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Elimination of Thermodynamically Infeasible Loops in Steady-State
Metabolic Models
Jan Schellenberger,† Nathan E. Lewis,‡ and Bernhard Ø. Palsson‡*
†Bioinformatics and Systems Biology Program and ‡Bioengineering Department, University of California, San Diego, California
ABSTRACT The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steady-
state flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation
of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoff’s second law for electric
circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences
of the loop law have been known for years, it has been computationally difficult to work with. Therefore, the resulting loop-
law constraints have been overlooked. Here, we present a general mixed integer programming approach called loopless
COBRA (ll-COBRA), which can be used to eliminate all steady-state flux solutions that are incompatible with the loop law.
We apply this approach to improve flux predictions on three common COBRA methods: flux balance analysis, flux variability
analysis, and Monte Carlo sampling of the flux space. Moreover, we demonstrate that the imposition of loop-law constraints
with ll-COBRA improves the consistency of simulation results with experimental data. This method provides an additional
constraint for many COBRA methods, enabling the acquisition of more realistic simulation results.
INTRODUCTION
A primary aim of researchers in the field of systems biology
is to understand the properties of large-scale biochemical
networks through the construction and use of predictive
in silico models. One common approach is the constraint-
based reconstruction and analysis (COBRA) framework
(1–4). Genome-scale metabolic models are built in a
bottom-up fashion from various sources of biological
knowledge, such as genome annotations, metabolic data-
bases, and published biochemical information (5–7). This
quality-controlled reconstruction process results in vali-
dated mathematical models that can make predictions about
reaction fluxes inside a cell. These predictions have a wide
variety of applications (8–10). Because these models are
generally underdetermined, steady-state flux solutions are
calculated by imposing constraints on the system and opti-
mizing an objective function (2,11–13). Popular constraints
include the steady-state assumption, reaction reversibility,
and bounds on reaction capacity. The various methods
developed under this framework have been described else-
where (2,4–6,14).

COBRA models are defined primarily by their stoichio-
metric matrix (S) and reaction lower (lb) and upper (ub)
bounds. The stoichiometric matrix encodes information about
reactions (columns) and metabolites (rows), such that each
entry, Si,j, is the signed stoichiometric coefficient of metabo-
lite i in reaction j. The stoichiometric matrix relates the reac-
tion flux (v) to the change in metabolite concentrations (x):

dx

dt
¼ S , v:
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At steady state, it is assumed that concentrations do not
change. Thus, the equation reduces to S,v ¼ 0. Upper and
lower bounds can be placed on each reaction flux. Many
reactions are considered irreversible (vi > 0), whereas
others, such as uptake and secretion reactions, can be
set to experimentally measured values (vi ¼ vexp). If no
information is available, arbitrarily large bounds are set
(e.g., �10,000 < vi < 10,000). Together, the flux bounds
and the steady-state equation define a bounded space of
possible flux states.

The constraint-based method known as flux balance anal-
ysis (FBA) is commonly used to compute the likely state of
the network by optimizing a metabolic objective (15,16).
Common objectives include biomass production (12), ATP
production (17), and biomass production per unit input (13).

Many COBRAmethods, including FBA, ignore the impo-
sition of the loop law (18). The loop law is analogous to
Kirchhoff’s second law for electrical circuits, in that it states
that the thermodynamic driving forces around a metabolic
loop must add up to zero. As such, there cannot be a net
flux around a closed cycle in a network at steady state.
Methods for detecting loops have been developed (19);
however, these methods are too computationally intensive
and not flexible enough to be included within optimization
computations (20).

An alternative approach for addressing the loop law is to
include additional thermodynamic information. Such an
approach relies on the relation DGr ¼ DG0 þ RT ln Q,
where Q is a ratio of metabolic concentrations and DGr is
the Gibbs energy of a reaction. DGr directly relates to the
sign of the flux through the associated reaction (i.e., if
DGr > 0, then vnet < 0 and vice versa). This imposes addi-
tional constraints on reaction directionality, as well as on
feasible concentrations. This approach has been used to
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FIGURE 1 Loops in metabolic networks. (a and c) A small network illus-

trates pathways with and without loops, in which the network contains five

internal reactions and three exchanges. (b and d) The internal part of the

network. Steady-state pathways are superimposed (P1-P5). EPA (29) indi-

cates that Type I and II pathways use exchange reactions. A partial subset

of these pathways is listed in c. Type III pathways do not contain exchange

reactions and form a set of loops. In this example there are three type III

pathways (d). P3 and P4 form the basis of the internal null space (Nint),

and P5 can be written as a linear combination of the other two type III
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compute potential regulatory sites (21), determine reaction
directionality (22), and compute feasible concentration
ranges (23). A slightly different formalism with decoupled
forward and reverse reactions has been used to modify
FBA (24,25). All of these methods require a priori knowl-
edge of the standard free-energy change of reactions
(DGr) or the standard energies of formation (DGf) of all
metabolites in the network. These values can be found in
databases (e.g., the NIST Chemical Kinetics Database
(26)) or estimated computationally with methods such as
group contribution theory (27,28). However, the lack of
accuracy and coverage in some cases can pose challenges.

Here, we present a simpler method to incorporate the
loop-law constraints into many current COBRA methods.
This method does not require additional inputs or data
(e.g., metabolite concentrations and DGf), and turns any
linear programming (LP), quadratic programming (QP), or
mixed integer problem (MIP) into a modified MIP problem.
The solution to the modified MIP problem solves the initial
problem, with an additional constraint. This constraint does
not allow the inclusion of network fluxes that contain loops.
We demonstrate this technique on three popular COBRA
methods: FBA, flux variability analysis (FVA), and Monte
Carlo sampling, thereby producing loopless versions of each
method (ll-FBA, ll-FVA, and ll-sampling, respectively).
Given the extensive application of COBRA methods, this
simple method for imposing the loop-law constraint will
likely find widespread use.
pathways.
MATERIALS AND METHODS

The loopless condition

First, consider the simpler problem of determining whether a given flux

solution, v, contains a loop. For v to satisfy the loop law, the reaction ener-

gies around any cycle must add to zero. This condition can be written

concisely as vT � G ¼ 0, where G is a vector of energies for each reaction.

Extreme pathway (29) and elementary mode analysis (30) can be used to

identify all cycles. However, these methods have shown that the number

of loops (type III pathways) grows rapidly with the network size, and

that enumerating all loops is not possible for medium- to large-scale

networks (31). Fortunately, it is not necessary to enumerate all loops. As

shown in Fig. 1, all loops lie within the internal network, Sint. Any

steady-state pathway in Sint is a loop, and all such paths can be expressed

as a linear combination of the null basis of Sint (3). All loops can be ex-

pressed in the form v¼ Nint� ai, where Nint¼ null(Sint), and ai are weights.

If it can be shown that if NT
int � G ¼ 0, then vT G ¼ 0 for all loops v.

The loopless condition forms an LP problem. A vector of continuous

variables (Gi) indicates the driving force of each reaction. This quantity

can be thought of as being analogous to the DGr of each reaction, in that

sign(G) ¼ sign(DGr), although numerically they may be quite different.

A loop is purely defined by the sign (direction) of the flux distribution

(19). Therefore, if Nint � Gi ¼ 0, no loop is present.

To verify that a flux distribution does not contain loops, a solution to

Nint � G ¼ 0 is found with the following constraints:

Gi < 0 for all vi > 0

Gi > 0 for all vi < 0
Gi˛R for all vi ¼ 0
NintG ¼ 0:

In practice, it is necessary to restrict Gi to be strictly positive or strictly

negative to avoid the degenerate solution Gi ¼ 0 for all i. This requirement

is another reason whyGimay not be interpreted directly as DGr-values. The

following correction restricts Gi to [�1000,�1] or [1,1000], and Gi may

never be exactly zero:

�1000 < Gi < �1 for all vi > 0

1 < Gi < 1000 for all vi < 0

Gi˛R for all vi ¼ 0

NintG ¼ 0:

If a solution exists, then v contains no loops. Otherwise, v contains a loop.

Unlike most LP problems, the objective (max cT � G) is of no concern

because only the feasibility is relevant.
Adding the loop-law constraints to COBRA
problems: ll-FBA

The linear loop-law constraints described above can be added to almost any

COBRA LP, mixed integer linear programming (MILP), QP, or mixed

integer quadratic programming (MIQP) problem, as long as this problem

contains a variable, vi, for each of the internal fluxes in the model. The
Biophysical Journal 100(3) 544–553



TABLE 1 Five models of increasing size used in this work

Network Reactions Metabolites Genes Citation

Toy network 5 3 — —

Core E. coli 95 72 137 (49)

H. pylori iIT341 554 485 339 (50)

S. aureus iSB619 743 655 619 (51)

E. coli iAF1260 2382 1668 1261 (52)

Human Recon 1 3742 2776 1905 (53)
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only necessary addition is the condition that ensures sign(v) ¼ �sign(G).

This is achieved by adding a binary indicator variable (ai) for each internal

reaction.

The full set of constraints can be expressed as follows:

ai ¼ 1 if vi > 0

0 if vi < 0

Gi > 0 if ai < 0

Gi < 0 if ai > 0

NintG ¼ 0:

This is converted to the following MILP problem:

�1000ai þ 1ð1� aiÞ%Gi%� 1ai þ 1000ð1� aiÞ

�1000ð1� aiÞ%vi%1000ai

NintG ¼ 0

ai˛f0; 1g

Gi˛R:

As before, to avoid degenerate solutions, Gi is not allowed to be zero.

These constraints may be added to almost any LP COBRA method. For

example, the full formulation for loopless FBA (ll-FBA) is as follows:

max cjvj
subject to

X

k

Skjvk ¼ 0

lbj%vj%ubj

�1000ð1� aiÞ%vi%1000ai

�1000ai þ 1ð1� aiÞ%Gi%� 1ai þ 1000ð1� aiÞ

NintG ¼ 0

ai˛f0; 1g

Gi˛R

i˛i nternal;

where Skj is the stoichiometric matrix; j iterates over all reactions; i iterates

over internal reactions; lbj and ubj are the lower and upper bounds, respec-

tively, for each reaction; and cj are the coefficients of optimization. See the

Supporting Material for additional performance enhancements that can be

added to speed up the computation.
Models

Several COBRA models were used to validate the ll-COBRA methods.

All models (except the toy network) have been published elsewhere (see

Table 1). Models were exported from the BiGG knowledgebase (32) as
Biophysical Journal 100(3) 544–553
SBML files and subsequently imported in the COBRA toolbox, using

default parameters. Only the Staphylococcus aureus model was modified.

This model contains several potential biomass objective functions, so

only the default objective, biomass_SA_8a, was retained. In addition, this

model had unrealistic uptake rates of carbon substrates, so these rates

were reduced to 10 mmol glucose gDW�1 h�1 (similar to uptake rates in

other prokaryotic models). These changes do not affect the occurrence of

loops, but aided in the comparison of loop fluxes before and after the impo-

sition of loop law constraints.
Loopless FVA

Loopless FVA (ll-FVA) was performed with the use of the ll-FBA method

described above, followed by the sequential maximization andminimization

of each reaction in themodel. This computationwas performedbothwith and

without the loop-lawconstraints. Reactions inwhich the range (max vi�min

vi) differed by>10�6 mmol gDW�1 h�1 between FVA and ll-FVAwere clas-

sified as loop reactions, affected by the loop-law constraints.
Sampling of the steady-state solution space

Monte Carlo sampling was used to generate a set of flux distributions that

uniformly sample the space of all feasible fluxes (possibly including loops).

The method is based on the artificially centered hit and run algorithm with

slight modifications (33,34). Initially, a set of 2000 nonuniform pseudo-

random points, called warm-up points, was generated. In a series of itera-

tions, we randomly moved each point while keeping it within the feasible

flux space. We accomplished this by 1), choosing a random direction; 2),

computing the limits on how far a point could travel in that direction (posi-

tive or negative); and 3), choosing a new point randomly along that line.

After numerous iterations, the set of points was mixed and approached

a uniform sample of the solution space. We used a mixed fraction, as

described previously (34), to determine when the solution space was

uniformly sampled. For this work, 2000 points were generated and mixed

for 1 h, at which time the space was determined to be uniformly sampled

with a mixed fraction of 0.495.
Removing loops: ll sampling

Sampling the loopless solution space can be implemented as a postprocess-

ing step in Monte Carlo sampling. Once a set of flux distributions has been

generated, the loops can be removed. To do this, we find a loopless flux, wi,

that is nearest to a given flux distribution, vi:

min
w

��wj � vj
��

subject to:

X

k

Skjwk ¼ 0

lbj%wj%ubj
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�1000ð1� aiÞ%wi%1000ai
a

c d

b

FIGURE 2 Toy network with loops. A five-reaction toy network is used

to illustrate the effects of the loop law. (a) The structure of the network and

the reaction bounds are represented graphically. Reactions v1, v2, and v3
form a loop. (b) The stoichiometric matrix, lower bounds and upper bounds

(S, lb, and ub, respectively) mathematically describe the network.

The objective coefficient, c, indicates which reaction should be maximized

(in this case, reaction v3). (c) Classical FBA returns a solution that contains

a loop and an objective value of 10. (d) By eliminating the loop, we obtain

a lower, thermodynamically consistent objective of 1 unit of flux, with flux

passing through reaction v3 and not around the center loop.
�1000ai þ 1ð1� aiÞ%Gi%� 1ai þ 1000ð1� aiÞ

NintG ¼ 0

ai˛f0; 1g

Gi˛R;

where jwi � vij is the distance to be minimized. If the Euclidian norm

(2-norm) is used as the distance metric, this becomes an MIQP problem

in which (wj � vj)
2 is minimized. The Manhattan norm (1-norm) may be

implemented as an MILP problem by introducing a helper variable vþ,
such that jv � wj ¼ vþ.

min
X

vþj
subject to:

vþj Rvj � wj

vþj R� �
vj � wj

�

X

k

Skjvk ¼ 0

lbj%vj%ubj

�1000ð1� aiÞ%vi%1000ai

�1000ai þ 1ð1� aiÞ%Gi%� 1ai þ 1000ð1� aiÞ

NintG ¼ 0

ai˛f0; 1g

Gi˛R

vþj > 0:

Computer configuration and availability

Computations were performed in the MATLAB (The MathWorks, Natick,

MA) version 2009b environment with the COBRA toolbox (35) and

SBML toolbox version 3.0 (36). Linear and mixed integer linear program-

ming were performed with the TOMLAB/CPLEX package version 7.4

(Tomlab Research, Pullman, WA). All computations were run on a Dell

Studio XPS workstation (core i7 920 processor, 12GB ram, Windows

2003 R2, 64 bit). The MATLAB parallel toolbox was used for both the

ll-FVA and ll-sampling applications to take advantage of its multicore

architecture.

The methods presented here can be added to any implementation of FBA

or similar methods. However, to facilitate their use, the code used for the

computations in this publication are available in the COBRA toolbox 2.0

(35), in which the optimizeCbModel (FBA) and fluxVariability functions

have an optional flag to exclude loops. Monte Carlo sampling is called

through the nearest loopless flux function, which returns the nearest

loopless flux distribution using the MILP or MIQP methods. Internally,

these three methods call an addLoopLawConstraints function, which adds
loop-law constraints to any COBRA LP, MILP, QP, or MIQP problem

and turns it into an ll-COBRA problem.
Microarray analysis

Previously published (37) Affymetrix E. coli antisense genome arrays were

obtained and subjected to GC robust multiarray average (gcrma) normaliza-

tion using the bioconductor package in R. This data set includes 213 expres-

sion profiles, representing ~70 variations in experimental conditions and

genetic perturbation of E. coli K-12 MG1655. We used these data to assess

loop flux before and after imposition of the loop-law constraints, and to

compare these fluxes with gene expression levels. To that end, we first iden-

tified the genes associated with loop and nonloop reactions. We then

selected 2500 random pairs, containing one loop- and one nonloop-associ-

ated gene, and computed the ratios between the expression levels for each

pair. In like manner, we randomly selected pairs of loop and nonloop reac-

tions, and computed the ratios of the maximum fluxes through these reac-

tions before and after adding the loop law constraints.
RESULTS

FBA with a toy network

A toy network is used to illustrate FBA in Fig. 2, a and b.
The S matrix defines the topology of this network mathe-
matically. Upper and lower bounds are imposed on the
reaction rates. In this case, the internal reactions (v1, v2,
and v3) are reversible and bounded in the range [�10, 10].
Metabolites A and C can be exchanged with the environ-
ment at lower rates [0,1]. This setup is commonly used
because uptake and secretion rates may be constrained to
Biophysical Journal 100(3) 544–553
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experimentally measured values, whereas internal reaction
bounds are often unknown. Maximizing reaction v3 by
conventional FBA yields the flux distribution shown in
Fig. 2 c. This solution is not unique. However, all of the
solutions have a flux of 10 through v3 and at least 9 units
through reactions v1, v2, and v3 forming a loop around
A/B/C/A. This scenario violates the second law of
thermodynamics because there can be no chemical driving
force for all three reactions at the same time. However,
the ll-FBA solution that maximizes flux through v3 effec-
tively removes the loop by allowing only 1 unit of flux
through v3 while deactivating v2 and v1 (Fig. 2 d).
FVA

The above analysis provides a simple example of how the
loop-law constraints eliminate thermodynamically infea-
sible loops from FBA simulations. Of importance, imposing
loop-law constraints has a similar effect on genome-scale
metabolic networks. FVA is a common technique for evalu-
ating the scope of metabolic states a network can achieve
(Fig. 3 a). In FVA, each reaction is sequentially minimized
and maximized, thereby providing the range of feasible
steady-state fluxes for each reaction. Here, six models of
increasing size were tested with FVA (Table 1). The scale
of these models ranges from the toy network (five reactions)
to the human metabolic network (3742 reactions). The
results of the six networks are shown in Table 2. Although
each network has a different number of loop reactions, the
fraction of reactions that participate in the loops is roughly
0.4–4% (except for the toy model).
b

c

a

FIGURE 3 FVA computes the range of each reaction in a network. (a) An exa

removing loops (ll-FVA) reduces the range of reaction 1 but not that of reaction 2

the se of ll-FVA on the iAF1260 model of E. coli metabolism, the flux spans for

The use of ll-FVA on the iAF1260 model also brings the ratio of loop to nonloop

expression ratios, as determined from 213 different microarray experiments (ea

Thus, ll-FVA reduces the range of feasible reaction flux to values that are more
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Flux through loops in constraint-based models is limited
only by the reaction directionality and the arbitrary upper
limits in flux imposed by the user. Thus, the predicted
maximum flux values through loop reactions are expected
to be significantly higher than fluxes through nonloop reac-
tions. If the loopless methods effectively remove loops,
then the maximum flux values for loop reactions should
be comparable to nonloop reactions. To demonstrate this,
we used ll-FVA to compute the range of feasible flux values
for all reactions. Using ll-FVA on the E. coli iAF1260
model, all loop reaction flux ranges decrease, and most
decrease to levels within the range of nonloop reactions
(Fig. 3 b). This reduction of all loop reaction flux spans
occurs in the other models tested here (see Table 2 and
Fig. S1). In addition, the larger models exhibit cases in
which a few reactions are completely deactivated, suggest-
ing that these reactions can only carry a flux in the growth
conditions tested here if they participate in a loop. Thus,
ll-FVA reduces the flux span for all loop reactions and
provides flux ranges that are more consistent with the ranges
seen in nonloop reactions.
ll-FVA and expression levels of loop reactions

Although ll-FVA effectively reduces the range of feasible
flux values for all loop reactions, it remains to be shown
that this is consistent with biological reality. Previous
studies reported a moderate correlation between model-
predicted flux and gene expression levels (13,38,39). How-
ever, when comparisons are made between flux and gene
expression, loop reactions are regularly removed from the
mple of the loop and loopless regions in the flux solution space shows that

. In all cases, ll-FVA is as or more constraining than classical FVA. (b) After

most loop reactions are comparable to the ranges of nonloop reactions. (c)

reaction flux to a level that is more consistent with the loop to nonloop gene

ch gray line represents gene expression level ratios from one microarray) .

consistent with nonloop flux and gene expression.



TABLE 2 Comparison of FVA and ll-FVA, performed on models spanning a wide range of sizes

Model

Number

of

reactions

FVA

time (s)

ll-FVA

time (s)

Time per

iteration (s)

Number of

changed

reactions

% of model

changed

Number of

deactivated

reactions Changed reactions

Toy network 5 0.08 0.19 0.04 3 60.00% 0 v1 v2 v3

Core E. coli 95 1.1 7.35* 0.08 2 2.11% 0 FRD7 SUCDi

H. pylori iIT341 554 7.8 123 0.22 22 3.97% 6 4HGLSD ACKr AHSERL2 H2CO3D H2CO3D2

HCO3E HPROa HPROx HSERTA HSK METB1r

NAt3_1 PHCD PHCHGS PROt2r PROt4r PTAr

SHSL1r SHSL2r SHSL4r THRD_L THRS

S. aureus iSB619 730 12.1 604 0.83 6 0.82% 1 FLDO FMNRx GLUt2 GLUt2r NADTRHD NAt3

E. coli iAF1260 2382 58.8 18222** 7.6 68 2.85% 7 ABUTt2pp ACACT1r ACCOAL ACKr ACS

ACt2rpp ACt4pp ADK1 ADK3 ADNt2pp

ADNt2rpp ALATA_L CA2t3pp CAt6pp

CRNDt2rpp CRNt2rpp CRNt8pp CYTDt2pp

CYTDt2rpp GLBRAN2 GLCP GLCP2 GLCS1

GLCtex GLCtexi GLDBRAN2 GLGC

GLUABUTt7pp GLUt2rpp GLUt4pp

GLYCLTt2rpp GLYCLTt4pp HPYRI HPYRRx

ICHORS ICHORSi INDOLEt2pp INDOLEt2rpp

INSt2pp INSt2rpp KAT1 NAt3pp NDPK1 PPAKr

PPCSCT PPKr PPM PROt2rpp PROt4pp PRPPS

PTA2 PTAr R15BPK R1PK SERt2rpp SERt4pp

SUCOAS THMDt2pp THMDt2rpp THRt2rpp

THRt4pp TRSARr URAt2pp URAt2rpp URIt2pp

URIt2rpp VALTAVPAMT

Human Recon 1 3742 199.95 111163 29.7 34 0.91% 10 10FTHFtm 25HVITD2t 25HVITD2tm 4HGLSDm

ACCOAtn ACHtn CHAT CHATn CHOLtn

COAtn CYTK1n CYTK2n DCK1n DCK2n

GALT H2CO3D2m H2CO3Dm HCO3Em

NADHtpu NADtpu NDPK1n NDPK2n NDPK3n

NDPK5n NDPK7n NDPK8n NNATr P5CRx

PHCDm PHCHGSm PPDOx UMPKn VITD3t

VITD3tm

*Standard deviation of 0.3 s across four different growth conditions and two different objective functions.

**Standard deviation of 6358 s across four different growth conditions and two different objective functions.
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analysis. Thus, if ll-FVA effectively improves the prediction
of loop-reaction fluxes, one would expect the loop reaction
fluxes to be more consistent with the gene expression levels.
Here, we tested this by comparing the ratios between loop
and nonloop reaction fluxes with the ratios between gene
expression levels for loop and nonloop genes. First, were
removed all reactions that could not carry flux in the given
growth conditions from the E. coli iAF1260 model. Second,
we selected 2500 randomly chosen pairs of gene-associated
loop and nonloop reactions, and used FVA to compute the
maximum flux for the reactions. The ratio of loop reaction
flux to nonloop flux was subsequently computed. Third,
we identified genes associated with loop and nonloop reac-
tions. We then selected 2500 random pairs of loop and non-
loop genes, and computed the ratios of their expression
values using 213 different microarrays (37).

The ratios of loop reaction fluxes to nonloop fluxes are
beyond the ranges of the loop to nonloop gene expression
ratios computed from the expression data. However, when
we repeated this process using ll-FVA, we found that the
loop/nonloop ratios were more similar to the distribution
of loop/nonloop gene expression ratios (Fig. 3 c). Thus,
for most reactions, ll-FVA effectively reduces the range of
feasible flux values to ranges that are more consistent with
gene expression differences between sets of loop- and non-
loop-associated genes.
Performance considerations

ll-FVA reduces flux spans of loop reactions to levels that are
more consistent with nonloop reactions and with real gene
expression levels. However, ll-FVA is more computationally
intensive than FVA. MILP is known to be NP complete, and
the running time is highly problem- and solver-specific.
Average running times for the Tomlab/CPLEX solver are
shown in Table 2. For a medium-sized problem such as
the H. pylori model, the addition of the loop-law constraints
increases the computation time by a factor of 12. A different
solver, GLPK, was unable to solve this problem after several
hours. Thus, the solver choice and network size significantly
affect the running time of ll-FVA. However, variations in
model growth media and objective function choice only
have a small effect on running time and thus do not
Biophysical Journal 100(3) 544–553
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significantly affect the feasibility of ll-FVA calculations (see
Table 2 and Supporting Material).
Monte Carlo sampling of networks

Monte Carlo sampling of the steady-state solution space
allows one to study the set of feasible flux distributions
that a network is capable of supporting. For this study, we
chose the H. pylori iIT431 model, and sampled the model
using a modified ACHR method. We then postprocessed
the 2000 uniformly sampled points to remove the loops
using either the MILP or MIQP method as shown in
Fig. 4 a (see Materials and Methods). All 2000 points
contain loop fluxes (Fig. 4 b). The MILP and MIQP methods
show different properties in removing looping reactions.
On average, the MILP method altered 22.6 reactions in
the flux distribution, which is very close to the number
of reactions with altered FVA range (22 reactions). The
MIQP method on average shifted 252.6 reactions by 0.01
units or more. This difference results because the MIQP
method is able to find nearer loopless flux distributions by
adding small modifications to nonloop reactions. However,
these modifications are orders of magnitude smaller than
the changes in the loop reaction fluxes (Fig. S2). Thus, for
both methods, loop reactions are primarily changed.
a

c d

FIGURE 4 Monte Carlo sampling. A random Monte Carlo sample of 2000

sampled from the complete steady-state solution space. Points within the infeas

either a Euclidian distance (MIQP) or a Manhattan distance (MILP). (b) Differen

moved (jv-v0j) and the average number of reactions that change their flux value

butions of sample flux values for three reactions (ACONT, ACKr, and THRS) o
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These samples allow visualization of the solution space
within which the cell operates. By plotting the samples on
a histogram, one can obtain the projection across the solu-
tion space for any reaction. This projection shows the distri-
bution of feasible flux values for each reaction, given the
model topology and constraints. The projections of three
reactions are shown in Fig. 4 c. The MILP loop removal
does not shift points for nonloop reactions, such as ACONT.
However, when loops are removed by MIQP, small modifi-
cations are introduced in these nonloop reactions because
the modifications lead to slightly closer loopless flux distri-
butions. However, for loop reactions, both methods shift the
bulk of points toward fluxes of lower magnitude (e.g., ACKr
and THRS).
Performance considerations

Removing loops in the iIT431 model with 554 reactions
requires ~4.5 s of postprocessing per point using the
MILP method. The MIQP method requires ~16.9 s. It is
possible to sample larger networks. The iJR904 E. coli
model with 1075 reactions is the largest successfully
sampled model (results not shown). However, the larger
E. colimodel, iAF1260, and the human reconstruction could
not be sampled as described in the Materials and Methods
b MILP MIQP

e

points was generated for the H. pylori model (50). (a) Points are initially

ible region (shaded) are moved to the nearest feasible loopless point using

ces between the two samples are quantified, including the average distance

s as the point is corrected (#Drxns > 0.01). (c) Histograms show the distri-

f initial points (v0), and MILP/MIQP loopless points.
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section, due to scaling issues. The MILP/MIQP solver was
not able to find the nearest solution in a reasonable time.
DISCUSSION

We have presented an enhancement of COBRA methods
that incorporates the constraints associated with the loop
law by disallowing steady-state flux solutions containing
closed loops. We applied this method to FBA, FVA, and
Monte Carlo sampling to demonstrate how it refines the
solutions to various COBRA methods. In these cases, we
showed that the traditional method, which allows loops, pre-
dicted flux distributions that are known to be infeasible,
whereas ll-COBRA provided better solutions. The success
of ll-COBRA in this respect has three broader implications
for the modeling community, as discussed below.

First, our results demonstrate that for certain applications,
detailed quantitative parameterization of thermodynamic
constants can be bypassed through the use of more global
governing constraints. The COBRA framework has devel-
oped rapidly in part because the associated models do not
demand the rigorous parameterization required by kinetic
models. Thus, many COBRA methods can be used even
on large FBA models, since model predictions are subject
to more global physicochemical constraints such as mass
balance and the delineation of possible chemical transfor-
mations in the cell. The successes and, in part, the limita-
tions of these models have motivated the development
of hybrid methods that integrate additional elements of
thermodynamics with the FBA approach. The different
modeling approaches that can be used to address thermody-
namics are summarized in Table 3.

Many methods that incorporate thermodynamics rely on
a priori knowledge of the DGf for the metabolites in the
model (21,23). These quantities can be obtained from
the literature or estimated computationally (27). In theory,
only these parameters and metabolite concentrations are
needed to compute the reaction directionality. An advantage
of this formalism is that no flux distributions with loops
are allowed. However, these methods are hindered by the
requirement for accurate DGf-values. When these values
are not available, many of the thermodynamic constraints
can no longer be evaluated. Moreover, as shown in Table 3,
TABLE 3 Assumptions, required parameters, and computational c

Formalism FBA ll-FBA

Assumptions

and constraints

Steady state,

well mixed

Steady state,

well mixed, loop law

Parameters Enzyme capacities,

uptake rates

Enzyme capacities,

uptake rates

Computation type Linear Mixed integer

Computational difficulty Easy Medium

Example studies (16) This study

*Depends on the implementation (can be MILP, convex optimization, or genera

**One has to either assume mass action kinetics or know the mechanism of rea
these methods significantly vary in their descriptive
power, computational difficulty, and number of required
parameters.

The loop-law method proposed here incorporates thermo-
dynamic constraints while also addressing concerns about
computational difficulty and missing thermodynamic con-
stants. Its primary advantage over classical FBA is that it
excludes loop-containing fluxes without requiring addi-
tional parameters. The additional constraints come free as
a direct consequence of imposing the second law of thermo-
dynamics on the model. It also has an advantage over other
hybrid approaches in that it reduces the need for rigorous
parameterization by including a DGf for each metabolite.
Also, as an MIP, it is computationally more tractable.
Thus, detailed parameterization can be minimized and the
models can be more easily and rapidly scaled up.

Second, this approach affects model construction. The
ll-COBRA formulation provides an alternative to the labo-
rious and potentially incorrect manual removal of loops in
the reconstruction process. The process of reconstructing
COBRA models has been described in detail elsewhere
(5–7). When reconstructing a metabolic network, one
must manually evaluate each reaction and assess the reac-
tion directionality. An important step in network reconstruc-
tion is to verify that the model produces accurate results
when optimizing for physiological functions such as ATP
or biomass production. Unfortunately, if the models are
not adequately constrained, unbounded internal reaction
rates can result from loops. To remedy these unrealistic
and problematic loops, one can change the directionality
of a reaction, thereby eliminating the loop. Although this
approach solves the problem of unbounded solutions, it
may inadvertently introduce an artificial constraint on the
system. For example, studies have indicated (40,41) that
most reactions in the iJR904 model of E. coli metabolism
(42) are estimated to be near equilibrium. Thus, in this
model, few reactions witness additional constraints from
ll-FVA, because iJR904 has been constructed to avoid loops.
This is only a concern because all reactions are inherently
reversible, and marking them as irreversible may restrict
the accuracy of the model under extreme conditions. There-
fore, the use of ll-COBRA instead of classical COBRA
methods may lead to better models in the future because it
omplexity of different metabolic modeling formalisms

FBA þ thermodynamics Kinetics

Steady state, well mixed,

DG ¼ DG0 þ RT ln(Q)

Well mixed, mass action**

Enzyme capacities,

uptake rates, metabolite

concentrations, DG0

Kinetic parameters, metabolite

concentrations, initial conditions,

mechanisms**

Nonlinear Nonlinear

Hard* Hard

(21–23)

lized NLP).

ction.
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will not be necessary to add many of these artificial revers-
ibility constraints to the models. Condition-specific loop
elimination can instead be done with ll-COBRA.

Third, the ll-COBRA formulism is broadly applicable to
COBRA methods. In this study we have provided examples
of how the loop-law constraints can be added, and how the
loop law affects COBRA solutions. Many other COBRA
methods may benefit from this addition. The only require-
ments are that 1), the method must involve an LP, MILP,
or QP problem; and 2), the method must include a variable
for each internal reaction. Example candidate methods
include minimization of metabolic adjustment (43), regula-
tory on/off minimization (44), gene deletion analysis (45),
regulatory FBA (46), flux coupling analysis (47), Parsimo-
nious enzyme usage FBA (38), and geometric FBA (48).
By integrating the loop law constraints with these estab-
lished methods, loop reactions can be corrected. Thus,
beyond the five genome-scale models used in this study
(49-53), additional insight may be obtained from additional
metabolic models of prokaryotic function (8,9,54), host-
pathogen responses (34), off-target drug effects (55), and
multicellular tissues (56), using a host of additional COBRA
methods.
CONCLUSIONS

Solutions to the classical FBA problem formulation
regularly violate thermodynamic constraints. Although
other thermodynamic methods can provide more insight
into network functions than the ll-COBRA methods, the
ll-COBRA method presented here successfully removes
thermodynamically infeasible loops, is more scalable, and
does not require additional parameters for implementation
in a COBRA model. The code used to implement the
ll-COBRA methods here is freely available in COBRA
toolbox 2.0 (35).
SUPPORTING MATERIAL

Descriptions of additional performance enhancements for the methods in

this work, additional analysis, and Figs. S1 and S2 are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(10)05225-2.
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