects of covariates
(e.g., treatment assignments and demographic characteristics) on the recurrent event times
and in predicting the development of future events given the past event history of an
individual.

In practice, recurrent event times are subject to censoring. If censoring is caused by the end
of the study or random loss to follow-up, then the censoring time can be regarded as
independent or noninformative of the recurrent event times. In many applications, especially
in medical studies, the observation on recurrent events may be terminated by the subject's
withdrawal from the study (because of deteriorating health or some other reasons) or the
subject's death. Then the censoring time (i.e., time to the terminal event) is likely to be
correlated with the recurrent event times. Most of the existing methods on recurrent events
(e.g., Prentice, Williams, and Peterson, 1981; Andersen and Gill, 1982; Wei, Lin, and
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Weissfeld, 1989) require noninformative censoring and may yield misleading results when
recurrent event times are informatively censored.

Marginal models have been proposed to analyze recurrent event data in the presence of a
terminal event; see Cook and Lawless (1997) and Ghosh and Lin (2000, 2002). These
models cannot be used to predict the development of future events given an individual's past
event history. In addition, it is difficult to construct efficient estimators under marginal
models.

An attractive alternative approach is to formulate the joint distribution of recurrent and
terminal events through shared frailty or random-effects models. Wang, Qin, and Chiang
(2001) and Huang and Wang (2004) studied a shared frailty model with proportional
intensity and proportional hazards assumptions for recurrent events and the terminal event,
respectively. The model allows an unknown distribution for the shared frailty but requires
covariates to be time independent. The proposed estimators do not appear to be (statistically)
efficient. Liu, Wolfe, and Huang (2004) considered the same model but assumed a gamma
frailty distribution and allowed time-dependent covariates. They developed a Monte Carlo
expectation—maximization (EM) algorithm to calculate the nonparametric maximum
likelihood estimators (NPMLEs), but did not provide theoretical justifications.

In this article, we present a broad class of transformation models with shared random effects
for recurrent and terminal events. Examples of transformation models include proportional
hazards/intensity and proportional odds models. We allow time-dependent covariates and
various (possibly multivariate) random-effects distributions. We propose to estimate the
model parameters by the NPMLEs and establish their theoretical properties. In addition, we
provide simple and efficient numerical algorithms to implement the proposed inference
procedures.

2. Methods

Let N*(t) denote the number of recurrent events the subject has experienced by time t, let T
denote the time to the terminal event, and let Z(t) be a vector of (external) possibly time-
dependent covariates. Let b denote the subject-specific random effects with (multivariate)
density function f (b; y) indexed by a set of parameters y. We assume that N*(-) and T are
independent conditional on b and Z. We specify that, conditional on the covariates Z and
random effects b, the cumulative intensity function of the recurrent event process N*(t) and
the cumulative hazard function of the terminal event time T take the forms

Mg (02:0)=H [y 297" 20aacs)),
and

AT (112:b) =G (fz)egy Z(s)+b" («poits))d/\(s)), @

respectively, where H and G are specific transformation functions, Z(t) is a subset of Z(t)
plus the unit component, « and /5 are regression parameters, A(-) and A(:) are arbitrary
increasing functions, ¢ is a set of unknown constants, and ¢ - Z(s) denotes the component-
wise product of ¢and Z(s).

Biometrics. Author manuscript; available in PMC 2011 January 28.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

(3)

Zeng and Lin

.élogf b

~ ) - A; i -
{/l(Y,-)eBT z.-(Y,')+1)T(¢oz,-(Y;))G, % (f(l)ﬂ-egr z,~(t)+bT(<poz,-(t))dA(,))} X exp {——G (fgie(ﬂ Zi(H)+bT (goz; ””(IA(I))}] f(b;y) db,

X

Slogf, [ At e 200 208 ([ 200 20ans)
i=1 t

Page 3

Our formulation allows very flexible dependence structures, including negative correlations
between recurrent event times. The variance component in the random-effects distribution
characterizes the dependence among recurrent event times while the parameter ¢
characterizes the dependence between recurrent event process N*(:) and terminal event time
T attributed to the unobserved random effects. Zero value of ¢ implies that the dependence
between N* and T can be fully explained by the (observed) covariates. When the variance
component is zero, N* and T would also be independent even if ¢ is nonzero. On the other
hand, if the variance component is nonzero and ¢ is also nonzero, then the variance
component not only accounts for the correlations among recurrent events, but also represents
the dependence between recurrent and terminal events.

Let C denote the noninformative censoring time, which is assumed to be independent of T,
N*, and b conditional on Z. For a random sample of n subjects, the data consist of {Y;, Aj,
N, Zi (0); t< Y} (i=1, ...,n), where Y;j = min(T;, Cj), Aj = | (T; £ C;), and I(-) is the
indicator function. The (observed-data) log-likelihood function for parameters (o, 8, ¢, 7, A,
A)is

) T o 5 ;T o 5 Ri(DAN; (1)
n{a(r)ea Zi ()+b" Zi0) 7 (foea Zi(s)+ Zf(s)dA(S))}
t

X exp {_H ( (};gnJ' Zi(H)+b" ii(t)dA(I))}l

where Rj(t) = I1(Y; = t), AN/ (r) denotes the jump size of N;(¢) at t, a(t) = A'(t), and A(t) = A'(t).
Here and in the sequel, g’ denotes the derivative of g. The dependence of bon i is
suppressed.

We propose to use nonparametric maximum likelihood estimation. In this approach, we
consider A as a step function with jumps only at the observed recurrent event times and A as
a step function with jumps only at the observed terminal event times. In addition, a(t) and
(1) in the likelihood function are replaced by the jump sizes of A(t) and A(t) at time t,
denoted by A{t} and A{t}, respectively. Thus, we maximize the following modified log-
likelihood function

Ri()AN; () : =
)} X exp {—H (f(i)’lefﬂ Zi(ty+ b7 Zi(r)(]A(,))}l

- ~ . . ~ A; . . ~
{ A{Y;) " ZH eoziTGr ( [ie Z,-<r,>+b7(¢oz"<m(,A(,))} X exp {—G ( [Ee zon («;ozf(m‘]/\(’))}l T

The maximization is taken over a,5,4,y, and the jump sizes of A and A. The resulting

AAAAA

We may use quasi-Newton or other optimization algorithms to obtain the NPMLEs. In Web
Appendix A, we provide a simple EM algorithm that regards subject-specific random effects
bj as missing data. In the E-step, we evaluate the conditional expectations of certain
functions of bj given the observed data through numerical approximations. In the M-step, we
maximize the conditional expectation of the complete-data log-likelihood function given the
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observed data. Although the parameters of interest include the jump sizes of A and A at all
observed event times, which can be a large number, we derive simple recursive formulae
such that the maximization is taken over a,f3, ¢,y, and two or four additional parameters
only.

In Web Appendix B, we show that the NPMLES «, £, 4, 7,A(), and A(:) are consistent and
asymptotically normal. In addition, the estimators «, £, 4, and y are asymptotically efficient
in that their limiting covariance matrix attains the semiparametric efficiency bound. It is also
shown in Web Appendix B that the variances and covariances can be estimated by inverting
the observed information matrix for all the parameters, including ., 4,7, and the jump sizes
of A and A. The observed information matrix can be calculated via the Louis (1982)
formula.

3 Simulation Studies

We conducted extensive simulation studies to examine the performance of the proposed
methods in practical settings. We generated recurrent and terminal events from models (1)
and (2) in which Z consists of a Bernoulli variable with 0.5 success probability and a
uniform (-1, 1) variable, « = 8 = (1, 0.5)7, Z = 1, b is normal with mean 0 and standard
derivation 0.5, A(t) = &t, and A(t) = &t2, where & and & are some constants. We generated
the noninformative censoring time from a uniform [0, 5] distribution. We set ¢to 1, 0, or
—1, corresponding, respectively, to positive, zero, and negative dependence between
recurrent and terminal events. We considered H(x) = x or log (1 + x) and G(x) = x or log (1 +
X). We varied the values of & and & to obtain 35% censoring rate for the terminal event and
to keep the average number of observed recurrent events in the range of 0.5 to 2.

We obtained the NPMLESs through the EM algorithm given in Web Appendix A. We set the
initial values of the regression parameters to 0 and the initial value of the variance of the

random effect o7 to 1. We estimated the variances of the NPMLESs by the Louis formula. It
took approximately 8 hours and 24 hours on an IBM HS40 machine to complete 1000
repetitions with n = 200 and n = 400, respectively.

Tables 1-3 summarize the results of the simulation studies. Clearly, the proposed methods
perform well in all cases. The parameter estimators are virtually unbiased, the standard error
estimators reflect accurately the true variations, and confidence intervals have reasonable
coverage probabilities.

4. Examples

4.1 The AIDS Links to Intravenous Experiences Study

We applied the proposed methods to the AIDS Links to Intravenous Experiences (ALIVE)
cohort study (Vlahov et al., 1991). The study collected data on HIV infection, in-patient
admissions, and other variables from a group of intravenous drug users in the city of
Baltimore, Maryland, United States. We considered the hospitalization data collected
between August 1, 1993 and December 31, 1997 on 652 subjects. In this study, the terminal
event was death. There were, on average, 2.5 hospital admissions per subject, and there were
93 deaths. The investigators were interested in assessing the effects of baseline covariates,
such as age, gender, race, and HIV status, on recurrent hospital admissions and death.

We considered the class of logarithmic transformations r1 log (1 + rx) (r > 0) for H and G.
This class includes the proportional intensity/hazards and proportional odds models. We
used the Akaike information criterion to choose the best transformations. Figure 1 shows the
surface of the log-likelihood function for different combinations of H and G. The
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combination of H and G with the largest log-likelihood value corresponds to the
proportional intensity model for hospitalizations and the proportional hazards model for
death. We also considered the class of Box—Cox transformations p—1{(1 + x)* — 1}, and the
log-likelihood surface pointed to the same combination of H and G.

Table 4 summarizes the estimation results under the selected model. There does not appear
to be any race or gender effect on hospitalizations or death. Not surprisingly, the subjects
who were HIV positive tended to be hospitalized more frequently and to die earlier. Even
after adjusting for the patients' demographics and HIV status, there appears to be some
positive association between hospitalizations and death due to unknown factors.

The cumulative rate of hospitalizations conditional on covariates, i.e., E[N*(t) I T > t, Z], can
be expressed as

fbH (f;exp {a/TZ(s)+bT(¢o z (s))} (IA) exp {—G (f;exp {BTZ(5)+bT(<,co A (s))} (IA)} f(byy)db

[,exp {—G ( [hexp {ﬁTZ(s)wLbT(tpo Z (s))‘} dA)} f(by) db

We estimate this function by replacing the unknown parameters by their NPMLEs. Figure 2
displays the predicted functions versus their nonparametric counterparts for the HIV-
positive versus HIV-negative subjects. The nonparametric estimator takes the form of

n n
Zi:ll(Yi 2 f)Ni(f)/Z,.:lI X (Yi 2 1), The two sets of curves are close to each other (except
at the right tails), supporting the choice of the model.

4.2 Community Programs for Clinical Research on AIDS

We also applied our methods to data from the Terry Beirn Community Programs for Clinical
Research on AIDS (CPCRA) (Abrams et al., 1994; Neaton et al., 1994). The main interest
lied in the effects of diadanosine (ddl) as compared to zalcitabine (ddC) on both the survival
and the opportunistic infections in the HIV-infected subjects who previously received
zidovudine and had 300 or fewer CD4 cell per cubic centimeter. Out of the 467 subjects
enrolled in the study, 230 were randomized to the ddl treatment and the remaining 237 to the
ddC treatment. A total of 100 patients in the ddl group and 88 patients in the ddC group died
during the follow-up period of 21 months. There were 172 confirmed or probable
opportunistic infections in the ddI group and 191 in the ddC group. The censoring rate was
60% and the average number of infections per patient was 0.78, with a range of 0 to 5.

We considered the two classes of transformations used in Section 4.1 but restricted the
values of r and p to be between 0 and 1. The combination of H(x) = log (1 + x) and G(x) = X,
i.e., the proportional “odds” model for recurrent infections and the proportional hazards
model for death, yielded the largest likelihood value. Table 5 summarizes the corresponding
estimation results. There is no treatment difference in opportunistic infections. Although
ddC reduces the risk of death as compared to ddl, the reduction is not statistically
significant. There is strong association between the two types of events due to unknown
factors.

5. Discussion

Recently, Zeng and Lin (2007) studied nonparametric maximum likelihood estimation for
several classes of semiparametric regression models with censored data. They did not
consider joint models for recurrent and terminal events. In Web Appendix B, we use the
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general asymptotic theory of Zeng and Lin (2007) to establish the asymptotic properties of
the NPMLEs for our joint models by showing that the regularity conditions of Zeng and Lin
(2007) hold under a set of conditions specific to our problem.

We can extend our models to multiple sequences of recurrent events, such as clustered
recurrent events (Schaubel, 2005). We can also extend our models to deal with multiple
types of terminal events (e.g., death versus voluntary withdrawal). The inference procedures
described in Section 2 can be modified accordingly.

The proposed class of joint transformation models is very broad and thus allows accurate
prediction in a variety of situations. In each application, one would need to determine which
model best fits the data. We used the Akaike information criterion to select the best
transformations in the two examples. We also showed in the first example the use of model-
predicted versus nonparametric estimates of event processes to check the fit of the model. It
is worthwhile developing additional methods for model selection and model checking.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Log-likelihood function surface under the logarithmic transformations for the ALIVE study:
the x- and y-axes correspond to the transformation parameter r for recurrent events and
terminal event, respectively.
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Figure 2.

Estimated cumulative rate functions of hospitalizations for the ALIVE Study: the left and
right panels correspond to the HIV-positive and HIV-negative subjects, respectively; the
solid and dashed curves pertain to the nonparametric and model-based estimates,
respectively.
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Table 4
Estimation results for the ALIVE study
Death Hospital admissions
Estimate  Std.error Estimate Std. error
Black versus nonblack 0.500 0.603 -0.076 0.139
Female versus male -0.404 0.258 0.044 0.075
HIV+ versus HIV— 1.737 0.287 0.299 0.069
Age 0.024 0.018 0.014 0.005
¢ 1.161 0.326
o2 0.284 0.035
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Table 5
Estimation results for the CPCRA study
Death Opportunistic infections
Estimate  Std. error Estimate Std. error
ddC versus ddi —0.368 0.244 —0.002 0.197
¢ 1.481 0.509
o2 1.422 0.380
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