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Abstract

Since genes associated with similar diseases/disorders show an increased tendency for their
protein products to interact with each other through protein—protein interactions (PPI),
clustering analysis obviously as an efficient technique can be easily used to predict human
disease-related gene clusters/subnetworks. Firstly, we used clustering algorithms, Markov
cluster algorithm (MCL), Molecular complex detection (MCODE) and Clique percolation
method (CPM) to decompose human PPl network into dense clusters as the candidates of
disease-related clusters, and then a log likelihood model that integrates multiple biological
evidences was proposed to score these dense clusters. Finally, we identified disease-related
clusters using these dense clusters if they had higher scores. The efficiency was evaluated by a
leave-one-out cross validation procedure. Our method achieved a success rate with 98.59%
and recovered the hidden disease-related clusters in 34.04% cases when removed one known
disease gene and all its gene-disease associations. We found that the clusters decomposed by
CPM outperformed MCL and MCODE as the candidates of disease-related clusters with
well-supported biological significance in biological process, molecular function and cellular
component of Gene Ontology (GO) and expression of human tissues. We also found that
most of the disease-related clusters consisted of tissue-specific genes that were highly ex-
pressed only in one or several tissues, and a few of those were composed of housekeeping
genes (maintenance genes) that were ubiquitously expressed in most of all the tissues.
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Introduction

With the increase in availability of human pro-
tein interaction data and gene expression data, the
focus of bioinformatics development has shifted from
understanding networks encoded by model species to
understanding the networks underlying human dis-
ease [1]. Predicting human disease-related clus-
ters/subnetworks using a biomolecular network is
critical to gain an understanding of disease mechan-
isms, and is also essential for the development of new
diagnostics and therapeutics. Subnetworks are of
great importance because they not only provide con-
crete hypotheses as to the molecular complexes, sig-
naling pathways, but also offer mechanistic hypo-
theses about the causes of disease [2].

Integrating known disease genes with physical
or biomolecular networks and gene expression data to

identify disease-related subnetworks can help us ex-
plain many genetic and environmental factors in-
fluencing a disease in the context of a smaller number
of discrete subnetworks as well as the causes or effects
of the disease phenotype. In recent years, many stu-
dies had shown the utility of these networks in ex-
tracting disease-related clusters/subnetworks [2] and
inferring disease-causing genes [2, 7-11]. Qiu et al. [3]
proposed a method to detect disease-related gene
modules or dysfunctional pathways based on global
characteristics of interactome coupled with gene ex-
pression data. The modules or pathways were in-
ferred based on gene’s active score function which
was defined based on the kernel trick. They applied
the proposed method to two cancer related problems,
i.e. breast cancer and prostate cancer, and successfully
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identified active modules or dysfunctional pathways
related to these two types of cancers with literature
confirmed evidences. Karni et al. [4] presented an
approach to causal gene prediction that was based on
integrating PPl network data with gene expression
data under a condition of interest. They applied a
set-cover-like heuristic to identify a small set of genes
that best “cover” the disease-related genes and pre-
dicted possible genes that were involved in myasthe-
nia gravis. Calvano et al. [5] assembled an endotoxin
inflammatory response network by integrating func-
tional interactions curated from the literature with
gene expression information. The response network
enabled the identification of new endotox-
in-responsive modules. Ghazalpour et al. [6] con-
structed a gene coexpression network using microar-
ray profiles gathered from the livers of a panel of
mice, and plenty of subnetworks in the network were
extracted to be enriched for genes in loci with strong
associations to a physiological trait, yielding a matrix
of module/trait associations. Lage et al. [12] devised a
phenotype similarity score and used it to look for
protein complexes whose genes were associated with
similar phenotypes. Similarly, Fraser et al. [13]
showed that identifying human protein complexes
containing known disease genes was an efficient me-
thod for large-scale disease gene discovery.

In contrast to the above studies, Goh et al. [14]
built a network of human disease/ human gene asso-
ciations, which was a bipartite graph consisting of two
disjoint sets of nodes. One set corresponded to all
known genetic disorders, whereas the other set cor-
responded to all known disease genes in the human
genome. A disorder and a gene were then connected
by a link if mutations in that gene were implicated in
that disorder. They found that disease genes causing
similar diseases exhibited an increased tendency for
their protein products to interact with one another,
and tend to be coexpressed in specific tissues [2].

Combining these network-based disease studies,
the overriding conclusion is that genes associated
with a particular disease tend to exhibit high connec-
tivity and cluster together [2, 14, 15, 16]. Thus, the
hypothesis is that disease genes within such dense
clusters in a biomolecular network that more likely
interact with one another than with others often cause
similar diseases and is becoming an increasingly sig-
nificant factor for hunting human disease-related
gene clusters/subnetworks.

In this paper, we tackled the prediction problem
by clustering analysis integrating PPI networks and
gene expression data, and superimposing a set of
known disease genes on human PPI network in a dif-
ferent way. Firstly, we used clustering algorithms,

Markov cluster algorithm (MCL) [22, 23], Molecular
complex detection (MCODE) [21] and Clique percola-
tion method (CPM) [24] to decompose human PPI
network into dense clusters, and then a log likelihood
model that integrates multiple biological evidences
was proposed to score these dense clusters. Finally,
we identified disease-related clusters using these
dense clusters if they had higher scores. The efficiency
was evaluated by a leave-one-out cross validation
procedure. In addition, we also gave a comparison of
the clusters decomposed by MCL, MCODE and CPM
as the candidates of disease-related clusters.

Materials and Methods
Biological Data

The disease genes data was obtained from Goh
et al. [14], and they collected the data from the Online
Mendelian Inheritance in Man (OMIM) [17] which
contains 1284 disorders and 1777 disease genes. Fur-
ther, they classified each disorder into 22 primary
disease/disorder classes manually based on the phy-
siological system affected by the disorder.

The human protein-protein interaction (PPI)
data was also gained from Goh et al. [14], and they
combined two high quality systematic yeast
two-hybrid experiments [18, 19] with PPIs obtained
from literature by manual curation [18]. The inte-
grated set of PPIs contains 22052 non-self-interacting,
non-redundant interactions between 7533 genes.

The used gene expression microarray data was
from Ge et al. [20], which is available for 36 normal
human tissues. A gene is considered to be “ex-
pressed” if the P-value associated with its transcript
abundance is less than the threshold, P-value<0.02. A
gene is considered as housekeeping gene (mainten-
ances gene) if it is expressed, and confidently detect-
able (P-value<0.01) in most human tissues [20].

Clustering Algorithms

Three classic clustering algorithms used to de-
compose the human PPI networks into dense clusters
are shown in the following:

Molecular complex detection (MCODE) pro-
posed by Bader and Hogue [21] was an effective ap-
proach for detecting densely-connected regions in
large PPI networks. MCODE made use of local graph
density to find protein complex. PPI networks were
transformed to weighted graphs in which vertices
were proteins and edges represented protein interac-
tions. The algorithm operated in three stages: vertex
weighting, complex prediction and optimal
post-processing. First it assigned a weight to each
vertex, corresponding to its local neighborhood den-
sity. Then, starting from the top weighted vertex (seed
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vertex), it recursively moved outward, including in
the cluster vertices whose weight was above a given
threshold. This threshold corresponded to a us-
er-defined percentage of the weight of the seed vertex.
The results showed that MCODE effectively found
densely-connected regions of a molecular interaction
network solely based on connectivity data. Many of
these regions corresponded to the known molecular
complexes.

Markov cluster algorithm (MCL) [22, 23] was a
fast and scalable unsupervised clustering algorithm. It
was designed to meet the challenge of finding cluster
structure in simple and weighted graphs. The MCL
algorithm simulated random walks within a graph by
the alternation of expansion and inflation operations.
Expansion referred to taking the power of a stochastic
matrix using the normal matrix product. Inflation
corresponded to taking the Hadamard power of a
matrix, followed by a scaling step, so that the result-
ing matrix was again stochastic. Eventually, iterating
expansion and inflation resulted in the separation of
the graph into different segments.

A novel network clustering method, Clique
Percolation Method (CPM) was proposed to reveal
the overlapping modules in PPI networks [24]. In
CPM, a module was defined as a union of all k-cliques
(complete subgraph of size k) that can be reached
from each other through a series of adjacent k-cliques
(where adjacency means sharing k-1 nodes). This
method performed well in detecting overlapping
functional modules/ protein complexes.

Evaluating Criteria

Disease Related Coefficient (DisRC) is used to eva-
luate the degree of the cover between the clusters
decomposed from human PPI network, and the
classes of disease associated genes.

[Cln[D,]
|C]

where, C is the set of genes of a cluster; D; is the
set of genes that causing disease, i. |C| and |D;| de-
note the number of genes in C and D; respectively.
[CINID |

|C]
represents the “best cover”, and C is assigned to the
corresponding disease class.

Since disease associated genes which more likely
interact with each other often lead to similar dis-
ease/disorder, a group of genes associated with the
same disease/ disorder should share similar cellular
and functional characteristics, as annotated in Gene
Ontology (GO) [14, 27]. To investigate its validity, we

DisRC(C) = Max( ) (1)

DisRC(C) equals the maximal that

introduced the Biological Process Related Coefficient
(BPRC), Molecular Function Related Coefficient (MFRC)
and Cellular Component Related Coefficient (CCRC) of a
disease-related cluster, defined as the maximum frac-
tion of genes among those belonging to a dis-
ease-related cluster that had same GO annotation in
biological process, molecular function and cellular
component respectively. Using these criteria, we
measured the consistency of each disease-related
cluster separately with each branch of GO, biological
process, molecular function, and cellular component.

BPRC, MFRC and CCRC are used to score the
consistency of genes within disease-related clusters in
GO annotations respectively.

BP

BPRC(C) :Max(|j?|) ..2)

MFRC(C) :Max(|j?|) ..(3)
cc

CCRC(C) = Max(l-’a) ..(4)

where, tF denotes the number of genes have
same GO annotation, j in biological process. tMF and
£C are similar to #{5F.

Disease genes encoding proteins that interact
highly with each other tend to be coexpressed in the
same human tissues. To measure this, we introduced
the Tissue-Related Coefficient (TRC) of a disease-related
cluster, defined as the maximum fraction of genes
among those belonging to a disease-related cluster
that were coexpressed in a specific tissue [14, 20].

TRC quantifies whether genes that are in a dis-
ease-related cluster tend to be coexpressed in similar
human tissues.

nl‘
1C|

TRC(C) = Max(—) ..(5)

where, n; denotes the number of genes, that are
coexpressed in the tissue, f. If all the genes are coex-
pressed together in at least one tissue, the maximal

value is 1; the minimum value is——, when all are

coexpressed in different tissues [14].
Our Method

The input to a disease-related cluster prediction
problem consists of a human PPI network, the classes
of known disease genes based on physiological sys-
tem affected, and gene expression microarray data.
The goal is to identify disease-related clusters.
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Since genes associated with similar diseas-
es/disorders show an increased tendency for their
protein products to interact with each other through
PPIs, we decomposed the human PPI network into
dense clusters by clustering algorithms (MCL,
MCODE and CPM) as the candidates of dis-
ease-related clusters. In order to extract dis-
ease-related clusters from these candidate clusters
and evaluate the statistical significance of the dis-
ease-related clusters in multiple biological evidences,
we gave a log likelihood model that was similar to
that recently proposed by Sharan et al. [28, 29] to
measure the fit of the candidate cluster to a dis-
ease-related cluster.

L(C)=Max(3, wF(p) ()
pieT
where
0, 0<p<l-a
1—(og L +10g =%+ B)/y, 1-a<p <05 ; the
pi 1-p,
F(p)= u l—a
(log—+log1 +8)/y, 05<p <a
pPi T i
1, a<p <1

genes within a candidate cluster interact with a high
probability a, and this cluster may be suggested as a
disease-related cluster that is not random; B,y are the
tuning parameters that are used for normalization;
wi=1/|T|;
T={DisRC(C);BPRC(C);MFRC(C);CCRC(C),TRC(C)}.

This model integrates multiple biological evi-
dences in T to score the statistical significance of a
disease-related cluster. For each candidate cluster C,
we calculated the L(C) of the cluster related to a spe-
cific disease, and assigned it to the corresponding
disease that received the maximal value. A group of
genes with a higher score is more significant corres-
ponding to a disease-related cluster than the one with
a smaller score.

Eq. 6 can be simplified in the following:

L(C)=Max(D_w,F(p,));

piel

= Z Max(w,F(p,));

piel

= > wMax(F(p,));

piel

= D wMax(F(p,);

piel

= > wF(Max(p,));

pel

=2 wF(p);
p;el

Here, the a was set to 0.9 [28, 29] , and [,y=2;
DisRC = 0.5 which kept 50% genes out of the candi-
date clusters were known disease genes involving in
specific disease. We finally filtered these candidate
clusters with L(C) = 0.5 to ensure the statistical signi-
ficance of disease-related clusters in multiple biolog-
ical evidences.

Results
Disease-Related Clusters Detection

The biological data involving in disease genes
data, human PPI data and gene expression data used
by our method for disease-related clusters detection
have been discussed beforehand. The three classic
clustering algorithms: MCODE (Parameters: Include
Loops: false, Degree Cutoff: 2, Node Score Cutoff: 0.2,
Haircut: true, Fluff: false, K-Core: 2, Max. Depth from
Seed: 100), MCL (Expand: 2.0, Inflation: 2.0) and CPM
(3-clques) can be found in the above section. Since our
method for disease-related clusters detection made
use of the dense clusters decomposed by these clus-
tering algorithms from the human PPI network, in
this section, we evaluated our method’s performance
based on the candidate clusters from each of these
clustering algorithms respectively, and by the way,
compared these clustering algorithms” performance.

Table | The results for detecting disease-related clusters
based on the log likelihood model.

Methods No. of clus-
ters

cluster size> L(C)20.5 Max L(C) Min L(C) Avg.L(C)
3

No. of disease-related clusters

CPM 350 47 1.0 0.506 0.747

MCODE 49 1 0.619 0.619 0.619

MCL 1021 44 1.0 0.510 0.689
In the table, our method detected 47

(47/350=13.43%) disease-related clusters from 350
candidate clusters of CPM with L(C) 20.5. Similarly,
one (1/49=2.04%) disease-related cluster from 49
candidate  clusters of MCODE, and 44
(44/1021=4.31%) disease-related clusters from 1021
candidate clusters of MCL were discovered respec-
tively. The L(C) = 1.0 means that the disease-related
clusters achieve perfect support in multiple biological
evidences (DisRC, BPRC, MFRC, CCRC, TRC=1.0, si-
multaneously).

Fig. 1 showed the L(C) of each disease-related
cluster in an ascending order. From the figure, we
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found that most of the disease-related clusters ob-
tained from the candidate clusters of CPM gained
higher L(C) than MCL, it was similar to the mean
value of L(C). Since only one disease-related cluster
was acquired from the candidate clusters decomposed
by MCODE, we only discussed MCL and MCODE in
this section.

Leave-One-Out Cross Validation

To evaluate the performance of our method, we
employed a leave-one-out cross validation procedure
[29]. In each cross validation trial, we selected k
known disease genes that associated with dis-
ease-related clusters (128 known disease genes are
associated with 47 disease-related clusters of CPM,;
130 known disease genes are associated with 44 dis-
ease-related clusters of MCL, these k known disease
genes are uniformly distributed in the detected dis-
ease-related clusters) with equiprobability and re-
moved all the gene-disease associations involving the
genes from the data, and our method was evaluated
by its success in identifying the disease-related clus-
ters that had been hidden. Given that the dis-
ease-related clusters detected above were the putative
disease-related clusters. A disease-related cluster was

correctly identified if it was assigned to a same dis-
ease with the above section. Here, we validated our
method to use the disease-related clusters data de-
tected from the candidate clusters of CPM and MCL
respectively.

We evaluated our method’s performance in
terms of precision versus recall when considering var-
ious values of k (k=15,...,1). Precision is the fraction of
true disease-related clusters that are correctly de-
tected in the corresponding trial of the cross valida-
tion procedure. Recall is the fraction of trials in which
the hidden disease-related clusters were recovered.
The results were depicted in Fig. 2. For k=1, in using
disease-related clusters identified from candidate
clusters of CPM, our method achieved a success rate
with 98.59% and recovered the hidden disease-related
clusters in 34.04% cases when removed one known
disease gene and all its gene-disease associations. Si-
milarly, in using disease-related clusters identified
from candidate clusters of MCL: Precision = 98.45%
and Recall = 31.81%. For 1<k<15, we found that the
higher the value of k, the lower the value of Precision
and Recall.
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Fig.l The L(C) of these disease-related clusters in an ascending order. The black line in the purple pane denotes the mean

value of the L(C).
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Fig. 2 The leave-one-out cross validation for disease-related clusters detection. The figure shows recall versus precision

when considering various values of k.

Statistical Analysis

Table 2 showed the results of the disease-related
clusters with different criteria. In the table, the dis-
ease-related clusters detected from the candidate
clusters of CPM obtained better performance than
MCL in DisRC (0.715>0.696), BPRC (0.895>0.805),
MFRC (0.697>0.630), CCRC (0.770>0.733) and TRC
(0.839>0.771). In these criteria, the minimal average
value was 0.630 in MFRC, which showed better
enrichment in multiple biological evidences.

Table 2 The Comparison of disease-related clusters de-
tection.

Methods No. of dis- Avg.

ease-related

clusters

L(C) 20.5 DisRC BPRC MFRC CCRC TRC
CPM 47 0715 0895 0.697 0.770 0.839
MCL 44 0.696 0.805 0.630 0.733 0.771

Fig. 3 presented the results of the disease-related
clusters at each disease class. In Fig. 3A, 11 dis-
ease-related clusters out of 47 associated with disease
class: Immunological were detected that was more than
other disease classes in CPM. Similarly, In Fig. 3B, 5

disease-related clusters out of 44 related to disease
class: Multiple was in MCL. From Fig. 3C and Fig. 3D,
in most of the disease classes, we found that the av-
erage value of each criterion was above 0.6 which
denoted the higher homogeneity of the genes within
these disease-related clusters in biological process,
molecular function and cellular component of GO,
and expression in the same human tissues.

The distribution of disease-related clusters was
showed in Fig. 4. From Fig. 4A and Fig. 4B, we found
that a common feature that most of disease-related
clusters were distributed in DisRC, BPRC, MFRC,
CCRC, TRC € [0.6, 0.8), and =1.0, and a few of those
were in DisRC, BPRC, MFRC, CCRC, TRC € [0.8, 0.1).
In particular, almost 50% of disease-related clusters
were in BPRC, MFRC, CCRC, TRC =1.0, which
showed that the genes within these disease-related
clusters won perfect biological significance in biolog-
ical process, molecular function and cellular compo-
nent, and expression in the same human tissues. It
was in contrast to L(C), most of disease-related clus-
ters were concentrated in L(C) € [0.6, 0.8) and e [0.8,
0.1), and a few of those were in L(C) =1.0. Since L(C)
was an integrated evaluating criterion of DisRC,
BPRC, MFRC, CCRC, TRC, it had a different distribu-
tion.
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Fig. 4 The distribution of disease-related clusters at each evaluating criterion.

Tissue-specific genes are only coexpressed in one
or several organ, which is in contrast to housekeeping
genes (maintenance genes) that are ubiquitously
coexpressed in almost tissues [25, 26]. Maintenance
genes play key roles in various cellular process, tis-
sue-specific genes are related to the functioning of
different organs. Knowing how genes are expressed
in normal tissues not only is of fundamental impor-
tance for functional genomics, but also might contri-
bute to the study of complex diseases [4, 20, 25, 26].

In the results, most of the disease-related clusters
consisted of tissue-specific genes, and a few of those
were composed of housekeeping genes (maintenance
genes). For example, 9 (9/47=19.15%) disease-related
clusters out of 47 consisted of housekeeping genes in

CPM, and 5 (5/44=11.36%) disease-related clusters
out of 44 were composed of housekeeping genes in
MCL.

Fig. 5 showed two disease-related consisting of
tissue-specific genes and their corresponding diseas-
es. In Fig. 5B, this disease-related cluster caused Can-
cer with DisRC=1, BPRC=1, MFRC=1, CCRC=1 and
TRC=1, which acquired perfect biological signific-
ances. Fig. 6 showed a disease-related cluster that was
composed of housekeeping genes (maintenance
genes) (see Fig. 6A). From Fig. 6B and Fig. 6C, we
found that the genes within this disease-related clus-
ter were coexpressed in most of human tissues with
P-value <0.01.
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A

Disease 1D

CTHMEBT

Disease ID QM ID Disease name Disease class

56 300100 Adrenolevkodysmephy Neurological
202370 Adrenoleukodysirophy. neonatal Neurological

1307 266500 Refium disease Neurelogicsl
266510 Bafsym disease, infantile, MNeurological

1325 215100 Rhizomelic chendrodysplasia punctata, type 1, Multple
500121 FPhizomelic chondrodysplasia punctata, type 3, Multple

16153 214100 Zellweger syndrome, Multiple

348 1143500 Celon cancer, somatic, Cancer

427 125853 Diabetes mellits, Endocrine
222100 Dizbetes mell ines, msulin-dependent, Endocrine
S00320 Dnzbetes mellitus, msulin-dependent, Endocrme
222100 Diabetes mellitus, insulin-dependent, susceptbiity to, Endocrine
504367 Dizbetes mellitas, msulim-resistant, with aganthesis nigrnicans | Endocrme

and hypertsnsion,
HSO5176 Dhabetes mellius, neonatal-onset, Endocrme
125853 Diabetes mellitus, ponmsulm-dependent, Endocrme
601283 Dizbetes meallites. nonmsulin-dependent, Endecrne
S0S0E9 Dizbetes melltus, permament neonatal, with gershellar | Endocrme
agenesis,

222100 Diabetes mellinus, type L suscepubility to, Endocrime
603933 Dizbetic nephropathy, susceptibiity to, Endocrine

668 113550 Hepatogellular cancer, Cancer

535 S01626 Leukemia, acute myelowd, Cancer
608232 Leukemia, chrenic myeleid, Cancer
SOTTRS Leukemia juvenile myelomonocybic, Cancer

1020 125850 MODY, type I, Endocrine
125851 MODY. wpe II, Endocrme

1170 604370 Owvarian cancer, Cancer

230 132600 Pilomatricoma, Cancer

Fig. 5 Two disease-related clusters consisting of tissue-specific genes, the red nodes denote genes, and the links between
them represent interactions, the emerald green nodes are disease IDs, and the links between them shows they share at least
one common disease genes. The link between a gene and a disease ID represents that the gene leads to this disease. The
table in the bottom shows the details about diseases, one gene may lead to multiple diseases.
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(A) the disease-related cluster
related cluster; (C) the detected

fidently detectable (P-value<0.01) in

Fig. 6 One disease-related cluster consisting of housekeeping genes (maintenance genes).

and their corresponding disease; (B) the expression levels of the genes in the disease-

P-value of each gene in human tissues. Note that the maintenances genes should be con

most tissues.
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Analysis of Disease-Related Clusters

In the results of our experiments, we found a
disease-related cluster (PEX1, PEX6, PEX26) involv-
ing in disease class, Multiple was detected from both
the candidate clusters of CPM and MCL with L(C)
=1.0. The PEX1 leads to Zellweger_syndrome (OMIM
ID: 266510), Refsum disease (OMIM ID: 214100), Adre-
noleukodystrophy (OMIM ID: 202370). Similarly, the
PEX6 results in Peroxisomal_biogenesis_disorder, and
the PEX26 causes Zellweger_syndrome, Refsum disease,
Adrenoleukodystrophy. The proteins within this cluster
are also enriched with GO terms: protein import into
peroxisome matrix (P-value = 1.38e-09), protein tar-
geting to peroxisome (P-value = 4.19e-09), perox-
isomal transport (P-value = 5.23e-09) of biological
process, and protein C-terminus binding (P-value
5.01e-06), protein complex binding (P-value =
2.42e-05) of molecular function, and peroxisomal
membrane (P-value = 1.11e-07), microbody mem-
brane (P-value = 1.11e-07), microbody part (P-value =
2.13e-07) of cellular component.

The disease-related clusters (CEBPA, CTNNBI1,
TCF1) (see Fig. 5B) associated with disease class, Can-
cer was obtained from the candidate clusters of CPM
with L(C) =1.0. The CEBPA is a causal gene of Leuke-
mia, acute myeloid (OMIM ID: 601626), the CTNNBI1
causes Colorectal cancer, Hepatoblastoma, Hepatocellular
carcinoma (OMIM ID: 114550), Ovarian carcinoma, Pi-
lomatricoma (OMIM ID: 132600), and the TCF1 is asso-
ciated with Diabetes mellitus, insulin-dependent (OMIM
ID: 222100), Diabetes mellitus, noninsulin-dependent
(OMIM ID: 125853), Hepatic adenoma (OMIM ID:
142330), MODY, type 1II (OMIM ID: 600496). This
cluster (CEBPA, CTNNBI, TCF1) is also abounded in
GO terms: liver development (P-value = 0.00099) of
biological process, and specific RNA polymerase II
transcription factor activity (P-value = 0.00023) of
molecular function, and transcription factor complex
(P-value = 0.00232) of cellular component.

A disease-related cluster (NCF2, CYBA, CYBB)
involving in disease class, Immunological was gained
from the candidate clusters of MCL with L(C) =1.0.
The NCF2 is a causal gene of Chronic granulomatous
disease due to deficiency of NCF-2, (OMIM ID: 233710),
the CYBA causes Chronic granulomatous disease, auto-
somal, due to deficiency of CYBA (OMIM ID: 233690),
and the CYBB is associated with Chronic granulomat-
ous disease, X-linked (OMIM ID: 306400). The cluster is
also enriched with GO terms: superoxide anion gen-
eration (P-value = 6.44e-09), respiratory burst (P-value
= 1.31e-08), superoxide metabolic process (P-value =
3.77e-08) of biological process, and superox-
ide-generating NADPH oxidase activity (P-value =

5.15e-06), electron carrier activity (P-value = 6.63e-06)
of molecular function, and NADPH oxidase complex
(P-value = 1.27e-09) of cellular component.

In Fig. 6A, the disease-related cluster consisting
of housekeeping genes (EIF2B2, EIF2B3, EIF2B4,
EIF2B5, EIF2S2) is associated with Leukoencephalopathy
with vanishing white matte and Owvarioleukodystrophy
(OMIM ID: 603896). The GO annotation indicates that
this cluster takes part in biological process: oligoden-
drocyte development (P-value = 8.40e-11), oligoden-
drocyte differentiation (P-value = 2.41e-09), glial cell
development (P-value = 3.40e-09), has same molecular
function in translation initiation factor activity
(P-value = 6.84e-13), translation factor activity, nucleic
acid binding (P-value = 1.54e-11), RNA binding
(P-value = 6.93e-07), and corresponds to eukaryotic
translation initiation factor 2B complex (P-value =
5.28e-14).

Two disease-related clusters involving in BRCA1
(breast cancer 1, early onset) and BRCA2 (breast can-
cer 2, early onset) were discovered. The BRCA1 is a
causal gene of Breast-ovarian cancer, Ovarian cancet,
Papillary serous carcinoma of the peritoneum, and the
BRCA?2 is associated with Breast cancer, male, suscepti-
bility to (OMIM ID: 114480), Fanconi anemia, comple-
mentation group D1 (OMIM ID: 605724), Pancreatic
cancer (OMIM ID: 260350). We also found a dis-
ease-related cluster involving in RAD51IA and
RADS54L that are associated with several Breast Can-
cer variants (RAD51A, Breast cancer, susceptibility to,
OMIM 1ID: 114480; RADS54L, Breast cancer, invasive
intraductal), and two disease-related clusters, (BUB1B,
BUBR1, BUB1) and (MLH1, PMS1, MLH3, MLH3,
PMS2), which are associated with several Colorectal
Cancer variants.

Discussion

Human disease-related gene clus-
ters/subnetworks are of great importance because
they not only provide concrete hypotheses as to the
molecular complexes, signaling pathways, but also
offer mechanistic hypotheses about the causes of dis-
ease [2]. With the development of biological experi-
ment methods, protein interactions and gene expres-
sion data are becoming more and more complete,
which offer valuable biological materials for dis-
ease-related clusters analysis.

The used clustering algorithms such as CPM,
MCODE and MCL were initially proposed to identify
functional modules or protein complexes — groups of
genes within which connections are dense while be-
tween which they are sparse, it is consistent with the
characteristic of disease-related gene clusters of Goh
et al. [2, 14, 15, 16] that disease genes causing similar
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diseases exhibit an increased tendency for their pro-
tein products to interact with each other. We used
CPM, MCODE and MCL to decompose human PPI
network into dense clusters as the candidates of dis-
ease-related clusters. It is analogous to Lage et al. [12]
and Fraser et al. [13] who looked for protein com-
plexes whose genes were associated with similar
phenotypes and discovered large-scale disease genes.

In previous studies, many methods used PPI
networks to uncover novel disease-causing genes [2].
Lim et al. [7] built a PPI network around 23 proteins
involved in inherited ataxias using Y2H screens, and
used this network in uncovering novel ataxia-causing
genes and genetic modifiers for ataxia. Pujana et al. [8]
constructed a breast cancer-related network starting
with four known breast cancer-associated genes for
predicting new genes associated with breast cancer.
Oti et al. [9] predicted new disease associated genes
that fell within one of the significant loci and had a
protein interaction with a gene already known to
cause disease. In addition, PPl networks were also
employed for disease candidate gene prioritization.
Franke et al. [10] used the known molecular interac-
tions and the predicted functional relations to con-
struct a functional human gene network that was used
to rank the candidate genes on the basis of their inte-
ractions. Chen et al. [11] described a candidate gene
prioritization method that was entirely based on PPI
network analyses and successfully used for disease
candidate gene prioritization. Here, we can also pre-
dict novel disease-causing genes based on dis-
ease-related gene clusters. Given that the unknown
disease genes also cause similar disease with the
known disease genes in the identified disease-related
clusters, our method predicted 47 new disease genes
(SEPT4, UBB, RASD1, FBLN1, GFRA1, SCGBI1Al,
CFH, C8A, BF, IFNG, GATA4, NKX2-5, F3, PLAU,
PKN1, MAG, IGFALS, IGFBP3, IGFBP5, HSPA5, IL7,
DIPA, CYCS, IL13RA1, SPTAN1, ABCD1, ABCD2,
CIR, HRG, PTX3, CGA, CGB, EXO1, PCNA, C5
MASP1, CDS8B1, RSN, MSH4, ADD1, DLAT, PDK1,
PDK2, RAC1, EIF2S2, TRAP1, FDX1, EVPL) from the
disease-related clusters detected from the candidate
clusters of CPM, similarly, 49 new disease genes
(SLC8A1, DMC1, RAD51AP1, ERCC1, BMP1, DST,
CGA, CGB7, ZC3H11A, MBD4, CRYZ, KIRREL,
KIRREL3, TBX5, BMPR1A, BMPR2, BMP6, PCM1,
KIAA0368, EDNRA, CTSG, DAPK3, F2RL3, GABRA4,
AFAP, HBZ, RLN2, HRG, C1QB, C1QG, SLC4A7,
COL5A3, NTHL1, TFPI2, SHOC2, PLCE1, COL3A1,
CHAD, NDUFS6, INSRR, CHRNG, PKD2, EIF2S2,
TRAP1, GALNT5, PHYH, DNM1L, DDO, SIRT3) of
MCL. 3 new disease genes (CGA, EIF2S2, TRAPI)
were in both of the above two disease genes sets.

Here, we used the disease-related clusters to predict
novel disease-causing genes, it not only considered
the higher interaction with known disease genes, but
also the higher consistency in GO annotations and
expression of human tissues, which can give us a be-
lievable prediction.

In our paper, the clustering algorithms, CPM,
MCODE and MCL for functional modules or protein
complexes detection in general were evaluated by
analyzing the consistency of genes or proteins within
the functional modules in functional annotations.
Here, we evaluated these clustering algorithms by
decomposing human PPI networks into dense clusters
as the candidates of disease-related clusters. We
found that the clusters decomposed by CPM outper-
formed MCL and MCODE as the candidates of dis-
ease-related clusters with well-supported biological
significance in biological process, molecular function
and cellular component of GO and expression of hu-
man tissues (see Table 2). In the leave-one-out cross
validation procedure, our method obtained better
performance in using the disease-related clusters de-
tected from the candidate clusters of CPM than MCL,
when removed one known disease gene and all its
gene-disease associations. While for 2<k<15, MCL
gained better results than CPM in Precision (see Fig. 2).
It is because the size of disease-related clusters of
CPM is smaller than MCL, when we removed known
disease genes and all their gene-disease associations
in the disease-related clusters, more disease-related
clusters’” DisRC declined quickly below 0.5 in CPM
than MCL, consequently, MCL performed better than
CPM.

In conclusion, we integrated known disease
genes with human PPI networks and gene expression
data to identify disease-related clusters, and our me-
thod showed better performance. This study not only
can help us understand disease mechanisms and infer
new disease-causing genes, but also help us develop
new diagnostics and therapeutics. In the future work,
we will apply our approach to other species such
yeast or fly for disease-related clusters’ detection.
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