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Abstract
Obstructive sleep apnea (OSA) is an underrecognized, yet significant factor in the pathogenesis of
metabolic derangements in polycystic ovary syndrome (PCOS). Recent findings suggest that there
may be two “subtypes” of PCOS, i.e. PCOS with or without OSA, and these two subtypes may be
associated with distinct metabolic and endocrine alterations. PCOS women with OSA may be at
much higher risk for diabetes and cardiovascular disease than PCOS women without OSA and
may benefit from therapeutic interventions targeted to decrease the severity of OSA. The present
chapter will review what is currently known about the roles of sex steroids and adiposity in the
pathogenesis of OSA, briefly review the metabolic consequences of OSA as well as the metabolic
abnormalities associated with PCOS, review the prevalence of OSA in PCOS and finally present
early findings regarding the impact of treatment of OSA on metabolic measures in PCOS.
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BACKGROUND
Polycystic ovary syndrome (PCOS) affects approximately 5–8% of women in the United
States and typically manifests at the time of puberty with menstrual irregularity, hirsutism,
and obesity 1. The ability to diagnose PCOS at an early age has important implications, since
those affected have a substantial risk for subsequent development of a number of metabolic
2, 3 and cardiovascular 4–6 disorders. Specifically, women with PCOS have among the
highest reported rates of early-onset impaired glucose tolerance and type 2 diabetes 7, 8 as
well as a an increase in risk for hypertension 9, dyslipidemia 10, 11, coronary 10 and other
vascular disorders 12–14. An important addition to this list of health risks is obstructive sleep
apnea (OSA), which now appears to be present in a disproportionate number of women with
PCOS. Indeed, the risk for OSA is at least 5-fold higher, and perhaps as much as thirty-fold
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higher in PCOS 15, than in similarly obese women. Results of our recent studies suggest that
there may in fact be two “subtypes” of women with PCOS -- those with OSA and those
without OSA -- and that these two subtypes may be associated with distinct metabolic and
endocrine alterations. Because nearly all published studies characterizing metabolic and
cardiovascular abnormalities in PCOS have not controlled for the potential impact of OSA
and chronic sleep loss, the precise role of OSA as a cause of these derangements is not yet
known.

PCOS women with OSA may have a much greater predisposition for development of
diabetes and cardiovascular disease than PCOS women without OSA. Further, data are
beginning to emerge to indicate that metabolic alterations may improve from therapeutic
interventions targeted to decrease the severity of OSA.

A. Chronic sleep loss and obstructive sleep apnea: role of sex steroids and adiposity
As reviewed elsewhere in this volume (CHAPTER ?), it is clear that the past several decades
have witnessed a significant decline in the average duration of sleep for most Americans.
During the 1960’s, the mean sleep duration was between 7 and 8 hours per night; today, the
percentage of both men and women who sleep less than 6 hours per night has increased
dramatically 16. Chronic sleep loss imposes a significant negative impact upon individual
health as well as an enormous economic cost to society. A number of studies have reported
that shortened sleep duration is associated with increased mortality 17, 18. In the Nurses
Health Study, it was found that sleeping less than 6 hours per night was associated with an
increased risk of death, even after adjusting for age, smoking, alcohol, exercise, depression,
snoring, obesity, and history of cancer and cardiovascular disease 18. Reduced sleep time has
also been reported as a risk factor for the development of obesity as for type 2 diabetes 19–
23. Results of the Sleep Heart Health Study showed that subjects sleeping 5 hours or less per
night had an adjusted odds ratios for diabetes of 2.51 (95% CI, 1.57–4.02) when compared
to those who slept 7 to 8 hours per night 20. This trend in shorter sleep duration mirrors the
progressive rise in overweight and obesity in the United States 24 and evidence continues to
emerge to support a causal link between these two conditions. Should either or both trends
continue along their current trajectory, the metabolic and cardiovascular health
consequences as well as economic costs will be staggering.

Obstructive sleep apnea (OSA) is one of the major causes of chronic sleep disruption. It is
characterized by episodic partial or complete upper airway obstruction during sleep leading
to intermittent hypoxia, sleep fragmentation and a reduction in the quantity of deep non-
rapid eye movement (NREM) sleep (stages 3 and 4, commonly referred to as slow wave
sleep [SWS]). Sleep disruption resulting in reduced SWS has been associated with a rise in
plasma cortisol levels and interpreted to indicate that SWS has a “restraining” effect on the
hypothalamic-pituitary-adrenal axis 25. Consistent with this is the finding that
pharmacologic augmentation of SWS leads to a significant decline in salivary free cortisol
levels 26.

Current estimates of OSA prevalence in the United States 27, 28 are likely to underestimate
the true prevalence of the disorder since 82% of men, and an even greater (93%) proportion
of women with moderate to severe OSA have not been clinically diagnosed 29. It has been
consistently noted that men have a higher prevalence of OSA compared to women 29. In
community based studies, the male:female ratio is usually between 2:1 and 3:1 30 in contrast
to a ratio of 8:1 in clinic-based studies 31.

OSA has been independently associated with glucose intolerance and insulin resistance even
after adjustments for obesity and age 32–36. Treatment of OSA with CPAP can improve
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insulin sensitivity 37 and is associated with a reduction in postprandial glucose and
glycohemoglobin levels in individuals with type 2 diabetes 38.

Differences in concentrations of circulating sex steroids – estrogens, progestins, and
androgens – appear to play an important role in the differences between men and women,
both in normal sleep as well as OSA. However, women tend to be underrepresented in most
studies of OSA (Table 1).

Role of Estrogen and Progesterone—Estrogens and progestins have been generally
characterized as protective against the development of OSA in women. However, much of
the evidence to support this view is derived from studies in which sleep was evaluated in
relation to pregnancy status 39, 40, age and phase of the menstrual cycle 41, 42, menopausal
status 43, or in response to hormone replacement therapy 43. Lower estradiol levels have
been reported in association with poor sleep quality among women aged 45 – 49 yr 44 and
with a higher frequency of apneic events in women across a broader age spectrum of 24 to
72 yr 42. Among post-menopausal women, there was a modest, but statistically significant,
decrease in the occurrence and frequency of sleep apnea in those randomly assigned to
receive estrogen replacement rather than placebo 43. Estrogen levels have not been
systematically evaluated among women with PCOS and OSA.

Progesterone is the key hormone thought to underlie the differences in sleep measures that
exist across the normal menstrual cycle. Progesterone levels are low during the follicular
(pre-ovulatory) phase and rise by up to two log orders during the luteal (post ovulatory)
phase when progesterone is synthesized by the corpus luteum. When sleep measures are
obtained and compared between follicular and luteal phases, it is apparent that upper airway
resistance is lower during the luteal phase 41.

The expected rise in progesterone with pregnancy is thought to attenuate the severity of
preexisting OSA as well as to “protect” from its development in women without OSA
preconception 40. These effects have been ascribed to levels of progesterone that would
normally counterbalance the increase in OSA risk imparted by pregnancy-associated weight
gain. Progesterone is thought to promote its effects through direct stimulation of respiratory
drive via an increased ventilatory response to both hypercapnea and hypoxia 45, 46.
Progesterone may also act to enhance upper airway dilator muscle activity 47 and reduce
airway resistance. Because women with PCOS are, by definition, oligo- or anovulatory, they
characteristically have low circulating progesterone concentrations which may contribute to
the high prevalence of OSA in this disorder.

Role of Androgens—Androgens are thought to play a significant role in the sexual
dimorphism in sleep architecture and in the pathogenesis of OSA 48, 49. O’Connor, et al 50

analyzed records of 830 patients with OSA to determine whether there were differences in
polysomnographic features between men and women, particularly with respect to the
distribution of respiratory events during REM and non-REM sleep. Although the apnea-
hypopnea index (AHI) during total sleep time was significantly higher in men compared to
women (31.8 ± 1.0 vs 20.2 ± 1.5; P<0.001), the number of respiratory events occurring in
REM sleep was greater in women as reflected by the so-called REM difference (i.e., the
difference in the AHI in REM and AHI in non-REM sleep) in women and men. The REM
difference was greater in women than men (28.1 ± 1.5 vs. 10.3 ± 1.1; P<0.001) at all levels
of severity of sleep apnea. These findings were consistent and remained significant even
after adjustment for the effects of covariates including weight, age, and duration of apnea.
Thus, women with obstructive sleep apnea appear to have a higher proportion of respiratory
events in REM compared to men, and to have a higher prevalence of apnea occurring mostly
during REM.
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Several studies have also shown that testosterone influences both neural control of breathing
51 and upper airway mechanics 52. Zhou et al 53 examined the effect of testosterone on
apneic threshold in women during sleep. Eight normal, healthy, pre-menopausal women
were studied before and after treatment with transdermal testostosterone (5 mg/day)
administered in the follicular phase of the menstrual cycle. The authors concluded that
testosterone increases apneic threshold in premenopausal women, thus leading to breathing
instability during sleep.

Role of Body Fat and its Distribution—The risk of OSA is increased as a function of
both total body fat mass as well as body fat distribution. Visceral fat appears to be more
metabolically active and the quantity of visceral fat has been shown to highly correlate with
OSA risk 54–56. The relative proportion of visceral fat to total body fat is higher in obese
men compared to obese women. This difference is thought to contribute to the higher
prevalence of OSA in men than women. Factors responsible for gender differences in body
fat distribution include sex steroid concentrations, especially androgens. These factors are
particularly relevant to the pathogenesis of OSA in women with PCOS.

B. Metabolic Consequences of OSA
As previously noted, OSA is characterized by the combination of episodic sleep disruption
and hypoxemia, each of which can trigger at least three major hormonal responses:
activation of the hypothalamic-pituitary-adrenal (HPA) axis with increased cortisol
production/secretion, increased catecholamine output from sympathetic nervous system
stimulation, and increased release of adipokines from adipose tissue. These responses appear
to contribute to the metabolic abnormalities associated with OSA, particularly to the decline
in insulin sensitivity and glucose tolerance.

Hypothalamic-pituitary-adrenal axis—The onset of sleep is normally characterized by
a modest inhibition of cortisol secretion that is concurrent with slow wave sleep (SWS) and
lasts between 60 and 120 min 57. Nocturnal awakenings are consistently followed by a pulse
in cortisol secretion 58 whereas the final morning awakening (the awakening response) is
associated with a rapid rise in cortisol lasting approximately 60 min 57. Work from Van
Cauter, et al 59 has shown that partial or total sleep deprivation results in increases in plasma
cortisol levels by 37% and 45%, respectively. Most notably, this elevation is evidenced on
the day following sleep loss and during the time when the HPA axis is usually quiescent.

Profiles of cortisol secretion in patients with OSA have been variably reported as normal in
some studies and abnormal in others 60. In one report, 8 of 28 OSA patients demonstrated a
disruption in the circadian rhythm with cortisol levels that were higher late in the day than in
the early morning. This so-called “inverted” cortisol profile was associated in all cases with
abnormal blood pressure regulation. When compared to obese subjects without OSA, obese
subjects with OSA had an exaggerated ACTH response to the administration of CRH
although cortisol responses did not differ between groups 61. Whether alterations in cortisol
metabolism are a cause, consequence, or both in OSA remains unresolved.

Role of the sympathetic nervous system
Sympathetic Activity: Recurrent apneic episodes are associated with increased stimulation
of sympathetic nervous activity in OSA patients. Sympathetic activity is measurable directly
by microneurography and indirectly via catecholamine output, as reflected in serum and
urine concentrations 62. Catecholamine alterations in OSA are frequently evaluated but often
lack consistency across studies. Both plasma and urine levels of norepinephrine, which is
indicative of systematic sympathetic activity, are generally elevated in OSA patients,
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whereas epinephrine levels have not been consistently altered in current, well-matched
studies 63, 64.

Hypertension is often a physical manifestation of increased sympathetic activity in OSA.
Elevated nocturnal norepinephrine levels are strongly associated with the prevalence and
development of hypertension in untreated OSA patients. Hypoxia and hypercapnia initiate
sympathetic activity via chemoreflexes, resulting in vasoconstriction and increased cardiac
output. Blood pressure becomes elevated during apneic episodes, with marked, sharp rises in
BP at the end of each event. Patients with OSA are also more likely to experience daytime
hypertension than their non-apneic counterparts 65. Interestingly, diurnal norepinephrine
levels remain elevated in OSA patients, suggesting that over-activity of the sympathetic
nervous system continues into non-apneic, daytime conditions 64. The latter may lead to
decreased responsiveness of the peripheral vasculature in OSA patients 62. While chronic
sympathetic activation is largely associated with the development of hypertension in OSA, it
may also have effects on lipolysis and adipokine expression as measures of metabolic
dysfunction.

Adipokines: Oxidative stress, systemic inflammation and increased sympathetic activity are
common pathophysiologic consequences of OSA that may adversely affect adipokine
expression 64. Secreted by active white adipose tissue (WAT), adipokines function in the
regulation of immune response and metabolism. Leptin and adiponectin are commonly
investigated adipose-derived hormones and their abnormal expression in OSA may
contribute to the development of systematic inflammation, hypertension and atherosclerosis
in this disorder 63, 66.

Leptin, a key adipose-derived hormone, exhibits a circadian rhythm and promotes satiety by
acting on hypothalamic receptors to inhibit the effect of potent feeding stimulants and to
promote the synthesis of appetite suppressants. Despite its anti-obesity effect, leptin levels
correlate with percentage of body fat and fail to regulate adiposity due to central leptin
resistance present in obese individuals. Circulating serum leptin levels have been shown to
be higher in overweight and obese OSA patients than BMI-matched controls 63, 66 and to
positively correlate with the severity of OSA 32, 66–68. Data regarding the prevalence of
OSA and increased leptin levels in lean OSA patients are conflicting 61, 66, yet it has been
suggested that elevated leptin levels in patients with OSA may be more closely associated
with obesity confounders than with apneic episodes alone 63. While OSA may be prove to
be a leptin-resistant condition, further investigation of the physiological effects of leptin in
OSA will be necessary.

Adiponectin, which does not exhibit a circadian rhythm, regulates metabolism by
suppressing hepatic glucose production and stimulating fatty acid oxidation. It has also been
ascribed anti-atherogenic and anti-inflammatory properties 69. Obese individuals are found
to have reduced levels of adiponectin, which is associated with cardiovascular disease,
insulin resistance and type 2 diabetes 61, 63, 66. Data on adiponectin levels in OSA remain
highly inconsistent, but several studies show that adiponectin levels in OSA patients are
lower both in the morning and evening compared to BMI-matched controls 63. As with
leptin, adiponectin levels have correlated with the severity of OSA in some studies 63, 70 but
not in others64, 68, 71. Significant interaction between adiponectin levels and abdominal
adiposity in patients with OSA has been observed 71, yet more research is needed to clarify
this relationship.

C. Metabolic Abnormalities Associated with PCOS
Both lipid and non-lipid criteria identify individuals at increased risk for coronary heart
disease and type 2 diabetes 72–77. Because women with PCOS have high rates of impaired
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glucose tolerance and type 2 diabetes 7, 8 as well as a substantial number of risk factors for
cardiovascular disease 78, it has been generally assumed that many are also likely to meet
criteria for the “metabolic syndrome”. We recently reported that fully one-third of non-
diabetic women with PCOS have developed the metabolic syndrome well before the end of
their fourth decade, and usually prior to the end of their third decade of life. This prevalence
is four times higher than that observed in women between the ages of 20 and 30 years and
twice that of women between ages 30 and 40 years 79. Indeed, the metabolic syndrome
prevalence was similar to that in women between the ages of 50 and 60 years 79. We have
also found that the prevalence of the metabolic syndrome is similar across ethnic/racial
backgrounds.

Insulin resistance and hyperinsulinemia in PCOS—Even though the molecular
basis for insulin resistance in PCOS remains incompletely understood, it is well documented
that the compensatory hyperinsulinemia contributes both directly and indirectly 80–82 to the
increase in plasma androgen concentrations that characterize PCOS. Insulin acts directly by
binding to its cognate receptor on the ovarian thecal cell to stimulate testosterone synthesis
83. Insulin can also act indirectly to raise the serum concentration of free testosterone, the
level of which does not appear to be tightly regulated in the female, by lowering the serum
concentration of sex hormone binding globulin (SHBG) 82.

Insulin resistance is a central factor in the pathogenesis of the metabolic syndrome in both
men and women and there is ample evidence to support a causal link between
hyperinsulinemia and the characteristic features of PCOS. A reduction of serum insulin
levels in women with PCOS results in a decrease in ovarian androgen biosynthesis, an
increased SHBG concentration, and a resultant decrease in free testosterone concentrations
84, 85. Insulin also plays a key role in the impaired glucose tolerance/diabetes 84, 85 of PCOS
and attenuation of hyperinsulinemia, whether through weight reduction or administration of
either metformin 86, 87 or a thiazolidinedione 88–90, substantially attenuates the metabolic
perturbations of PCOS.

Insulin resistance and impaired glucose tolerance/type 2 diabetes—While
obesity is a major factor in the development of insulin resistance in PCOS, it is now
established that a component of insulin resistance in PCOS is independent of body weight
85, 91. Both lean and obese women with PCOS are more insulin resistant than their non-
PCOS counterparts matched for total and fat-free body mass as documented using the
hyperinsulinemic-euglycemic clamp 85, 91, frequently sampled IVGTT 3, 89, 92 and
protocols using a graded glucose infusion 89, 92.

In long-term follow-up studies of women with PCOS there is an increased prevalence of
type 2 diabetes when compared to appropriate controls 9. Two large, prospective studies in
PCOS place the prevalence of IGT between 30–40% and type 2 diabetes between 5–10% 7,
8. These prevalences approach those in Pima Indians, a population with one of the highest
rates of development of type 2 diabetes 93. More recently, we 7 and others 94 have found that
the conversion rates from normal glucose tolerance to IGT or type 2 diabetes in PCOS are
substantially elevated.

β-Cell Dysfunction in PCOS—Because glucose intolerance results only when defects in
insulin secretion and insulin action co-exist 95, we postulated that insulin secretory defects
could play an important role in the propensity to develop diabetes in PCOS. Initial evidence
for β-cell dysfunction in PCOS was derived from analyses of basal and postprandial insulin
secretory responses in women with PCOS relative to weight-matched controls with normal
androgen levels 96. The incremental insulin secretory response to meals was markedly
reduced in women with PCOS, resulting from a reduction in the relative amplitude of meal-
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related secretory pulses rather than from a reduction in the number of pulses present. This
pattern, which resembled that of type 2 diabetes more than that of simple obesity, was
striking in that it was evident in nondiabetic women with PCOS.

Insulin secretion is most appropriately expressed in relation to the magnitude of ambient
insulin resistance. The product of these measures can be quantified 97 (the so-called
“disposition index”) and related as a percentile to the hyperbolic relationship for these
measures established in normal subjects 97, 98. When first-phase insulin secretion is
analyzed in relation to the degree of insulin resistance, women with PCOS exhibit a
significant impairment in β-cell function 3, 88. We have additionally quantified β-cell
function in PCOS by examining the insulin secretory response to a graded increase in
plasma glucose and by the ability of the β-cell to adjust and respond to induced oscillations
in the plasma glucose level 3. Results from both provocative stimuli were consistent: when
expressed in relation to the degree of insulin resistance, insulin secretion was impaired in
PCOS subjects.

Dyslipidemia in PCOS—Women with PCOS are frequently characterized as having
elevated triglyceride (TG) levels, increased levels of VLDL and LDL, and a lower HDL
cholesterol 99, a lipid pattern similar to that seen in patients with type 2 diabetes. The
mechanisms responsible for the adverse effects of PCOS on plasma TG homeostasis are not
known. Insulin resistance has been postulated to play a key role in causing
hypertriglyceridemia in PCOS. However, we found that treatment with the insulin
sensitizing agent troglitazone markedly improved insulin sensitivity in PCOS women but
had little, if any, effect on plasma TG concentration 100. In addition, lean women with PCOS
are found to have normal plasma TG concentrations despite being hyperinsulinemic 10.
Increased plasma TG concentrations in obese women with PCOS are likely due, at least in
part, to hyperandrogenemia and relative progesterone deficiency; further there is the
potential that OSA has a modulating effect upon triglyceride metabolism.

Hypertension in PCOS: Insulin resistance and hyperinsulinemia, which have long been
associated with the development of hypertension, is nearly ubiquitous in women with PCOS.
The relationship between insulin sensitivity and blood pressure levels in PCOS, however,
remains unclear 101. Zimmermann et al found no significant variation in 24-hour blood
pressure profiles or echocardiographic assessment of left ventricular mass of PCOS patients
and well-matched controls, despite a substantial difference in insulin sensitivity between the
groups 102. Thus, the presence of hypertension is not specific to PCOS as both groups
exhibited a similar frequency of blood pressure abnormalities. Several recent studies suggest
that obesity is the main determinant of hypertension in PCOS by promoting sympathetic
activation 103, 104. Luque-Ramírez et al observed that clinical and subclinical hypertension,
as well as a nondipper pattern in nocturnal blood pressure, is correlated with obesity in
adolescent females with PCOS 104. However, these findings are complicated by the insulin
resistance component in PCOS that functions independently of body mass . More studies are
necessary to evaluate the mechanism of hypertension in PCOS. As the rate of obesity in
PCOS continues to increase, there is growing concern over the risk of cardiovascular disease
and mortality in women with PCOS.

D. Obstructive Sleep Apnea in Women with PCOS
Women with PCOS have been documented to develop OSA at rates that equal and may even
exceed those in men. The high prevalence of OSA has been thought to be a function of both
elevated levels of testosterone (a defining feature of PCOS) as well as the obesity that
commonly accompanies the disorder. However, it appears that the high prevalence of OSA
in PCOS cannot be fully accounted for on the basis of these two factors alone. In two studies
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15, 105, the severity of sleep apnea did not correlate with BMI and in a third 106, even after
controlling for BMI, PCOS women were as much as 30 times more likely to have sleep
disordered breathing and 9 times more likely than controls to have daytime sleepiness.
Insulin resistance was found to be a stronger predictor of sleep disordered breathing than
was age, BMI, or circulating testosterone concentrations 15. It also appeared that women
with PCOS taking oral contraceptives were less likely to have sleep disordered breathing 15,
consistent with recent results from the Sleep Heart Health Study Research Group in which
hormone replacement therapy was associated with a lower likelihood of sleep disordered
breathing among postmenopausal women 107. Finally, women with PCOS had a
significantly higher mean apnea-hypopnea index compared to weight-matched controls
(22.5 ± 6.0 vs. 6.7 ± 1.7; P<0.01), with the difference being most pronounced in REM sleep
(41.3 ± 7.5 vs. 13.5 ± 3.3; P<0.01) 106. Because the risk imparted by obesity does not appear
to be sufficient to fully account for the high prevalence of sleep disordered breathing in
PCOS, additional factors have been invoked including the hyperandrogenemia 28, 48–50 that
is characteristic of PCOS, as discussed below.

Androgen levels in PCOS—In response to stimulation by LH, the ovarian theca cell
synthesizes androstenedione and testosterone. Androstenedione is converted by 17β-
hydroxysteroid-dehydrogenase (17β-HSD) to form testosterone or aromatized by the
aromatase enzyme (cytochrome P450arom) to form estrone. Results of studies both in vivo
and in vitro (using cultured theca cells) are consistent and suggest that theca cells from
PCOS ovaries are more efficient at converting androgenic precursors to testosterone than are
normal theca cells 10. Clinically, this has been documented using a single, diagnostic dose of
a GnRH agonist such as nafarelin or leuprolide 108. Our studies 108, as well as those of
others 109, have shown that the ovarian steroidogenic response of women with PCOS is
more robust than that of normally cycling women and qualitatively similar to the response
seen in normal men. This response has been used as a diagnostic tool as well as a probe to
define the pathogenesis of steroidogenic dysfunction in PCOS.

Insulin plays both direct and indirect roles in the pathogenesis of hyperandrogenemia in
PCOS. Insulin acts synergistically with LH to enhance theca cell androgen production.
Insulin also inhibits hepatic synthesis of SHBG the key circulating protein that binds to
testosterone, and thus increases the proportion of testosterone that circulates in the unbound,
biologically available or “free”, state.

Results of our preliminary studies do not support a major role for hyperandrogenemia in the
pathogenesis of OSA in PCOS. In a recent study, we found that both total and free
testosterone levels were virtually identical in PCOS women with and without OSA [112].
Consequently, it is important to examine alternate hypotheses. We have proposed that the
relative reduction in circulating progesterone concentrations as well as estrogen
concentrations, as discussed below, may contribute to the apparent excess of OSA in PCOS.

Progesterone and estrogen levels in PCOS—In normally cycling women, the luteal
phase of the menstrual cycle is characterized by an increase in progesterone production from
the corpus luteum and consequent slowing of GnRH, and thus LH, pulsatility. In the
presence of chronic oligo- or anovulation, as in PCOS, the normal post-ovulatory rise in
progesterone does not occur and the restraint on the GnRH pulse generator is thus absent
110. Thus, on average, circulating progesterone levels in PCOS women are lower than those
in normally cycling women 111, 112. Underproduction of ovarian estrogen results from low
intraovarian aromatase expression and a consequent reduction in the production of the
estrogens, estrone and estradiol, from their respective precursor androgens, androstenedione
and testosterone. While estrone is also synthesized from peripheral aromatization (especially
in adipose tissue), levels of this steroid are normal or even slightly elevated in PCOS.
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However, estrone is a weak estrogen with approximately 1/10th the potency of estradiol 113.
In sum, estrogen levels are subnormal in PCOS 114, 115.

Revisiting the two PCOS “subtypes”—While the pathogenesis of OSA in PCOS
remains unclear, growing evidence suggests that OSA is a strong predictor of insulin
resistance and glucose intolerance in PCOS. To further examine this relationship, we
recently studied 52 women with and 21 without PCOS [112]. These overweight/obese, pre-
menopausal women were divided into three groups following overnight polysomnography
and a 75-gram oral glucose challenge (Table 2).

As expected, PCOS women as a whole were more insulin resistant than controls, as shown
by a significantly higher homeostatic model assessment (HOMA) index (adjusted P =
0.0002), fasting concentration of glucose (adjusted P = 0.0021), fasting concentration of
insulin (adjusted P = 0.0001) and 2-h glucose level post glucose bolus (adjusted P =
0.0081). In addition, the prevalence of OSA in PCOS was more than 7 times that in controls
(P = 0.01), further confirming the risk of OSA in PCOS women. Comparison of insulin
resistance and glucose tolerance among the three groups of subjects appears to validate the
proposed PCOS subtypes: non-apneic and apneic. While PCOS women without OSA had
higher glucose levels (both fasting and during the OGTT) and higher HOMA indices than
control women, these differences were almost entirely due to the presence of women with
IGT, which may be attributed to β-cell dysfunction [112]. Interestingly, no significant
differences in metabolic variation between non-apneic PCOS women with normal glucose
tolerance and controls were observed (HOMA, fasting and OGTT glucose and insulin
values, and AUC for glucose were not significant between groups). In fact, the OGTT
insulin values for the non-IGT, non-apneic PCOS women and controls were nearly identical,
which may demonstrate a reduced risk of OSA in PCOS women who maintain normal
glucose tolerance. Upon comparison of PCOS women with and without OSA, it is
increasingly apparent that the presence and severity of OSA helps predict the extent of
glucose intolerance and insulin resistance. Among PCOS women with OSA, the prevalence
of IGT increased in direct proportion to the severity of OSA, and markers of insulin
resistance were indeed higher in PCOS women with OSA than those without OSA. Thus,
PCOS women with OSA are thought to be at a higher risk for developing type 2 diabetes
than their non-apneic PCOS counterparts. A strong correlation between the degree of sleep
fragmentation (quantified by the microarousal index) and severity of OSA (quantified by the
AHI, r = 0.86, P = 0.0001) suggests that episodic sleep disruption predicts the degree of
insulin resistance and glucose intolerance, which is also observed in our recent studies with
young, healthy adults 116. As OSA is highly prevalent in women with PCOS, it serves as a
predictor of glucose tolerance and gives rise to the possibility of two PCOS subtypes, each
with distinct metabolic characteristics and implications.

PRACTICE POINTS

1. There is a significant increase in risk for OSA in PCOS. When present, OSA
largely remains under-diagnosed and untreated.

2. Overweight and (visceral) obesity are exceptionally common in women with
PCOS and contribute to the increased risk of OSA in this population.

3. Neither the degree of androgen elevation nor BMI fully account for the presence
or severity of OSA in PCOS.

4. Impaired glucose tolerance and type 2 diabetes are present at an early age and in
a disproportionate number of women with PCOS.
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5. Treatment of OSA with CPAP in PCOS results in significant reductions in 24 hr
secretory cortisol and norepinephrine profiles as well as improved insulin
sensitivity.

6. The presence and severity of OSA may directly impact the mechanism of IGT in
women with PCOS.

RESEARCH AGENDA

1. To better elucidate the pathogenesis of OSA in PCOS, trials further
investigating cardiometabolic, hormonal and sleep parameters should be
explored and expanded within the two PCOS subgroups.

2. While treatment of OSA with CPAP ameliorates metabolic and hormonal
dysfunction in PCOS women with OSA, it is worthwhile to investigate the
impact of estradiol and/or progesterone therapy in this population.

3. Trials examining the prevalence of OSA among obese men and obese women
(with and without PCOS) should also be considered.
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Table 1

Authors Reference # Sample Size Women in Sample (%)

Punjabi, et. al. 33 150 0

Ip, et. al. 32 270 27

Meslier, et. al. 34 595 0

Punjabi, et. al. 35 2,656 54

Tassone, et. al. 36 30 30

Harsch, et. al. (CPAP treatment) 37 40 15

Babu, et. al. (CPAP treatment) 38 25 36
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