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Accounting for Protein-Solvent Contacts Facilitates Design
of Nonaggregating Lattice Proteins
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TCentre for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, Amsterdam, The Netherlands; and *Department of Chemistry,
University of Cambridge, Cambridge, United Kingdom

ABSTRACT The folding specificity of proteins can be simulated using simplified structural models and knowledge-based pair-
potentials. However, when the same models are used to simulate systems that contain many proteins, large aggregates tend to
form. In other words, these models cannot account for the fact that folded, globular proteins are soluble. Here we show that
knowledge-based pair-potentials, which include explicitly calculated energy terms between the solvent and each amino acid,
enable the simulation of proteins that are much less aggregation-prone in the folded state. Our analysis clarifies why including
a solvent term improves the foldability. The aggregation for potentials without water is due to the unrealistically attractive inter-
actions between polar residues, causing artificial clustering. When a water-based potential is used instead, polar residues prefer
to interact with water; this leads to designed protein surfaces rich in polar residues and well-defined hydrophobic cores, as
observed in real protein structures. We developed a simple knowledge-based method to calculate interactions between the
solvent and amino acids. The method provides a starting point for modeling the folding and aggregation of soluble proteins. Anal-
ysis of our simple model suggests that inclusion of these solvent terms may also improve off-lattice potentials for protein simu-

lation, design, and structure prediction.

INTRODUCTION

Most functional globular proteins have evolved such that
they fold into a water-soluble native state. However, lacking
the timescale of natural evolution, the de novo design of
water-soluble globular proteins is a daunting task. In fact,
even the design of proteins that fold quickly and uniquely
into a specified native conformation is quite challenging.
For this reason, much of the numerical work on protein
folding has focused on the folding behavior of isolated
proteins (1-4).

Similarly, the numerical study of the aggregation
behavior of multiple proteins is very expensive if all-atom
models are used; therefore such studies typically use
a simplified representation of the proteins or focus on the
aggregation of small peptides (5-9).

Simulations that aim to elucidate the competition between
folding and aggregation are necessarily even more expensive
than the simulations of folding or aggregation mentioned
above. For this reason, it is attractive to study this problem
with as simple a model as possible. If one aims to study
the generic behavior of a multiprotein solution, then it
becomes attractive to consider simple lattice models
(1-4,10). Of course, such lattice models are not sufficiently
detailed to reproduce the behavior of any specific protein.
However, in what follows we will focus on the competition
between protein aggregation and folding. This is a generic
problem and hence lattice models can be used to gain insight
into the factors that favor one process or the other. The
protein lattice model that we consider has the advantage
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that it correctly reproduces the heterogeneity of the
nonbonded interaction between the 20 distinct amino-acid
residues in a protein using a statistical pair-potential, i.e.,
a pair interaction whose strength is related (via a multicom-
ponent quasichemical approximation) to the frequency of
contacts in (known) native protein structures.

The protein lattice model has successfully been used to
simulate protein folding and has also been used to design
novel proteins that will fold into a unique, preselected
compact structure (e.g., see (4)). Upon heating the native
state of such lattice proteins, a sharp transition takes place
from the folded to the unfolded state, accompanied by
a pronounced peak in the heat capacity. Thus, the simple
model reproduces a feature of real proteins, which fold
into a highly specific structure and show a peak in the
heat capacity when unfolding. Folding of a model protein
into a specific structure has also been achieved in off-lattice
studies (11,12) typically using the same statistical pair-
potentials as mentioned above.

Evolutionary pressure generally ensures that proteins do
not aggregate in their natural biochemical environment, as
aggregates may compromise the biological function of the
proteins or may even be cytotoxic. The immunity against
aggregation of real globular proteins is not properly repro-
duced by most lattice-models for protein solutions. Even
if the model proteins fold well in isolation, assemblies of
many such proteins often exhibit aggregate-formation close
to the folding temperature (Fig. 1 F, low temperature aggre-
gation). Much of the earlier work on lattice proteins and
similar coarse-grained models therefore focuses on small
peptides that lack a well-defined hydrophobic core in the
folded state (5,6,9,13,14).

doi: 10.1016/j.bpj.2010.11.088


mailto:s.abeln@vu.nl
http://dx.doi.org/10.1016/j.bpj.2010.11.088
http://dx.doi.org/10.1016/j.bpj.2010.11.088
http://dx.doi.org/10.1016/j.bpj.2010.11.088
http://dx.doi.org/10.1016/j.bpj.2010.11.088
http://dx.doi.org/10.1016/j.bpj.2010.11.088

694 Abeln and Frenkel
single molecule multi-molecule system
soluble proteins aggregates
A @ E
)
S
=]
o 8
)
TS 3
o E
T o
: et
£
2
=

folded
(low temperature)

FIGURE 1

Schematic representation of aggregation behavior of lattice proteins. This figure illustrates a common problem with existing lattice protein

models. Simulated as single molecules, proteins unfold at high temperatures (A), and fold into specific structures at low temperatures (B). In a multimolecule
system, several scenarios for folding, unfolding, and aggregation are possible (C—F). As in nature, we would expect folded globular proteins to be soluble at
low temperatures (D). However, existing models show a tendency to form large aggregates of folded proteins (F), due to (unphysically) strong attractions
between hydrophilic residues. (See Fig. 4 for keys to the colors of panels A and B. In panels D—F, each protein chain has a different color.)

The unphysical aggregation behavior of many lattice
proteins means that such models are of little use for studying
the behavior of solutions that contain many folded soluble
proteins. In particular, the existing models are ill suited
for studying how subtle changes can cause initially soluble
proteins to form amyloid fibers that are implicated in neuro-
degenerative diseases (15). Nor can the current models be
used to study the assembly of large, functional complexes
that play a role in the biology of multicomponent systems
(e.g., see (16)).

One might therefore be tempted to give up on the use of
lattice models for such complex systems, but that is not an
attractive option, since multiprotein systems are computa-
tionally very challenging and, at least at present, coarse-
grained models are indispensable.

In our article, we show that the unphysically strong
tendency of lattice proteins to aggregate is not inherent in
the use of lattice models as such, but is an effect of the
pair-potentials that can be remedied by including explicitly
calculated solvent interactions for the amino acids. When
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we do this, we find that the resulting model allows us to
design proteins that remain soluble at their folding temper-
atures and even below—thus enabling coarse-grained simu-
lations of multiprotein solutions.

Cubic lattice model

One of the most widely used three-dimensional coarse-
grained protein models represents the protein as a chain on
a simple cubic lattice (2—4). Our work also starts from such
a protein model where the peptide chain is modeled with
one residue per cubic lattice site (17). Nonbonded residues
can only interact when they reside on neighboring lattice sites.
The internal energy of a protein configuration is given by

1 N N N
E=3 Z Z €aliya() Cij + Z €w.a(i) Cwis (1
! J i

where a(i) denotes the amino acid at residue i and w indi-
cates the solvent. The contact matrix is C; = 1, when
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nonbonded residues i and j are located on neighboring
lattice sites. If 7 and j are not neighbors, then C;; = 0. The
pair-potential ¢, gives the pairwise interactions between
the amino acids x and y.

Due to the coarse-grained nature of the lattice, one typically
designs a sequence for a given lattice structure, rather than
using a naturally occurring protein structure-sequence combi-
nation. Once the matrix ¢, , has been specified (see below), we
can design model proteins that will fold preferentially into
a unique structure that is chosen beforehand. The design
procedures make use of a Monte Carlo scheme that minimizes
the energy of the amino-acid sequence in the target structure
while keeping the amino-acid composition diverse—this
diversity is needed to ensure the uniqueness of the native state
(see Methods for further details).

Pair-potentials

As stated above, the residues of lattice proteins usually interact
via pairwise-additive, short-ranged interactions. In what
follows, we shall focus on pair interactions that are knowl-
edge-based in the sense that they are constructed to reflect
the amino acid proximity in real protein structures (3). Despite
the different geometry, lattice models and real protein struc-
tures have a similar coordination number: residues on the
lattice have four contact partners, and residues in protein struc-
tures have, on average, four contacts at typical C-§ interaction
distances (6-7 10%) (see the Supporting Material).

In knowledge-based pair-potentials, the interaction (free)
energies ¢;; between amino-acid residues may, in their
simplest form, be calculated as (18,19)

€j = —kTIn (ci) . (2)

wi.j

Here c;; is the number of contacts between amino-acid
types i and j, and w;; is the expected number of contacts
between amino-acid types i and j in a set of experimentally
determined protein structures.

There exist numerous additions and refinements to this
basic scheme for determining the potential (20-25). A
correction may be made for the solvation free energy of
amino acids in water (e.g., (23,24)), the chain connectivity
of the amino acids may partially be corrected for (19) and
there are several ways to set a reference free energy (e.g.,
(21)). In particular, Leonhard et al. (25) fit two parameters
to rescale the MJ matrix (23), to enable a simultaneous
simulation of two protein chains folding into their native
state without aggregating.

Here we will use a basic version of this scheme, where w; ;
is based on the total number of residues of the amino-acid
type and the residue coordination number. However, we
will calculate the solvent term explicitly from the protein
structures, making it possible to understand the effect of
the solvent terms.
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METHODS
Potential including a pairwise solvent term

We calculate interaction free energies between amino acids from proximate
residues in a representative set of Protein Data Bank (PDB) structures (26)
according to Eq. 2. The expected number of contacts, w;j, is based on the
total number of observed amino acids »n; and the coordination number ¢;:

niqin;q;
= 3)
Zk Gk

To obtain w;; for all pairwise interactions between the amino acids, and
between the amino acids and water, we need to calculate c; ;, n;, and g;. We
will not calculate water-water interaction or, more precisely, we define
Wy = 0.

For any residue the solvent accessible-surface area (S,) can be calculated.
We use the DSSP program (27) to calculate the surface accessible area per
residue. The maximum accessible surface area for an amino acid, S, indi-
cates the surface area when the side chain is fully exposed to the solvent.

To indicate the degree of surface accessibility for a residue within a struc-
tured protein, the two quantities can be compared as

S,
r = —77 4
« max{Sa(,.) } @)

where a(r) is the amino acid of residue r.

Wij =

To translate the continuous potential to a discrete lattice potential, we use
a fixed coordination number for amino acids in the PDB and set ¢; = g = 4,
as in the lattice model.

We approximate the number of water contacts, by comparing the
observed number of contacts for a residue, 7, to the expected number
of contacts for a fully buried residue (g = 4).

We calculate the number of missing neighbors based on the relative
surface accessibility «, so that ga corresponds to the number of solvent
contacts.

To calculate ¢;;, we use the following procedure, while excluding all
neighbors and second neighbors in the chain:

1. Pick a residue r and update n,.

2. Calculate «,.

3. Take the g(1—a,) closest neighbors, and update the residue contacts
counts Cu(r) a(nb)-

4. Add solvent contacts for ga residues, and update the water-residue
contacts count, ¢, and the total number of observed waters, n,,.

Here the subscript r indicates the residue, nb the neighboring residue, and
w a contact with the solvent. Note that n,, is not meant as an estimate of the
true number of water molecules around the protein. Instead, it indicates how
much of the solvent-accessible surface could be substituted by residues,
analogous to the empty sites in the lattice model.

To calculate the pair-potential, we use C-@ distances in protein x-ray
structures from PDB-select (25,26) (http://bioinfo.tg.fh-giessen.de/
pdbselect/). (The resulting pair potential can be found in the Supporting
Material.)

Comparing potentials
Potentials

Table 1 lists the four different potentials compared in this study. The
Betancourt potential (24) has no explicit water term (C,,; = 0), but
corrects for the solvent implicitly by rescaling the MJ matrix. We
have disregarded all other existing pair-potentials, since they tend to
have even stronger attractions between polar residues; it is this (unphysi-
cally) strong attraction that leads to aggregation of folded proteins, as
shown later in our results. The potential we suggest in this work (P1)
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TABLE 1 List of pair-potentials

Symbol Ci Method

Be 0 Betancourt and Thirumalai (24)
PO 0 Methods Section

P1 1 Methods Section

P2 2 Methods Section

The solvent weight, C,,; in Eq. 1, is added to the potential when a residue i is
in contact with at least one empty lattice site. P1 is the potential used in this
work.

includes a water term calculated explicitly from protein structures, using
the method described above, employing Eqgs. 2 and 3. As a reference we
calculated two potentials using the same method, with different weights
for the water term (PO and P2) to test how sensitive our results are to
the strength of the protein-solvent interaction. The PO potential has no
water term, and should therefore be comparable to the Betancourt
potential; the P2 potential has the water-amino acid interaction added
twice.

Designing structures and sequences

We set out to create an unbiased, systematic, and reproducible procedure to
design lattice structures and sequences to test the different potentials. This
means we did not want to design either a structure, or sequence by hand, but
to use automated procedures instead. Firstly, a compact structure was
obtained for proteins of length 50, 60, 70, and 80 by simulating a purely
hydrophobic sequence, and choosing the most compact structure from the
ensemble. For the four different structures a sequence was designed for
each of the four different potentials as listed in Table 1. The design proce-
dure we used ensures the sequence heterogeneity remains high, while the
potential energy is minimized as in Coluzza et al. (4). For each of the 16
sequence-structure combinations we tested if only the desired structure
would form upon folding; we used the first sequence obtained from the
design procedure that would fold back into the same structure. Designed
sequences that failed this test were discarded; only four sequences required
more than one design attempt.

Testing for aggregation

Each of the sequences was subsequently simulated to determine the
aggregation behavior at a low concentration of free chains with on
average 3 X 10~ molecules per lattice site—note that in practice no
molecule will fit on a single lattice site. Firstly, aggregates were collected;
then the melting temperature for different sizes of aggregates was deter-
mined by simulating the preformed aggregates at different temperatures
and a fixed concentration. The results are shown in Table 2.

Simulation and sampling
Monte Carlo simulation

To simulate the properties of the (multi) protein system, we used standard
Monte Carlo simulations where trial moves are accepted according to the

Metropolis rule,
—AFE
P acc = i 17 y 5
mm{ exp(kBT>} ®))

where T is the simulation temperature, kp is the Boltzmann constant, and
AE is the difference in energy between the new and old configuration of
the system. Trial moves are either internal moves, changing the configura-
tion of a chain (end move, corner flip, crank shaft and point rotation), or
rigid body moves, changing the position of the chain relative to other
objects (rotation, translation); see Coluzza et al. (4) for more details. At
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TABLE 2 Melting temperatures relative to folding
temperatures

Potential Length Ty T, T Ty
Be 50 0.3 0.2 0.66
Be 60 0.34 0.19 0.55
Be 70 0.3 0.27 0.89
Be 80 0.25 0.25 1.02
(Be) — 0.3 0.23 0.76
PO 50 0.18 0.15 0.86
PO 60 0.2 0.13 0.63
PO 70 0.24 0.21 0.87
PO 80 0.19 0.19 1.0
(PO) — 0.2 0.17 0.84
P1 50 041 0.12 0.29
Pl 60 0.39 0.09 0.22
P1 70 0.4 0.12 0.31
P1 80 0.36 0.08 0.22
(P1) — 0.39 0.1 0.26
P2 50 04 0.08 0.2
P2 60 0.46 0.1 0.22
P2 70 04 0.08 0.2
P2 30 0.51 0.08 0.16
(P2) — 0.44 0.09 0.19

The structure and sequences of the designed proteins are given in the Sup-
porting Material. Average 7,,/Ty values over the four structures designed
with the same potential are indicated in bold.

each iteration, a local trial move (end move, corner flip, or crank shaft) is
performed, and in addition a global trial move (point rotation or translation)
may be performed with the probability P,p.; = 1. The volume of the simu-
lation box (80 x 80 x 80 lattice points) was kept constant, while using peri-
odic boundary conditions.

Parallel tempering, or temperature replica exchange, was used to speed
up both equilibration and the sampling of uncorrelated configurations.
Multiple simulations at different temperatures were run in parallel, while
trying to swap temperatures every 50,000 moves with 10,000 trial temper-
ature swaps in each simulation. A trial swap between the temperatures of
two replicas was accepted with a probability (28-30) of

Poe = min{ 1,exp (_AEkA(l/T)> } 6)
B

Water interactions

In protein structures side chains tend to point toward the solvent (typically
hydrophilic amino acids) or toward the protein interior (typically hydro-
phobic amino acids). On the lattice, residues have no direction, which leads
to very strong solvent interactions on the corner positions of protein struc-
tures. To prevent unphysically strong water-solvent interactions at the
corner points of protein structures, we define an interaction between
a residue and water (C,,; = 1, in Eq. 2) when the residue touches at least
one empty lattice site (solvent).

Folding temperature

A peptide is defined to be in a folded state if

1 if C,>0.8-max{C,}
Xr = {0 otherwise ’ )

where C,, is the number of native contacts, i.e., those contacts that are also
present in the folded target structure. We define the folding temperature 7
as the temperature at which (X = > 0.5.



Design of Soluble Lattice Proteins

Melting temperature

To characterize the temperature range in which aggregation is relevant, we
define a melting temperature 7,, For a designed protein 7,, we used the
following definition: at low temperature we prepared aggregates of 50
proteins. We then determined 7, as the lowest temperature at which the
aggregate will shrink in size (given the concentration). This definition is,
of course, somewhat arbitrary. However, it does account for the fact
that aggregation proceeds via nucleation and growth. Our criterion iden-
tifies the temperature below which clusters of 50 proteins will grow
spontaneously.

Grand canonical simulation

A grand canonical Monte Carlo simulation was performed to investigate the
aggregation behavior of the model proteins at a constant (low) osmotic
pressure.

Trial insertions and deletions of free chains were performed with a prob-
ability of Pj.sers = Paetere = 0.005 per move.

Free chains are defined as chains that make no contacts with other chains
in the simulation box. Trial insertion of new chains (with an identical
sequence) were accepted with

v
Pa('c - i 17— 9 8
o) ®
and deleted with
. N
Parc = mln{ la—eXP(Mﬁ)}7 (9)
\%
where
1
6 - kB—T’

N is the number of free chains in the simulation box before the move, Vis
the volume of the box, and u the chemical potential. The volume was kept
constant at 80 x 80 x 80 lattice points and exp(u) was kept constant at 3 x
10~° chains per lattice site. A single peptide chain was simulated in a sepa-
rate box at the same temperature, to generate new configurations for inser-
tion into the main simulation box. Insertions were only accepted when no
contacts were made between any of the existing chains. Deletions were per-
formed only over the free chains in the box. We used periodic boundary
conditions in combination with the grand canonical simulation. Note that
this simulation technique also helps to overcome slow diffusion through
the simulation box.

Because the proteins were simulated at very low density, it is likely that
the simulation box becomes empty. Instead of simulating an empty simula-
tion box explicitly, we calculate the number of time steps between deletion
and reinsertion at each attempted deletion of the last chain in the box as in
Abeln and Frenkel (31).

RESULTS
Simulations without water term

As a first step, we investigated the foldability and solubility
of coarse-grained model proteins designed with the Betan-
court (Be) potential (24). Based on Monte Carlo simulations
of these designed proteins, we defined the folding tempera-
ture, T; as the temperature at which a given protein folded
into its designed structure in 50% of the equilibrium confor-
mations sampled. The foldability of a protein was deemed to
be good when a sharp folding transition was observed
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around 7y accompanied by a sharp peak in the heat capacity.
The majority (>80%) of the model proteins designed with
Be-potential have a good ability to fold if we use the design
procedure of Coluzza et al. (4).

The solubility of the proteins was then tested by simu-
lating the proteins at various temperatures around T at
low concentrations (3 x 107° free molecules per lattice
point) in the grand canonical ensemble. Fig. 2 shows
a typical example of a model protein designed with the
Be-potential: this model protein starts to aggregate around
the folding temperature. In fact, the majority (>95%) of
proteins designed with the Be-potential aggregated during
MC simulations at temperatures around 7y This may not
be surprising as the design procedure does not bias against
aggregation, whereas in nature there will be a strong evolu-
tionary pressure against aggregation.

To understand the cause of the aggregation, the formed
aggregates were considered in more detail. Two features
that are not compatible with naturally occurring proteins
were found:

1. The designed proteins contained large hydrophobic
patches on their surface.
2. Polar residues often clustered together.

The Be-potential, and most other knowledge-based
amino-acid pair-potentials, assign negative interaction ener-
gies to polar-polar interactions, resulting in clustering of
polar groups during the simulation. In real proteins polar
residues also cluster together—and this explains the
apparent attraction in the knowledge-based potentials.

However, in real proteins this clustering occurs typically
at the surface of the proteins, while clustering of buried polar
residues is rare (32). The reason for the surface clustering is
generally not that polar residues attract each other, but that
they tend to be more strongly attracted to water than to other
polar residues. The pairwise interaction terms between the
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FIGURE 2 Folding and aggregation using a lattice model that does not
account for water contacts. A typical example of the folding (gray curve)
and aggregation (blue curve) of a protein designed with the method of
Betancourt and Thirumalai (24). The structure used was 70 residues long
and designed with the Be potential (see the Supporting Material for struc-
ture and sequence).
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solvent and polar amino acids indeed show a stronger attrac-
tion than polar-polar terms when calculated explicitly from
protein structures (see P1 potential in the Supporting
Material). In a lattice simulation the solvent terms can be
incorporated cheaply by considering interactions of amino-
acid residues with empty (i.e., solvent) lattice sites.

Simulations with water term

Fig. 3 shows a typical protein designed and simulated with
a pair-potential that includes explicitly calculated water
interactions. As before, it is easy to design proteins that
fold uniquely into a predesigned native state. However,
importantly, around the folding temperature the protein
remains soluble, thus mimicking the biologically relevant
situation where most proteins are soluble in their folded
state. If we lower the temperature well below the folding
temperature, we find that even these water-soluble proteins
eventually aggregate.

Interestingly, Fig. 3 also shows a small peak in the aggre-
gation curve at temperatures just above Ty This peak is due
to a phenomenon where the unfolded form of the proteins
starts to aggregate due to exposed hydrophobic patches
(see also Fig. 1 E). Such high-temperature aggregation has
also been observed for some real proteins (33).

To get a more systematic view of the foldability and solu-
bility properties of the potentials, we used an unbiased
procedure to design structure-sequence combinations (see
Methods). For four structures of different lengths, four
different sequences were designed using the potentials listed
in Table 1. The melting temperature 7, characterizes the
temperature range in which aggregation is relevant. We
defined T, as the lowest temperature at which the aggregate
shrinks in size, given a preformed cluster. Note that different
potentials, and different designs, may give rise to different

No Water (Be)
T T T T 1
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@ 100 aggregation —x—
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v 3 <

L L | | | 0

| |
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Temperature (e /KT)

FIGURE 3 Folding and aggregation using a lattice model that does
account for water contacts. A typical example of the folding (gray curve)
and aggregation (black curve) of a protein designed using the potential
with a pairwise water term. The structure used was 70 residues long and de-
signed with the P1 potential (see the Supporting Material for structure and
sequence).
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folding temperatures Ty hence the melting temperatures
need to be considered relative to Ty

Table 2 lists the melting temperatures relative to the
folding temperatures of the 16 different protein designs.
The potentials without an explicit water term (Be and PO)
show aggregation of model proteins around the folding
temperatures, whereas the potentials with explicit water
terms (P1 and P2) show aggregation of folded proteins at
much lower temperatures.

Fig. 4 shows the difference in sequence design between
potentials with and without explicit water terms. Without
explicit water terms, polar residues cluster together on one
side of the protein, leaving the other half for the hydro-
phobic residues. In the design with explicit water the polar
residues sit on the outer layer of the protein, as they are at-
tracted by the solvent in the design process. Typically the
solvent terms contribute one-third of the total interaction
energy in the folded state. Consequently these proteins
also have better defined hydrophobic cores, and fewer
hydrophobic patches making the proteins inherently less
likely to aggregate.

Concentration

The onset of aggregation is dependent on the monomer
concentration of proteins in solution. To investigate the
concentration range for which our results are valid, we

designed without water

designed with water

l:l hydrophobic

[] potar thydrophilic)

- negative charge

- positive charge

FIGURE 4 Surface and core of proteins designed with and without water
in the pair-potential. In the model protein designed without water, all polar
residues cluster together. In the model protein designed with water, the
polar residues are at the surface of the protein. Note that the positively
and negatively charged amino acids form alternating patterns at the interior
(left) and surface (right). The structures used were 80 residues long and
designed with the Be potential (left) and the P1 potential (right); see the
Supporting Material for structures and sequences.
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FIGURE 5 Aggregation at different concentrations. Concentration in
molecules per lattice site versus the ratio of the folding temperature (7))
over the melting temperature (7,,,). The T,,/T; ratio of the solid line is an
average over the four different structures for each potential. At millimolar
concentrations (3e-6 molecules per lattice site) all models show aggregation
behavior at the folding temperature. At lower concentrations, the proteins
designed and simulated with a water potential (P1 and P2) are significantly
more soluble.

performed grand canonical simulations at different concen-
trations of free chains (see Methods). Fig. 5 shows that all
designed proteins aggregate around or above their folding
temperature (7/T,, < 2) for concentrations of 5 x 1073
free chains per lattice site or above. If we assume a lattice
spacing of 3.8 A, then this is comparable to millimolar
concentrations. In vitro, single protein solutions tend to start
gelating or precipitating above millimolar concentrations,
a feature that is well reproduced by our simulations in
this concentration range. Fig. 5 also shows that there is
a significant difference in solubility at lower concentrations
between the different model proteins: those designed and
simulated with the solvent term aggregate at much lower
temperatures, well below the folding temperature, than
those without a solvent term.

DISCUSSION

Using simple pair-potentials between amino acids to design
foldable model proteins leads to aggregation around the
folding temperature. We show that, by including explicitly
calculated solvent interactions in the pair-potentials, the de-
signed proteins remain soluble at their folding temperatures
and below.

Because most proteins should not aggregate under
physiological conditions, a prerequisite to any modeling
approach of pathological protein aggregation should be
that the same type of model would not predict aggregation
of normal globular proteins. The knowledge-based pair-
potential that we propose here has precisely this feature.

Protein aggregation, in specific amyloid formation, is
associated with several neurodegenerative diseases. It is
therefore of considerable interest to model the onset of
amyloid formation. Particularly, the early stages of amyloid
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formation are prohibitively expensive to simulate with an
atomistic model. During these stages, prefibrillar aggregates
are formed of 10-50 protein molecules (34) that undergo
significant structural changes over time.

In this work, the lattice model provides a convenient
and—importantly—cheap reference model to study the
factors that make otherwise normal proteins aggregation-
prone. On the other hand, off-lattice coarse-grained protein
models show promising results for studying peptide aggre-
gation (5-9), and generally use pairwise knowledge-based
potentials (e.g., (35)) developed on-lattice (e.g., (23)).
Therefore, such models could immediately benefit from
the results obtained by this work, and become more appro-
priate for studying the competition between protein solu-
bility and aggregation.

Most alternative interaction potentials are not suitable for
studying the early stages of amyloid formation. Go-like
potentials may be adapted to study specific cases of aggre-
gation (36), but are generally not applicable because they
will not provide a low energy state for alternative configura-
tions. Unfortunately it is unfeasible to simulate such
systems with all-atomistic potentials, even though useful
details of the process may be obtained (e.g., (37,38)).

The calculation of the potential is simple to implement,
and the concept of adding solvent interactions is easily
adaptable to more-complex interaction potentials and
more-detailed protein structure models. Moreover, the
proteins designed with the potential that includes a solvent
term tend to have a better-defined hydrophobic core. In
fact, solvent-exposure-specific amino-acid substitution
terms have long been recognized as a powerful tool in
distant homology detection between proteins (39). We
suggest that it may also be useful to include solvent-amino
acid interactions in pair-potentials for structure prediction
and design.

SUPPORTING MATERIAL

One figure, 16 PDB structures, and the interaction potential developed in this
work are available at http://www.biophysj.org/biophysj/supplemental/
S0006-3495(10)05218-5.
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