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ABSTRACT

Objectives: CSF levels of A�1-42, t-tau, and p-tau181p are potential early diagnostic markers for prob-
able Alzheimer disease (AD). The influence of genetic variation on these markers has been investi-
gated for candidate genes but not on a genome-wide basis. We report a genome-wide association
study (GWAS) of CSF biomarkers (A�1-42, t-tau, p-tau181p, p-tau181p/A�1-42, and t-tau/A�1-42).

Methods: A total of 374 non-Hispanic Caucasian participants in the Alzheimer’s Disease Neuro-
imaging Initiative cohort with quality-controlled CSF and genotype data were included in this
analysis. The main effect of single nucleotide polymorphisms (SNPs) under an additive genetic
model was assessed on each of 5 CSF biomarkers. The p values of all SNPs for each CSF biomar-
ker were adjusted for multiple comparisons by the Bonferroni method. We focused on SNPs with
corrected p � 0.01 (uncorrected p � 3.10 � 10�8) and secondarily examined SNPs with uncor-
rected p values less than 10�5 to identify potential candidates.

Results: Four SNPs in the regions of the APOE, LOC100129500, TOMM40, and EPC2 genes
reached genome-wide significance for associations with one or more CSF biomarkers. SNPs in
CCDC134, ABCG2, SREBF2, and NFATC4, although not reaching genome-wide significance,
were identified as potential candidates.

Conclusions: In addition to known candidate genes, APOE, TOMM40, and one hypothetical gene
LOC100129500 partially overlapping APOE; one novel gene, EPC2, and several other interesting
genes were associated with CSF biomarkers that are related to AD. These findings, especially the
new EPC2 results, require replication in independent cohorts. Neurology® 2011;76:69–79

GLOSSARY
A�1-42 � amyloid-� 1-42 peptide; AD � Alzheimer disease; ADNI � Alzheimer’s Disease Neuroimaging Initiative; GWAS �
genome-wide association study; LD � linkage disequilibrium; LOAD � late-onset Alzheimer disease; MAF � minor allele
frequency; MCI � mild cognitive impairment; p-tau181p � tau phosphorylated at the threonine 181; QC � quality control;
SNP � single nucleotide polymorphism; t-tau � total tau.

Alzheimer disease (AD) is the most common form of dementia, affecting an estimated 5.3
million Americans. Amyloid-� 1-42 peptide (A�1-42), total tau (t-tau), and tau phosphorylated
at the threonine 181 (p-tau181p), measured in CSF samples, are potential diagnostic biomarkers
for AD.1-3 A�1-42 is decreased and t-tau and p-tau181p are increased in the CSF of patients with
AD.4 Baseline A�1-42 has been shown to be a good predictor of the 12-month change in
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cognitive measures, successfully predicting the
12-month progression rate of participants with
mild cognitive impairment (MCI).5 In addition
to these 3 biomarkers, p-tau181p/A�1-42 and
t-tau/A�1-42 ratios have been used to effectively
distinguish patients with AD from healthy con-
trols.1,6 Genetic factors have been shown to play
a key role in late-onset AD (LOAD) pathology,
with a high heritability of 58%–79%,7 and there
is evidence for the influence of selected genes on
CSF biomarker levels.1,8-10 Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is a multi-
center project to assess whether serial MRI,
PET, genetic factors such as single nucleotide
polymorphisms (SNPs), other biological
markers, and clinical and neuropsychological
assessments can be combined to improve early
diagnosis and predict progression of MCI and
early AD. We performed a genome-wide asso-
ciation study (GWAS) to investigate genetic
influences on three important CSF biomark-
ers (A�1-42, t-tau, and p-tau181p) and 2 ratios
(p-tau181p/A�1-42 and t-tau/A�1-42) in the
ADNI cohort. We hypothesized that APOE
and the adjacent gene, TOMM40, would be
strongly associated with CSF biomarkers and
sought to discover additional genes that may
be related to amyloid and tau pathophysiol-
ogy in AD and MCI.

METHODS Alzheimer’s Disease Neuroimaging Ini-
tiative. Data used in this study were obtained from the ADNI
database (www.loni.ucla.edu/ADNI). ADNI was launched in
2004 by the National Institute on Aging, the National Institute
of Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies, and non-
profit organizations, as a $60 million, multiyear public-private
partnership. The Principal Investigator of this initiative is Mi-
chael W. Weiner, MD, VA Medical Center and University of
California–San Francisco. ADNI is the result of efforts of many
coinvestigators from a broad range of academic institutions and
private corporations. ADNI includes more than 800 partici-
pants, aged 55 to 90, recruited from over 50 sites across the
United States and Canada, including approximately 200 cogni-
tively normal older individuals (i.e., healthy controls) to be fol-
lowed for 3 years, 400 patients diagnosed with MCI to be
followed for 3 years, and 200 patients diagnosed with early AD
to be followed for 2 years. Longitudinal imaging, including
structural 1.5-T MRI scans collected on the full sample and
[11C] PIB and [18F]FDG PET imaging on a subset, and per-
formance on neuropsychological and clinical assessments
were collected at baseline and at follow-up visits in 6- to
12-month intervals. Of particular relevance to the present
report, APOE and genome-wide genotyping is available on
the full ADNI sample and longitudinal CSF markers were
obtained for approximately half of the cohort. Further infor-

mation about ADNI can be found in previous publications11

and at www.adni-info.org.

Standard protocol approvals, registrations, and patient
consents. This study was approved by institutional review
boards of all participating institutions and written informed
consent was obtained from all participants or authorized
representatives.

Participants. In this study, 374 (AD � 96, MCI � 176,
healthy controls � 102 at baseline) non-Hispanic Caucasian in-
dividuals from the ADNI cohort whose data met all quality
control (QC) criteria were included. The restriction to non-
Hispanic Caucasian participants served to reduce the likelihood
of population stratification effects in the GWAS. Detailed QC
steps for CSF1 and genotype data12 have been previously reported
and are briefly described below.

CSF measurements and quality control. Baseline CSF
samples were obtained from 416 ADNI subjects, enrolled at 56
participating centers using previously reported methods for CSF
measurements as described.1 In summary, baseline CSF samples
were obtained in the morning after an overnight fast. Lumbar punc-
ture was performed and CSF was collected into tubes provided to
each site, then transferred into polypropylene transfer tubes fol-
lowed by freezing on dry ice within 1 hour after collection, and
shipped overnight to the ADNI Biomarker Core Laboratory at the
University of Pennsylvania Medical Center on dry ice. Aliquots (0.5
mL) were prepared from these samples after thawing (1 hour) at
room temperature and gentle mixing. The aliquots were stored in
bar code–labeled polypropylene vials at �80°C.

Amyloid-� 1-42 peptide (A�1-42), total tau (t-tau), and tau
phosphorylated at the threonine 181 (p-tau181p) were measured
using the multiplex xMAP Luminex platform (Luminex Corp,
Austin, TX) with Innogenetics (INNO-BIA AlzBio3; Ghent,
Belgium; for research use-only reagents) immunoassay kit–based
reagents. Among 416 samples, 410 samples passed quality con-
trol1 and an additional subject later failed ADNI screening re-
sulting in 409 valid CSF samples. The demographic, clinical,
and APOE genotyping results of these samples were comparable
with those of the entire ADNI cohort.1

Considering the relatively small number of samples for a
GWAS, further quality control was performed to reduce the po-
tential influence of extreme outliers on statistical results. Mean
and SD of each of the 3 baseline CSF measures and 2 ratios
(t-tau/A�1-42 and p-tau181p/A�1-42) were calculated, blind to di-
agnostic information and subjects who had at least one value
greater or smaller than 4 SD from the mean value of each of 5
CSF variables were regarded as extreme outliers and removed
from the analysis. This step removed 6 additional participants,
resulting in 403 valid CSF samples.

Genotyping and quality control. Single nucleotide poly-
morphism (SNP) genotyping for more than 620,000 target
SNPs was completed on all ADNI participants using the follow-
ing protocol.13 A total of 7 mL of blood was taken in EDTA-
containing Vacutainer tubes from all participants and genomic
DNA was extracted using the QIAamp DNA Blood Maxi Kit
(Qiagen, Inc., Valencia, CA) following the manufacturer’s pro-
tocol. Lymphoblastoid cell lines were established by transform-
ing B lymphocytes with Epstein-Barr virus.14 Genomic DNA
samples were analyzed using the Human 610-Quad BeadChip
(Illumina, Inc., San Diego, CA) according to the manufacturer’s
protocols (Infinium HD Assay; Super Protocol Guide; rev. A,
May 2008). Before initiation of the assay, 50 ng of genomic
DNA from each sample was examined qualitatively on a 1%
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Tris-acetate-EDTA agarose gel to check for degradation. De-
graded DNA samples were excluded from further analysis. Sam-
ples were quantitated in triplicate with PicoGreen® reagent
(Invitrogen, Carlsbad, CA) and diluted to 50 ng/�L in Tris-
EDTA buffer (10 mM Tris, 1 mM EDTA, pH 8.0). A total of
200 ng of DNA was then denatured, neutralized, and amplified
for 22 hours at 37°C (this is termed the MSA1 plate). The
MSA1 plate was fragmented with FMS reagent (Illumina) at
37°C for 1 hour, precipitated with 2-propanol, and incubated at
4°C for 30 minutes. The resulting blue precipitate was resus-
pended in RA1 reagent (Illumina) at 48°C for 1 hour. Samples
were then denatured (95°C for 20 minutes) and immediately
hybridized onto the BeadChips at 48°C for 20 hours. The Bead-
Chips were washed and subjected to single base extension and
staining. Finally, the BeadChips were coated with XC4 reagent
(Illumina), desiccated, and imaged on the BeadArray Reader (Il-
lumina). The Illumina BeadStudio 3.2 software was used to gen-
erate SNP genotypes from bead intensity data.

To restrict the present analysis to non-Hispanic Caucasians,
these subjects were identified using ethnic and racial information
from the clinical database. Among 403 subjects whose CSF sam-
ple passed the quality control, explained above, 374 were non-
Hispanic Caucasian individuals with genotype data.

Standard QC assessment was performed on these
374 samples using the PLINK software package
(http://pngu.mgh.harvard.edu/�purcell/plink/), release v
1.07,15 as described previously.12 Given the smaller size of the
current sample (374) as compared to previous analyses, only
SNPs with a minor allele frequency (MAF) greater than 20%
were retained for analysis. This more stringent threshold was
chosen to reduce the likelihood of false-positive results in the
context of modest sample size. At the same time, elimination of
relatively rare markers reduced the severity of the multiple com-
parison correction which in turn enhanced statistical power. Af-
ter the QC procedure, all 374 participants remained in the
analysis but only 322,557 out of 620,903 markers, including 2
APOE SNPs (rs429358, rs7412), were considered for analysis.
The overall genotyping rate for the remaining dataset was
�99.5%.

APOE genotype is an established risk factor for LOAD.16

The 2 previously identified APOE SNPs (rs429358, rs7412) that
define the �2/�3/�4 alleles important for AD susceptibility were
not available on the Illumina array. These SNPs were genotyped
by PCR amplification followed by HhaI restriction enzyme di-

gestion and Metaphor Gel and were available in the ADNI data-
base.17 They were added to ADNI genotype data based on the
reported APOE �2/�3/�4 status before the assessment of sample
quality. One SNP (rs7412) was removed due to the low MAF
(�20%). Also, APOE �4 status was included in the statistical
analysis as a dichotomous variable with �4-positive classification
indicating 1 or 2 �4 alleles.

Statistical analyses. To examine the main effect of each SNP
on the 5 CSF biomarkers, a separate GWAS was performed for
each of the quantitative CSF variables using PLINK. We tested
the additive genetic model, i.e., dose-dependent effect of the
minor allele. Baseline age and sex had no significant influence on
any of the CSF biomarkers and hence they were not included in
the model. APOE �4 status was entered as a covariate for analyses
of other SNPs. To address the issue of multiple testing, Bonfer-
roni correction was applied and SNPs with corrected p � 0.01
(uncorrected p � 3.10 � 10�8, i.e., 0.01/322,557 markers)
were considered genome-wide significant. Manhattan and link-
age disequilibrium (LD) plots were generated in Haploview v4.2
(http://www.broadinstitute.org/haploview/haploview)18 and
haplotype blocks were defined by 95% confidence bounds on
D�. A block was created if 95% of informative comparisons were
in strong LD.19 Heat maps and hierarchical clustering12,20 were
employed for visualization of multiple statistical results and se-
lecting important groups of genotypes and phenotypes for fur-
ther analysis.

RESULTS Table 1 shows the demographic informa-
tion for the final set of 374 non-Hispanic Caucasian
participants and summary statistics for the 5 CSF
biomarkers (3 baseline measurements and 2 ratios).
The obtained genomic inflation factors15 of all CSF
biomarker associations (between 1.001 and 1.018)
indicated low risk of confounding due to population
stratification. All 5 CSF biomarkers were different
(p � 0.05, after Bonferroni correction) across the 3
diagnostic groups. Figure 1 displays Manhattan (fig-
ure 1A) and quantile-quantile plots (figure 1B) of
t-tau. Four SNPs in the regions of APOE,
LOC100129500, TOMM40, and EPC2 reached
genome-wide significance after Bonferroni adjust-

Table 1 Demographic information and summary statistics for CSF biomarkers

Baseline diagnosis AD MCI HC Total

No. of subjects 96 176 102 374

M/F 56/40 118/58 53/49 227/147

Baseline age, y, mean � SD 75.05 � 7.85 74.59 � 7.59 75.92 � 5.16 75.07 � 7.09

APOE (�4�/�4�) 31/65 79/97 78/24 188/186

A�1–42,a mean � SD 143.64 � 41.40 163.55 � 53.76 205.06 � 55.63 169.76 � 56.26

t-tau,a mean � SD 118.11 � 53.61 98.30 � 46.72 71.35 � 31.23 96.03 � 48.11

p-tau181p,a mean � SD 40.48 � 18.49 34.90 � 16.71 25.48 � 15.14 33.76 � 17.64

t-tau/A�1–42,a mean � SD 0.89 � 0.45 0.69 � 0.16 0.40 � 0.28 0.66 � 0.44

p-tau181p/A�1–42,a mean � SD 0.31 � 0.16 0.25 � 0.16 0.15 � 0.14 0.24 � 0.16

Abbreviations: A�1–42 � amyloid-� 1–42 peptide; AD � Alzheimer disease; HC � healthy controls; MCI � mild cognitive
impairment; p-tau181p � tau phosphorylated at the threonine 181; t-tau � total tau.
a Analysis of variance of 3 diagnostic groups and post hoc pairwise t tests after Bonferroni correction were at p � 0.05 for
all comparisons of each phenotype.
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ment (corrected p � 0.01). Table 2 lists all SNPs
whose p values reached the level of p � 10�6 for any
CSF biomarker and their annotation information.
Four SNPs in the region of the EPC2 gene, listed in
table 2, were associated with t-tau at the threshold

level of p � 10�6. Figure e-1 (on the Neurology®

Web site at www.neurology.org) shows heat maps of
association pattern between SNPs and CSF biomark-
ers without (figure e-1A) and with (figure e-1B)
APOE �4 status as a covariate. rs429358 SNP (APOE)

Figure 1 Manhattan plot (A) and quantile-quantile plot (B) of total tau

Genomic inflation factor (based on median �2) is 1.01. In the Manhattan plot, the blue and red lines represent the
�log10(10�6) and �log10(3.10 � 10�8) threshold levels.
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was associated (corrected p � 0.01) with A�1-42, t-tau/
A�1-42, and p-tau181p/A�1-42. rs2075650 (TOMM40)
was associated with A�1-42, t-tau/A�1-42, and p-tau181p/
A�1-42. rs439401 (LOC100129500) was associated
with A�1-42. rs4499362 (EPC2) was associated with
t-tau. SNPs that did not reach genome-wide signifi-
cance and whose uncorrected p values are between
10�6 and 10�5 are listed in table e-1 and were fur-
ther investigated for indication of relevance to AD.
LD among SNPs in the region of the EPC2 gene
(149095–149295 kb, HapMap v3.0 release 27 panel
CEU) is shown in figure 2.

All genome-wide significant SNPs were analyzed
further to examine possible interactions between
baseline diagnosis and genotypes on associated CSF
biomarkers. However, the cell sizes of one or more
subgroups, defined by diagnosis and each SNP
marker, were small, as indicated in figure 3. There-
fore, no significant interactions were detected. How-
ever, the linear trend in mean CSF levels was
observed within and across all diagnostic groups for
all retained SNPs. Figure 3 shows the mean � stan-
dard error for CSF biomarkers as a function of geno-
type and baseline diagnosis for the most significant
SNP within each identified gene.

DISCUSSION A GWAS was performed on 374
ADNI CSF samples to investigate the influence of
genetic variation on CSF biomarkers, A�1-42, t-tau,
and p-tau181p. The use of quantitative traits in
GWAS has been shown to have increased power over
case-control designs.21 The use of CSF biomarkers as
quantitative traits in this study enabled us to identify
a novel AD candidate gene in addition to examining
the influence of well-known AD genes on CSF bi-
omarker levels. Four SNPs in the regions of APOE,
LOC100129500, TOMM40, and EPC2 showed evi-
dence of genome-wide association with one or more
CSF biomarkers. APOE (rs429358) and TOMM40
(rs2075650) are significantly associated with A�1-42

and t-tau/A�1-42, but not with t-tau. The significant
association of these SNPs with t-tau/A�1-42 seems to
have been driven by A�1-42. APOE is one of the most
robust risk factors for LOAD.22 The presence of one
or more APOE �4 alleles was associated with de-
creased levels of A�1-42 in AD and healthy controls10

and greater reduction in CSF A�1-42 levels was ob-
served with increasing number of APOE �4 alleles in
cognitively normal subjects23 and in the ADNI co-
hort.1 LOC100129500 is a hypothetical gene that
overlaps the APOE and APOC1 genes. rs439401 lies

Table 2 SNPs associated with CSF biomarkers at uncorrected p threshold of 10�6

SNP Chr Position*
Closest RefSeq
gene

Location relative
to gene Gene name

Associated
phenotypes

rs2121433 2 149274330 EPC2 12.7 kb downstream Enhancer of polycomb
homolog 2

t-taub

rs1374441 2 149275095 EPC2 13.5 kb downstream t-taub

rs4499362a 2 149284866 EPC2 23.3 kb downstream t-taua,c

t-tau/A�1–42
c

rs10171238 2 149285199 EPC2 23.6 kb downstream t-tauc

t-tau/A�1–42
c

rs157580 19 50087106 TOMM40 Intron Translocase of outer
mitochondrial
membrane 40
homolog

A�1–42
b

rs2075650a 19 50087459 TOMM40 Intron A�1–42
a,b

p-tau181p/ A�1–42
a,b

t-tau/A�1–42
a,b

rs429358a 19 50103781 APOE Exon Apolipoprotein E A�1–42
a,b

p-tau181p
b

p-tau181p/A�1–42
a,b

t-tau/A�1–42
a,b

rs439401a 19 50106291 LOC100129500 Intron A�1–42
a,b

rs7364180 22 40548802 CCDC134 Intron Coiled-coil domain
containing 134

A�1–42
b

Abbreviations: A�1–42 � amyloid-� 1–42 peptide; p-tau181p � tau phosphorylated at the threonine 181; SNP � single nucleotide polymorphism; t-tau �

total tau.
a SNPs and associated CSF phenotypes were at Bonferroni-corrected p threshold of 0.01.
b Significant without APOE adjustment.
c Significant with and without APOE adjustment.
* Positions are based on Genome Build 36.3.
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in the intron of this gene (figure e-2) and has been
studied for the association with LOAD.24 TOMM40,
adjacent and approximately 15 kb upstream to
APOE, was recently identified as a candidate gene for
AD17,25,26 and is associated with multiple neuroimag-
ing phenotypes.12 One exploratory study of healthy
subjects without dementia examined the association
between CSF apoE levels and SNPs in the region
surrounding APOE.27 Although APOE genotype did
not predict CSF apoE level, these authors did find a
strong association signal between several TOMM40
SNPs and CSF apoE. The A�1-42, t-tau, and
p-tau181p CSF biomarkers examined here were not
investigated in the previous study27 or analyzed by
GWAS. A novel finding in the present study is the
association of EPC2 with t-tau level. EPC2 (enhancer
of polycomb homolog 2) belongs to the polycomb
protein family and is involved in the formation of
heterochromatin.28 Dysregulation of epigenetic
mechanisms and chromatin remodeling may play a
role in neurodegenerative and cognitive disorders
such as AD.29 EPC2 is one of the genes deleted in
2q23.1 microdeletion syndrome leading to severe
mental retardation, short stature, and epilepsy and
therefore EPC2 may be causally involved in mental

retardation.30 The functional role of EPC2 has not
been fully characterized and its association with AD
or neurodegeneration has not been previously re-
ported. Although only one EPC2 SNP (rs4499362)
reached genome-wide significance, many other SNPs
in this region reached the uncorrected p threshold
levels of 10�6 or 10�5. All SNPs, highlighted with
colored rectangles in figure 3, are within 3 haplotype
blocks (represented by black triangles), encompass-
ing the EPC2 gene. The possible role of this gene in
AD pathogenesis warrants detailed investigation.

In addition, we found that one SNP (rs7364180)
in CCDC134 was associated with A�1-42 (uncor-
rected p � 10�6). This gene is associated with tran-
scriptional activity of Elk1 and phosphorylation of
Erk and JNK/SAPK,31 but direct association of this
gene with AD or neurodegeneration has also not
been studied.

Among genes listed in table e-1, association of
several genes with AD were previously studied, in-
cluding ABCG2 (ATP-binding cassette, subfamily G
[WHITE], member 2), NFATC4 (nuclear factor
of activated T-cells, cytoplasmic, calcineurin-
dependent 4), and SREBF2 (sterol regulatory ele-
ment binding transcription factor 2).32-34 These

Figure 2 Linkage disequilibrium (LD) among single nucleotide polymorphisms (SNPs) in the region of EPC2 at chromosome 2q23.1

LD plot, showing D�, was created by Haploview v4.2 on chromosome 2 (149095–149295 kb, HapMap v3.0 release 27 panel CEU). SNPs, highlighted by
blue, pink, and cyan rectangles, were at uncorrected p values less than 3.1 � 10�8, 10�6, 10�5.
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genes have not previously been associated with CSF
biomarkers.

ABCG2 was found upregulated in AD brains and
hypothesized as a gatekeeper at the blood–brain bar-
rier for A�1–40 peptide32 and this gene is expressed in
brain endothelial cell blood vessels35 and the develop-
ing human CNS.36 Morphologic changes occurring
around amyloid plaques in AD was studied and it
was found that an active form of phosphatase cal-
cineurin and NFATC4 was enriched in the nuclear
fraction from the cortex of patients with AD.33 This
gene is expressed in numerous regions in the human
brain including the hippocampus37 and it was re-
ported that neurotrophin-mediated synaptic plastic-
ity played a role in learning and memory.38

Overexpression of SREBF2 in cortical neurons of
transgenic mice was associated with mitochondrial
cholesterol accumulation, increasing susceptibility to
A�1-42 induced oxidative stress and release of apop-

togenic proteins39 and this gene was previously hy-
pothesized as a genetic factor involved in the
pathogenesis of vascular dementia.40

Although relatively large for a CSF study, a limi-
tation of this report is the modest sample size for a
GWAS, which precluded stratified analyses for each
diagnostic group or as a function of biomarker re-
sults. Hopefully, larger studies in the future will be
able to incorporate such analyses. In ADNI-2, all
subjects will undergo lumbar punctures for CSF data
collection, which will increase statistical power, and
participants with early MCI will be included to
broaden the sampling of prodromal stages of disease.
In addition, RNA will be collected from peripheral
blood so that a more dynamic picture of the longitu-
dinal relationship of CSF abnormalities and gene ex-
pression should become available. We applied a more
stringent MAF threshold (MAF � 0.20) and a
Bonferroni-corrected p value � 0.01. Due to this, we

Figure 3 Mean CSF biomarker levels as a function of baseline diagnosis and genotype

Mean and standard errors of amyloid-� 1-42 peptide (A�1-42) and total tau (t-tau) are shown for groups defined by baseline diagnosis and associated single
nucleotide polymorphisms reaching genome-wide significance. Baseline A�1-42 CSF level by diagnosis group and genotype: (A) TOMM40 (rs2075650), (B) APOE
(rs429358), (C) LOC100129500 (rs439401), (D) EPC2 (rs4499362). AD � Alzheimer disease; HC � healthy controls; MCI � mild cognitive impairment.

Neurology 76 January 4, 2011 75



may have excluded less common SNPs associated
with CSF biomarker levels. Another limitation is that
although we applied a stringent correction of indi-
vidual p values for each CSF phenotype, we did not
apply a global or family-wise p value correction for all
5 association tests. Since the CSF markers and de-
rived ratios are not independent and the genetic
markers are also not independent, we determined
that additional Bonferroni corrections would be
overly stringent21 and likely to result in false-negative
errors.

Replication studies with independent, larger
samples will be important to confirm these find-
ings. ADNI plans to substantially expand the
available sample and to include CSF and DNA
collection on all new participants. Future direc-
tions also include looking at the interaction of
SNP and diagnosis and gene or pathway-based
analyses to further investigate associations with
CSF biomarker levels. Longitudinal GWAS are
also planned with regard to CSF changes and clin-
ical progression. It will be important in future
studies to assess if a panel of genetic markers can
be combined with CSF analytes to better predict
longitudinal outcomes or response to emergent
therapeutics.
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