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Abstract 

Since genes associated with similar diseases/disorders show an increased tendency for their 
protein products to interact with each other through protein–protein interactions (PPI), 
clustering analysis obviously as an efficient technique can be easily used to predict human 
disease-related gene clusters/subnetworks. Firstly, we used clustering algorithms, Markov 
cluster algorithm (MCL), Molecular complex detection (MCODE) and Clique percolation 
method (CPM) to decompose human PPI network into dense clusters as the candidates of 
disease-related clusters, and then a log likelihood model that integrates multiple biological 
evidences was proposed to score these dense clusters. Finally, we identified disease-related 
clusters using these dense clusters if they had higher scores. The efficiency was evaluated by a 
leave-one-out cross validation procedure. Our method achieved a success rate with 98.59% 
and recovered the hidden disease-related clusters in 34.04% cases when removed one known 
disease gene and all its gene-disease associations. We found that the clusters decomposed by 
CPM outperformed MCL and MCODE as the candidates of disease-related clusters with 
well-supported biological significance in biological process, molecular function and cellular 
component of Gene Ontology (GO) and expression of human tissues. We also found that 
most of the disease-related clusters consisted of tissue-specific genes that were highly ex-
pressed only in one or several tissues, and a few of those were composed of housekeeping 
genes (maintenance genes) that were ubiquitously expressed in most of all the tissues.  
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Introduction 

With the increase in availability of human pro-
tein interaction data and gene expression data, the 
focus of bioinformatics development has shifted from 
understanding networks encoded by model species to 
understanding the networks underlying human dis-
ease [1]. Predicting human disease-related clus-
ters/subnetworks using a biomolecular network is 
critical to gain an understanding of disease mechan-
isms, and is also essential for the development of new 
diagnostics and therapeutics. Subnetworks are of 
great importance because they not only provide con-
crete hypotheses as to the molecular complexes, sig-
naling pathways, but also offer mechanistic hypo-
theses about the causes of disease [2].  

Integrating known disease genes with physical 
or biomolecular networks and gene expression data to 

identify disease-related subnetworks can help us ex-
plain many genetic and environmental factors in-
fluencing a disease in the context of a smaller number 
of discrete subnetworks as well as the causes or effects 
of the disease phenotype. In recent years, many stu-
dies had shown the utility of these networks in ex-
tracting disease-related clusters/subnetworks [2] and 
inferring disease-causing genes [2, 7-11]. Qiu et al. [3] 
proposed a method to detect disease-related gene 
modules or dysfunctional pathways based on global 
characteristics of interactome coupled with gene ex-
pression data. The modules or pathways were in-
ferred based on gene‟s active score function which 
was defined based on the kernel trick. They applied 
the proposed method to two cancer related problems, 
i.e. breast cancer and prostate cancer, and successfully 
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identified active modules or dysfunctional pathways 
related to these two types of cancers with literature 
confirmed evidences. Karni et al. [4] presented an 
approach to causal gene prediction that was based on 
integrating PPI network data with gene expression 
data under a condition of interest. They applied a 
set-cover-like heuristic to identify a small set of genes 
that best “cover” the disease-related genes and pre-
dicted possible genes that were involved in myasthe-
nia gravis. Calvano et al. [5] assembled an endotoxin 
inflammatory response network by integrating func-
tional interactions curated from the literature with 
gene expression information. The response network 
enabled the identification of new endotox-
in-responsive modules. Ghazalpour et al. [6] con-
structed a gene coexpression network using microar-
ray profiles gathered from the livers of a panel of 
mice, and plenty of subnetworks in the network were 
extracted to be enriched for genes in loci with strong 
associations to a physiological trait, yielding a matrix 
of module/trait associations. Lage et al. [12] devised a 
phenotype similarity score and used it to look for 
protein complexes whose genes were associated with 
similar phenotypes. Similarly, Fraser et al. [13] 
showed that identifying human protein complexes 
containing known disease genes was an efficient me-
thod for large-scale disease gene discovery.  

In contrast to the above studies, Goh et al. [14] 
built a network of human disease/ human gene asso-
ciations, which was a bipartite graph consisting of two 
disjoint sets of nodes. One set corresponded to all 
known genetic disorders, whereas the other set cor-
responded to all known disease genes in the human 
genome. A disorder and a gene were then connected 
by a link if mutations in that gene were implicated in 
that disorder. They found that disease genes causing 
similar diseases exhibited an increased tendency for 
their protein products to interact with one another, 
and tend to be coexpressed in specific tissues [2]. 

Combining these network-based disease studies, 
the overriding conclusion is that genes associated 
with a particular disease tend to exhibit high connec-
tivity and cluster together [2, 14, 15, 16]. Thus, the 
hypothesis is that disease genes within such dense 
clusters in a biomolecular network that more likely 
interact with one another than with others often cause 
similar diseases and is becoming an increasingly sig-
nificant factor for hunting human disease-related 
gene clusters/subnetworks.  

In this paper, we tackled the prediction problem 
by clustering analysis integrating PPI networks and 
gene expression data, and superimposing a set of 
known disease genes on human PPI network in a dif-
ferent way. Firstly, we used clustering algorithms, 

Markov cluster algorithm (MCL) [22, 23], Molecular 
complex detection (MCODE) [21] and Clique percola-
tion method (CPM) [24] to decompose human PPI 
network into dense clusters, and then a log likelihood 
model that integrates multiple biological evidences 
was proposed to score these dense clusters. Finally, 
we identified disease-related clusters using these 
dense clusters if they had higher scores. The efficiency 
was evaluated by a leave-one-out cross validation 
procedure. In addition, we also gave a comparison of 
the clusters decomposed by MCL, MCODE and CPM 
as the candidates of disease-related clusters. 

Materials and Methods 

Biological Data 

The disease genes data was obtained from Goh 
et al. [14], and they collected the data from the Online 
Mendelian Inheritance in Man (OMIM) [17] which 
contains 1284 disorders and 1777 disease genes. Fur-
ther, they classified each disorder into 22 primary 
disease/disorder classes manually based on the phy-
siological system affected by the disorder. 

The human protein-protein interaction (PPI) 
data was also gained from Goh et al. [14], and they 
combined two high quality systematic yeast 
two-hybrid experiments [18, 19] with PPIs obtained 
from literature by manual curation [18]. The inte-
grated set of PPIs contains 22052 non-self-interacting, 
non-redundant interactions between 7533 genes. 

The used gene expression microarray data was 
from Ge et al. [20], which is available for 36 normal 
human tissues. A gene is considered to be “ex-
pressed” if the P-value associated with its transcript 
abundance is less than the threshold, P-value<0.02. A 
gene is considered as housekeeping gene (mainten-
ances gene) if it is expressed, and confidently detect-
able (P-value<0.01) in most human tissues [20]. 

Clustering Algorithms 

Three classic clustering algorithms used to de-
compose the human PPI networks into dense clusters 
are shown in the following: 

Molecular complex detection (MCODE) pro-
posed by Bader and Hogue [21] was an effective ap-
proach for detecting densely-connected regions in 
large PPI networks. MCODE made use of local graph 
density to find protein complex. PPI networks were 
transformed to weighted graphs in which vertices 
were proteins and edges represented protein interac-
tions. The algorithm operated in three stages: vertex 
weighting, complex prediction and optimal 
post-processing. First it assigned a weight to each 
vertex, corresponding to its local neighborhood den-
sity. Then, starting from the top weighted vertex (seed 



Int. J. Biol. Sci. 2011, 7 

http://www.biolsci.org 

63 

vertex), it recursively moved outward, including in 
the cluster vertices whose weight was above a given 
threshold. This threshold corresponded to a us-
er-defined percentage of the weight of the seed vertex. 
The results showed that MCODE effectively found 
densely-connected regions of a molecular interaction 
network solely based on connectivity data. Many of 
these regions corresponded to the known molecular 
complexes. 

Markov cluster algorithm (MCL) [22, 23] was a 
fast and scalable unsupervised clustering algorithm. It 
was designed to meet the challenge of finding cluster 
structure in simple and weighted graphs. The MCL 
algorithm simulated random walks within a graph by 
the alternation of expansion and inflation operations. 
Expansion referred to taking the power of a stochastic 
matrix using the normal matrix product. Inflation 
corresponded to taking the Hadamard power of a 
matrix, followed by a scaling step, so that the result-
ing matrix was again stochastic. Eventually, iterating 
expansion and inflation resulted in the separation of 
the graph into different segments.  

A novel network clustering method, Clique 
Percolation Method (CPM) was proposed to reveal 
the overlapping modules in PPI networks [24]. In 
CPM, a module was defined as a union of all k-cliques 
(complete subgraph of size k) that can be reached 
from each other through a series of adjacent k-cliques 
(where adjacency means sharing k-1 nodes). This 
method performed well in detecting overlapping 
functional modules/protein complexes. 

Evaluating Criteria 

Disease Related Coefficient (DisRC) is used to eva-
luate the degree of the cover between the clusters 
decomposed from human PPI network, and the 
classes of disease associated genes.  

| | | |
( ) ( )

| |

iC D
DisRC C Max

C


            …(1) 

where, C is the set of genes of a cluster; Di is the 
set of genes that causing disease, i. |C| and |Di| de-
note the number of genes in C and Di respectively. 

DisRC(C) equals the maximal
| | | |

| |

iC D

C


that 

represents the “best cover”, and C is assigned to the 
corresponding disease class. 

Since disease associated genes which more likely 
interact with each other often lead to similar dis-
ease/disorder, a group of genes associated with the 
same disease/ disorder should share similar cellular 
and functional characteristics, as annotated in Gene 
Ontology (GO) [14, 27]. To investigate its validity, we 

introduced the Biological Process Related Coefficient 
(BPRC), Molecular Function Related Coefficient (MFRC) 
and Cellular Component Related Coefficient (CCRC) of a 
disease-related cluster, defined as the maximum frac-
tion of genes among those belonging to a dis-
ease-related cluster that had same GO annotation in 
biological process, molecular function and cellular 
component respectively. Using these criteria, we 
measured the consistency of each disease-related 
cluster separately with each branch of GO, biological 
process, molecular function, and cellular component.  

BPRC, MFRC and CCRC are used to score the 
consistency of genes within disease-related clusters in 
GO annotations respectively. 

 ( ) ( )
| |

BP

jt
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               …(2) 
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MFRC C Max
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             …(3) 
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            …(4) 

where, tj
BP denotes the number of genes have 

same GO annotation, j in biological process. tj
MF and 

tj
CC are similar to tj

BP.  
Disease genes encoding proteins that interact 

highly with each other tend to be coexpressed in the 
same human tissues. To measure this, we introduced 
the Tissue-Related Coefficient (TRC) of a disease-related 
cluster, defined as the maximum fraction of genes 
among those belonging to a disease-related cluster 
that were coexpressed in a specific tissue [14, 20].  

TRC quantifies whether genes that are in a dis-
ease-related cluster tend to be coexpressed in similar 
human tissues. 

( ) ( )
| |

tnTRC C Max
C

            …(5) 

where, nt denotes the number of genes, that are 
coexpressed in the tissue, t. If all the genes are coex-
pressed together in at least one tissue, the maximal 

value is 1; the minimum value is
1

| |C
, when all are 

coexpressed in different tissues [14]. 

Our Method 

The input to a disease-related cluster prediction 
problem consists of a human PPI network, the classes 
of known disease genes based on physiological sys-
tem affected, and gene expression microarray data. 
The goal is to identify disease-related clusters.  
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Since genes associated with similar diseas-
es/disorders show an increased tendency for their 
protein products to interact with each other through 
PPIs, we decomposed the human PPI network into 
dense clusters by clustering algorithms (MCL, 
MCODE and CPM) as the candidates of dis-
ease-related clusters. In order to extract dis-
ease-related clusters from these candidate clusters 
and evaluate the statistical significance of the dis-
ease-related clusters in multiple biological evidences, 
we gave a log likelihood model that was similar to 
that recently proposed by Sharan et al. [28, 29] to 
measure the fit of the candidate cluster to a dis-
ease-related cluster. 

( ) ( ( ))
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
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genes within a candidate cluster interact with a high 
probability α, and this cluster may be suggested as a 
disease-related cluster that is not random; β,γ are the 
tuning parameters that are used for normalization; 
wi=1/|T|; 
T={DisRC(C);BPRC(C);MFRC(C);CCRC(C);TRC(C)}. 

This model integrates multiple biological evi-
dences in T to score the statistical significance of a 
disease-related cluster. For each candidate cluster C, 
we calculated the L(C) of the cluster related to a spe-
cific disease, and assigned it to the corresponding 
disease that received the maximal value. A group of 
genes with a higher score is more significant corres-
ponding to a disease-related cluster than the one with 
a smaller score.  

Eq. 6 can be simplified in the following:  
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Here, the α was set to 0.9 [28, 29] , and β,γ=2; 
DisRC ≥ 0.5 which kept 50% genes out of the candi-
date clusters were known disease genes involving in 
specific disease. We finally filtered these candidate 
clusters with L(C) ≥ 0.5 to ensure the statistical signi-
ficance of disease-related clusters in multiple biolog-
ical evidences. 

Results  

Disease-Related Clusters Detection 

The biological data involving in disease genes 
data, human PPI data and gene expression data used 
by our method for disease-related clusters detection 
have been discussed beforehand. The three classic 
clustering algorithms: MCODE (Parameters: Include 
Loops: false, Degree Cutoff: 2, Node Score Cutoff: 0.2, 
Haircut: true, Fluff: false, K-Core: 2, Max. Depth from 
Seed: 100), MCL (Expand: 2.0, Inflation: 2.0) and CPM 
(3-clques) can be found in the above section. Since our 
method for disease-related clusters detection made 
use of the dense clusters decomposed by these clus-
tering algorithms from the human PPI network, in 
this section, we evaluated our method„s performance 
based on the candidate clusters from each of these 
clustering algorithms respectively, and by the way, 
compared these clustering algorithms‟ performance. 

 

Table 1 The results for detecting disease-related clusters 

based on the log likelihood model. 

Methods No. of clus-
ters 

No. of disease-related clusters  

 cluster size ≥ 
3 

L(C) ≥0.5 Max L(C)  Min L(C) Avg. L(C) 

CPM 350 47 1.0 0.506 0.747 

MCODE 49 1 0.619 0.619 0.619 

MCL 1021 44 1.0 0.510 0.689 

 
 
In the table, our method detected 47 

(47/350=13.43%) disease-related clusters from 350 
candidate clusters of CPM with L(C) ≥0.5. Similarly, 
one (1/49=2.04%) disease-related cluster from 49 
candidate clusters of MCODE, and 44 
(44/1021=4.31%) disease-related clusters from 1021 
candidate clusters of MCL were discovered respec-
tively. The L(C) = 1.0 means that the disease-related 
clusters achieve perfect support in multiple biological 
evidences (DisRC, BPRC, MFRC, CCRC, TRC=1.0, si-
multaneously). 

Fig. 1 showed the L(C) of each disease-related 
cluster in an ascending order. From the figure, we 
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found that most of the disease-related clusters ob-
tained from the candidate clusters of CPM gained 
higher L(C) than MCL, it was similar to the mean 
value of L(C). Since only one disease-related cluster 
was acquired from the candidate clusters decomposed 
by MCODE, we only discussed MCL and MCODE in 
this section. 

Leave-One-Out Cross Validation 

To evaluate the performance of our method, we 
employed a leave-one-out cross validation procedure 
[29]. In each cross validation trial, we selected k 
known disease genes that associated with dis-
ease-related clusters (128 known disease genes are 
associated with 47 disease-related clusters of CPM; 
130 known disease genes are associated with 44 dis-
ease-related clusters of MCL, these k known disease 
genes are uniformly distributed in the detected dis-
ease-related clusters) with equiprobability and re-
moved all the gene-disease associations involving the 
genes from the data, and our method was evaluated 
by its success in identifying the disease-related clus-
ters that had been hidden. Given that the dis-
ease-related clusters detected above were the putative 
disease-related clusters. A disease-related cluster was 

correctly identified if it was assigned to a same dis-
ease with the above section. Here, we validated our 
method to use the disease-related clusters data de-
tected from the candidate clusters of CPM and MCL 
respectively. 

We evaluated our method‟s performance in 
terms of precision versus recall when considering var-
ious values of k (k= 15,…,1). Precision is the fraction of 
true disease-related clusters that are correctly de-
tected in the corresponding trial of the cross valida-
tion procedure. Recall is the fraction of trials in which 
the hidden disease-related clusters were recovered. 
The results were depicted in Fig. 2. For k=1, in using 
disease-related clusters identified from candidate 
clusters of CPM, our method achieved a success rate 
with 98.59% and recovered the hidden disease-related 
clusters in 34.04% cases when removed one known 
disease gene and all its gene-disease associations. Si-
milarly, in using disease-related clusters identified 
from candidate clusters of MCL: Precision = 98.45% 
and Recall = 31.81%. For 1≤k≤15, we found that the 
higher the value of k, the lower the value of Precision 
and Recall.  

 

 

Fig.1 The L(C) of these disease-related clusters in an ascending order. The black line in the purple pane denotes the mean 

value of the L(C). 
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Fig. 2 The leave-one-out cross validation for disease-related clusters detection. The figure shows recall versus precision 

when considering various values of k. 

 

Statistical Analysis 

Table 2 showed the results of the disease-related 
clusters with different criteria. In the table, the dis-
ease-related clusters detected from the candidate 
clusters of CPM obtained better performance than 
MCL in DisRC (0.715>0.696), BPRC (0.895>0.805), 
MFRC (0.697>0.630), CCRC (0.770>0.733) and TRC 
(0.839>0.771). In these criteria, the minimal average 
value was 0.630 in MFRC, which showed better 
enrichment in multiple biological evidences. 

 

Table 2 The Comparison of disease-related clusters de-

tection. 

Methods No. of dis-
ease-related 
clusters 

Avg. 

 L(C) ≥0.5 DisRC BPRC MFRC CCRC TRC 

CPM 47 0.715 0.895 0.697 0.770 0.839 

MCL 44 0.696 0.805 0.630 0.733 0.771 

 
 
Fig. 3 presented the results of the disease-related 

clusters at each disease class. In Fig. 3A, 11 dis-
ease-related clusters out of 47 associated with disease 
class: Immunological were detected that was more than 
other disease classes in CPM. Similarly, In Fig. 3B, 5 

disease-related clusters out of 44 related to disease 
class: Multiple was in MCL. From Fig. 3C and Fig. 3D, 
in most of the disease classes, we found that the av-
erage value of each criterion was above 0.6 which 
denoted the higher homogeneity of the genes within 
these disease-related clusters in biological process, 
molecular function and cellular component of GO, 
and expression in the same human tissues.  

The distribution of disease-related clusters was 
showed in Fig. 4. From Fig. 4A and Fig. 4B, we found 
that a common feature that most of disease-related 
clusters were distributed in DisRC, BPRC, MFRC, 

CCRC, TRC  [0.6, 0.8), and =1.0, and a few of those 

were in DisRC, BPRC, MFRC, CCRC, TRC  [0.8, 0.1). 
In particular, almost 50% of disease-related clusters 
were in BPRC, MFRC, CCRC, TRC =1.0, which 
showed that the genes within these disease-related 
clusters won perfect biological significance in biolog-
ical process, molecular function and cellular compo-
nent, and expression in the same human tissues. It 
was in contrast to L(C), most of disease-related clus-

ters were concentrated in L(C)  [0.6, 0.8) and  [0.8, 
0.1), and a few of those were in L(C) =1.0. Since L(C) 
was an integrated evaluating criterion of DisRC, 
BPRC, MFRC, CCRC, TRC, it had a different distribu-
tion.  
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Fig. 3 The results of disease-related clusters at each disease class. 
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Fig. 4 The distribution of disease-related clusters at each evaluating criterion. 

 
 
 
Tissue-specific genes are only coexpressed in one 

or several organ, which is in contrast to housekeeping 
genes (maintenance genes) that are ubiquitously 
coexpressed in almost tissues [25, 26]. Maintenance 
genes play key roles in various cellular process, tis-
sue-specific genes are related to the functioning of 
different organs. Knowing how genes are expressed 
in normal tissues not only is of fundamental impor-
tance for functional genomics, but also might contri-
bute to the study of complex diseases [4, 20, 25, 26].  

In the results, most of the disease-related clusters 
consisted of tissue-specific genes, and a few of those 
were composed of housekeeping genes (maintenance 
genes). For example, 9 (9/47=19.15%) disease-related 
clusters out of 47 consisted of housekeeping genes in 

CPM, and 5 (5/44=11.36%) disease-related clusters 
out of 44 were composed of housekeeping genes in 
MCL.  

Fig. 5 showed two disease-related consisting of 
tissue-specific genes and their corresponding diseas-
es. In Fig. 5B, this disease-related cluster caused Can-
cer with DisRC=1, BPRC=1, MFRC=1, CCRC=1 and 
TRC=1, which acquired perfect biological signific-
ances. Fig. 6 showed a disease-related cluster that was 
composed of housekeeping genes (maintenance 
genes) (see Fig. 6A). From Fig. 6B and Fig. 6C, we 
found that the genes within this disease-related clus-
ter were coexpressed in most of human tissues with 
P-value <0.01. 
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Fig. 5 Two disease-related clusters consisting of tissue-specific genes, the red nodes denote genes, and the links between 

them represent interactions, the emerald green nodes are disease IDs, and the links between them shows they share at least 

one common disease genes. The link between a gene and a disease ID represents that the gene leads to this disease. The 

table in the bottom shows the details about diseases, one gene may lead to multiple diseases. 



Int. J. Biol. Sci. 2011, 7 

http://www.biolsci.org 

70 

 

Fig. 6 One disease-related cluster consisting of housekeeping genes (maintenance genes). (A) the disease-related cluster 

and their corresponding disease; (B) the expression levels of the genes in the disease-related cluster; (C) the detected 

P-value of each gene in human tissues. Note that the maintenances genes should be confidently detectable (P-value<0.01) in 

most tissues. 
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Analysis of Disease-Related Clusters 

In the results of our experiments, we found a 
disease-related cluster (PEX1, PEX6, PEX26) involv-
ing in disease class, Multiple was detected from both 
the candidate clusters of CPM and MCL with L(C) 
=1.0. The PEX1 leads to Zellweger_syndrome (OMIM 
ID: 266510), Refsum disease (OMIM ID: 214100), Adre-
noleukodystrophy (OMIM ID: 202370). Similarly, the 
PEX6 results in Peroxisomal_biogenesis_disorder, and 
the PEX26 causes Zellweger_syndrome, Refsum disease, 
Adrenoleukodystrophy. The proteins within this cluster 
are also enriched with GO terms: protein import into 
peroxisome matrix (P-value = 1.38e-09), protein tar-
geting to peroxisome (P-value = 4.19e-09), perox-
isomal transport (P-value = 5.23e-09) of biological 
process, and protein C-terminus binding (P-value = 
5.01e-06), protein complex binding (P-value = 
2.42e-05) of molecular function, and peroxisomal 
membrane (P-value = 1.11e-07), microbody mem-
brane (P-value = 1.11e-07), microbody part (P-value = 
2.13e-07) of cellular component. 

The disease-related clusters (CEBPA, CTNNB1, 
TCF1) (see Fig. 5B) associated with disease class, Can-
cer was obtained from the candidate clusters of CPM 
with L(C) =1.0. The CEBPA is a causal gene of Leuke-
mia, acute myeloid (OMIM ID: 601626), the CTNNB1 
causes Colorectal cancer, Hepatoblastoma, Hepatocellular 
carcinoma (OMIM ID: 114550), Ovarian carcinoma, Pi-
lomatricoma (OMIM ID: 132600), and the TCF1 is asso-
ciated with Diabetes mellitus, insulin-dependent (OMIM 
ID: 222100), Diabetes mellitus, noninsulin-dependent 
(OMIM ID: 125853), Hepatic adenoma (OMIM ID: 
142330), MODY, type III (OMIM ID: 600496). This 
cluster (CEBPA, CTNNB1, TCF1) is also abounded in 
GO terms: liver development (P-value = 0.00099) of 
biological process, and specific RNA polymerase II 
transcription factor activity (P-value = 0.00023) of 
molecular function, and transcription factor complex 
(P-value = 0.00232) of cellular component.  

A disease-related cluster (NCF2, CYBA, CYBB) 
involving in disease class, Immunological was gained 
from the candidate clusters of MCL with L(C) =1.0. 
The NCF2 is a causal gene of Chronic granulomatous 
disease due to deficiency of NCF-2, (OMIM ID: 233710), 
the CYBA causes Chronic granulomatous disease, auto-
somal, due to deficiency of CYBA (OMIM ID: 233690), 
and the CYBB is associated with Chronic granulomat-
ous disease, X-linked (OMIM ID: 306400). The cluster is 
also enriched with GO terms: superoxide anion gen-
eration (P-value = 6.44e-09), respiratory burst (P-value 
= 1.31e-08), superoxide metabolic process (P-value = 
3.77e-08) of biological process, and superox-
ide-generating NADPH oxidase activity (P-value = 

5.15e-06), electron carrier activity (P-value = 6.63e-06) 
of molecular function, and NADPH oxidase complex 
(P-value = 1.27e-09) of cellular component. 

 In Fig. 6A, the disease-related cluster consisting 
of housekeeping genes (EIF2B2, EIF2B3, EIF2B4, 
EIF2B5, EIF2S2) is associated with Leukoencephalopathy 
with vanishing white matte and Ovarioleukodystrophy 
(OMIM ID: 603896). The GO annotation indicates that 
this cluster takes part in biological process: oligoden-
drocyte development (P-value = 8.40e-11), oligoden-
drocyte differentiation (P-value = 2.41e-09), glial cell 
development (P-value = 3.40e-09), has same molecular 
function in translation initiation factor activity 
(P-value = 6.84e-13), translation factor activity, nucleic 
acid binding (P-value = 1.54e-11), RNA binding 
(P-value = 6.93e-07), and corresponds to eukaryotic 
translation initiation factor 2B complex (P-value = 
5.28e-14). 

Two disease-related clusters involving in BRCA1 
(breast cancer 1, early onset) and BRCA2 (breast can-
cer 2, early onset) were discovered. The BRCA1 is a 
causal gene of Breast-ovarian cancer, Ovarian cancer, 
Papillary serous carcinoma of the peritoneum, and the 
BRCA2 is associated with Breast cancer, male, suscepti-
bility to (OMIM ID: 114480), Fanconi anemia, comple-
mentation group D1 (OMIM ID: 605724), Pancreatic 
cancer (OMIM ID: 260350). We also found a dis-
ease-related cluster involving in RAD51A and 
RAD54L that are associated with several Breast Can-
cer variants (RAD51A, Breast cancer, susceptibility to, 
OMIM ID: 114480; RAD54L, Breast cancer, invasive 
intraductal), and two disease-related clusters, (BUB1B, 
BUBR1, BUB1) and (MLH1, PMS1, MLH3, MLH3, 
PMS2), which are associated with several Colorectal 
Cancer variants.  

Discussion 

Human disease-related gene clus-
ters/subnetworks are of great importance because 
they not only provide concrete hypotheses as to the 
molecular complexes, signaling pathways, but also 
offer mechanistic hypotheses about the causes of dis-
ease [2]. With the development of biological experi-
ment methods, protein interactions and gene expres-
sion data are becoming more and more complete, 
which offer valuable biological materials for dis-
ease-related clusters analysis. 

The used clustering algorithms such as CPM, 
MCODE and MCL were initially proposed to identify 
functional modules or protein complexes − groups of 
genes within which connections are dense while be-
tween which they are sparse, it is consistent with the 
characteristic of disease-related gene clusters of Goh 
et al. [2, 14, 15, 16] that disease genes causing similar 
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diseases exhibit an increased tendency for their pro-
tein products to interact with each other. We used 
CPM, MCODE and MCL to decompose human PPI 
network into dense clusters as the candidates of dis-
ease-related clusters. It is analogous to Lage et al. [12] 
and Fraser et al. [13] who looked for protein com-
plexes whose genes were associated with similar 
phenotypes and discovered large-scale disease genes.  

In previous studies, many methods used PPI 
networks to uncover novel disease-causing genes [2]. 
Lim et al. [7] built a PPI network around 23 proteins 
involved in inherited ataxias using Y2H screens, and 
used this network in uncovering novel ataxia-causing 
genes and genetic modifiers for ataxia. Pujana et al. [8] 
constructed a breast cancer-related network starting 
with four known breast cancer-associated genes for 
predicting new genes associated with breast cancer. 
Oti et al. [9] predicted new disease associated genes 
that fell within one of the significant loci and had a 
protein interaction with a gene already known to 
cause disease. In addition, PPI networks were also 
employed for disease candidate gene prioritization. 
Franke et al. [10] used the known molecular interac-
tions and the predicted functional relations to con-
struct a functional human gene network that was used 
to rank the candidate genes on the basis of their inte-
ractions. Chen et al. [11] described a candidate gene 
prioritization method that was entirely based on PPI 
network analyses and successfully used for disease 
candidate gene prioritization. Here, we can also pre-
dict novel disease-causing genes based on dis-
ease-related gene clusters. Given that the unknown 
disease genes also cause similar disease with the 
known disease genes in the identified disease-related 
clusters, our method predicted 47 new disease genes 
(SEPT4, UBB, RASD1, FBLN1, GFRA1, SCGB1A1, 
CFH, C8A, BF, IFNG, GATA4, NKX2-5, F3, PLAU, 
PKN1, MAG, IGFALS, IGFBP3, IGFBP5, HSPA5, IL7, 
DIPA, CYCS, IL13RA1, SPTAN1, ABCD1, ABCD2, 
C1R, HRG, PTX3, CGA, CGB, EXO1, PCNA, C5 
MASP1, CD8B1, RSN, MSH4, ADD1, DLAT, PDK1, 
PDK2, RAC1, EIF2S2, TRAP1, FDX1, EVPL) from the 
disease-related clusters detected from the candidate 
clusters of CPM, similarly, 49 new disease genes 
(SLC8A1, DMC1, RAD51AP1, ERCC1, BMP1, DST, 
CGA, CGB7, ZC3H11A, MBD4, CRYZ, KIRREL, 
KIRREL3, TBX5, BMPR1A, BMPR2, BMP6, PCM1, 
KIAA0368, EDNRA, CTSG, DAPK3, F2RL3, GABRA4, 
AFAP, HBZ, RLN2, HRG, C1QB, C1QG, SLC4A7, 
COL5A3, NTHL1, TFPI2, SHOC2, PLCE1, COL3A1, 
CHAD, NDUFS6, INSRR, CHRNG, PKD2, EIF2S2, 
TRAP1, GALNT5, PHYH, DNM1L, DDO, SIRT3) of 
MCL. 3 new disease genes (CGA, EIF2S2, TRAP1) 
were in both of the above two disease genes sets. 

Here, we used the disease-related clusters to predict 
novel disease-causing genes, it not only considered 
the higher interaction with known disease genes, but 
also the higher consistency in GO annotations and 
expression of human tissues, which can give us a be-
lievable prediction. 

In our paper, the clustering algorithms, CPM, 
MCODE and MCL for functional modules or protein 
complexes detection in general were evaluated by 
analyzing the consistency of genes or proteins within 
the functional modules in functional annotations. 
Here, we evaluated these clustering algorithms by 
decomposing human PPI networks into dense clusters 
as the candidates of disease-related clusters. We 
found that the clusters decomposed by CPM outper-
formed MCL and MCODE as the candidates of dis-
ease-related clusters with well-supported biological 
significance in biological process, molecular function 
and cellular component of GO and expression of hu-
man tissues (see Table 2). In the leave-one-out cross 
validation procedure, our method obtained better 
performance in using the disease-related clusters de-
tected from the candidate clusters of CPM than MCL, 
when removed one known disease gene and all its 
gene-disease associations. While for 2≤k≤15, MCL 
gained better results than CPM in Precision (see Fig. 2). 
It is because the size of disease-related clusters of 
CPM is smaller than MCL, when we removed known 
disease genes and all their gene-disease associations 
in the disease-related clusters, more disease-related 
clusters‟ DisRC declined quickly below 0.5 in CPM 
than MCL, consequently, MCL performed better than 
CPM.  

In conclusion, we integrated known disease 
genes with human PPI networks and gene expression 
data to identify disease-related clusters, and our me-
thod showed better performance. This study not only 
can help us understand disease mechanisms and infer 
new disease-causing genes, but also help us develop 
new diagnostics and therapeutics. In the future work, 
we will apply our approach to other species such 
yeast or fly for disease-related clusters‟ detection.  
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