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†Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany; ‡Institute of Computational Science, University of Lugano,
Lugano, Switzerland; §Deutsche Forschungsgemeinschaft Research Center MATHEON, Berlin, Germany; and {International Max Planck
Research School-Computational Biology and Scientific Computing, Berlin, Germany
ABSTRACT Protein-ligand interactions are essential for nearly all biological processes, and yet the biophysical mechanism
that enables potential binding partners to associate before specific binding occurs remains poorly understood. Fundamental
questions include which factors influence the formation of protein-ligand encounter complexes, and whether designated
association pathways exist. To address these questions, we developed a computational approach to systematically analyze
the complete ensemble of association pathways. Here, we use this approach to study the binding of a phosphate ion to the
Escherichia coli phosphate-binding protein. Various mutants of the protein are considered, and their effects on binding free-
energy profiles, association rates, and association pathway distributions are quantified. The results reveal the existence of
two anion attractors, i.e., regions that initially attract negatively charged particles and allow them to be efficiently screened
for phosphate, which is subsequently specifically bound. Point mutations that affect the charge on these attractors modulate
their attraction strength and speed up association to a factor of 10 of the diffusion limit, and thus change the association path-
ways of the phosphate ligand. It is demonstrated that a phosphate that prebinds to such an attractor neutralizes its attraction
effect to the environment, making the simultaneous association of a second phosphate ion unlikely. This study suggests
ways in which structural properties can be used to tune molecular association kinetics so as to optimize the efficiency of binding,
and highlights the importance of kinetic properties.
INTRODUCTION
The ability of proteins to bind ligands, including ions,
substrates, cofactors, and other proteins, is essential to all
life processes. For example, protein-ligand interactions
mediate the uptake and storage of cargo (e.g., oxygen uptake
in hemoglobin), molecular recognition leading to informa-
tion transfer (e.g., sensing of neurotransmitters or growth
hormones), and the buildup of biological structures (e.g.,
in RNA-ribosome interactions) (1,2). Although most of
the biochemical and pharmaceutical studies conducted to
date have investigated protein-ligand interactions in terms
of equilibrium binding affinities, it is becoming increasingly
evident that the effectiveness of such interactions crucially
depends on dynamical and kinetic properties (3). For
example, a slow-binding/slow-releasing enzyme substrate
might show the same affinity as a quick-binding/quick-
releasing one while exhibiting a significantly smaller
substrate turnover rate. The dynamical properties of binding
are inherently linked to structural aspects such as the size,
concentration, and spatial distribution of the binding part-
ners, as well as their detailed atomic structures and changes
that occur therein.

The structure-dynamics relationships for binding
processes have been studied at the binding-site contact
distance in terms of relevant energetics such as the detailed
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electrostatic complementarity of the binding surfaces and
hydrophobic burial, as well as structural binding mecha-
nisms such as induced fit versus conformational selection
(4,5). However, the fundamental properties of the spatio-
temporal mechanism underlying this first contact in the
protein-ligand binding process are still elusive. For
example, does binding occur via a single dominant pathway,
via multiple separated pathways, or via a funnel-shaped
ensemble of pathways? Is it directed to the binding site, or
are there metastable states that trap the binding partners in
nonfunctional states? Can diffusion-limited binding be
sped up by rapid binding to the surface and a subsequent
surface search?

From a theoretical point of view, the protein-ligand
association process can be considered as diffusion in a
high-dimensional energy landscape that usually has an ener-
getically favorable minimum at the configuration of the
protein-ligand complex. In situations in which the interac-
tion process takes place in dilute media, this energy
landscape is flat at large protein-ligand distances, resulting
in a purely diffusive motion of the molecules. When the
interaction partners approach each other, electrostatic forces
become relevant, and for favorably interacting molecules,
the energy landscape funnels down toward the complex
formation configuration (6). Such a binding funnel may
also possess complex features as local minimal or parallel
pathways. Gaining an understanding of this binding funnel
and the dynamics that govern the motion upon it will likely
enhance our ability to answer many important mechanistic
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questions. Protein-ligand binding has many similarities to
protein folding, and principles or methods worked out in
the protein-folding field are also likely to be useful here.

Molecular simulations are increasingly being used to
correlate structural and mechanistic information with exper-
imental observations (7). A widely used computational
approach to simulate protein-ligand association dynamics
involves the use of Brownian dynamics (BD) and Langevin
dynamics (LD) simulations (8) of the diffusional motion of
internally rigid protein models in implicit solvent. The BD
approach is useful for predicting bimolecular association
rates (9–11) in situations where binding is diffusion limited,
as well as to provide detailed insights into how protein-
ligand encounter complexes are formed (12). However, it
is often difficult to perform a systematic analysis of the ob-
tained simulation data. In this work, we present a simulation
and analysis approach that directly reveals the ensemble of
pathways of a ligand to the binding pocket, thus allowing
mechanistic questions to be answered. Using this approach,
one can identify metastable states in the binding procedure
and study how binding mechanisms and rates are altered by
mutations in the protein.

There are two alternative approaches to simulate and
analyze dynamics. Most commonly, one uses the direct
simulation approach, in which long trajectory realizations
of the dynamical equations (e.g., BD) are generated and
then analyzed. This approach has the advantage that it
allows simulation of complex geometries with many
degrees of freedom, such as large heterogeneous protein
mixtures (13). A disadvantage is that quantities computed
from generated trajectories (e.g., association rates) may
have statistical uncertainty, or may be systematically biased
when some rare events have not been sampled at all. More-
over, trajectory data are often tedious to analyze and neces-
sitate a search for interesting observables that involve
human subjectivity. Alternatively, one can describe the
ensemble dynamics of the system, where the transition
probabilities or rates between configurational substates of
the system are characterized. This approach has been
successfully used to model the conformational dynamics
of proteins with Markov models (14–18), where the inter-
state transition probabilities are estimated from many short
simulations that are initialized from different substates.
In diffusion processes such as BD and LD, the ensemble
dynamics can be expressed directly via the Fokker-Planck
equation. Based on this formulation, sampling of individual
trajectories can be avoided and the sampling error can be
made zero. However, the downside of this approach is that
to solve the Fokker-Planck equation, the configuration space
must be discretized. When using a rectangular lattice, this
is currently feasible only for three-dimensional spaces.
Nevertheless, with a three-dimensional space, one can
address the biophysically interesting process of ion binding
to proteins (19). Higher-dimensional problems such as
protein-protein binding with internal dynamics can be
Biophysical Journal 100(3) 701–710
addressed with the use of meshless discretization
approaches (16,20,21).

Here, we show how the ensemble dynamics approach
permits a straightforward and objective analysis of
protein-ligand association pathways under the mathematical
framework of transition path theory (TPT) (22,23), which
provides a complete and quantitative description of associa-
tion pathways that lead from a freely diffusing ligand toward
a protein-ligand complex in a given molecular model. We
apply this approach to systematically study the binding of
inorganic phosphate (Pi) to the phosphate-binding protein
(PBP) of Escherichia coli (24,25). This protein plays an
important role in the phosphate supply of bacterial cells
and is expressed when the intracellular concentration of Pi
is low. After it is transported to the bacterial periplasm, it
scavenges for free Pi to subsequently pass it on to
a membrane protein that transports the phosphate into the
cytoplasm. Previous work on the binding of Pi to PBP was
mainly concerned with investigating the binding kinetics
by experimental means (26,27) or direct simulation (28);
therefore, to our knowledge, this work is the first to provide
a systematic description of the Pi binding pathway
ensemble. We show how various mutations modulate the
phosphate binding rates and pathways. Furthermore, it is
shown how a Pi bound to PBP influences the binding of
a second anion.

The findings presented here highlight the importance of
a positively charged patch of the PBP for attracting nega-
tively charged ions. They also suggest that this prebinding
site may be a general mechanism for efficiently organizing
specific ion binding via a two-step mechanism that selects
first by polarity and then by ion type.
THEORY

Dynamical model

Without loss of generality, the protein-ligand association process can be

divided into two phases that are dominated by different forces (29) (see

Fig. 1 a). The association phase (phase I) is largely governed by electro-

static forces and thermal motion of solvent molecules that lead to a diffusive

approach of the solutes studied, and does not depend on intramolecular flex-

ibility. In the binding phase (phase II), the protein-ligand complex is

formed, which involves more complex short-range forces, intramolecular

flexibility, and the structural role of solvent molecules. This separation

into two phases suggests the need for two different computational models

to describe them. The second phase requires a more detailed approach,

such as an all-atom molecular-dynamics (MD) simulation with full struc-

tural resolution and flexibility. Here, we restrict ourselves to phase I, where

the motion of the ligand in the protein-ligand potential is described by rigid-

body Brownian (or Smoluchowski) dynamics in implicit solvent:

dxðtÞ ¼ � D

kBT
VVðxÞ dt þ

ffiffiffiffiffiffi
2D

p
dWt; (1)

where x(t) is the position of the ligand at time t R 0, D is the joint trans-

lational diffusion constant of PBP and Pi, T is the absolute temperature,

kB is the Boltzmann constant, V(x) is the potential energy of the ligand at

position x(t), and Wt is a multivariate Wiener process (i.e., white noise



FIGURE 1 Phases of protein-ligand association. (a) Phase I is largely

characterized by diffusional association and ends with formation of an

encounter complex. Phase II involves actual binding of the ligand

and may involve structural rearrangements in both interaction partners.

(b) Reactive trajectory definition. The bold parts show reactive trajectory

parts going from set A (unbound configurations) to set B (bound configura-

tions).
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with independent, normally distributed increments). We assume isotropic

diffusion for both the protein and the ligand, and hence diffusion can be

described by a scalar constant. The error introduced by neglecting hydrody-

namic interactions between interaction partners is unlikely to affect the

main findings of this work. However, in future studies, hydrodynamic

interactions could also be included, in accordance with a recent study by

Geyer and Winter (30). The change in particle position dx(t) in a time

interval dt is thus the result of the force from the potential, �VV(x), and

a random displacement that implicitly models the collisions with solvent

molecules. It is important to note that the solution x(t) of the stochastic

differential equation (Eq. 1) is a random sequence. Hence, for a given initial

position x(0) ¼ xo, each realization of x(t) describes a possible ligand

trajectory.
Interaction potential

To compute the interaction potential between PBP and phosphate ion, only

electrostatic forces are considered because they are the most important

contributors during the association phase. An explicit modeling of Van

der Waals forces can be omitted because the interaction partners can be

thought of as being immersed in dense media (water) and therefore interact-

ing equally with all surrounding atoms.

Furthermore, the structure of the diffusing ligand Pi is approximated by

a point charge of �2e to represent the HPO2
�2 form of phosphate. This

allows one to calculate the energy of PBP-Pi configurations by multiplying

the electrostatic potential induced by the protein with the phosphate charge

(�2e) at the respective positions. The protein potential V(r) is computed

according to the Poisson-Boltzmann theory (31), in which the solvent is

modeled as a continuum with a specific dielectric constant. The Poisson-

Boltzmann equation is given by

V½eðxÞVVðxÞ� ¼ �4prðxÞ

� 4p
X
i

cNi zi exp

��ziVðxÞ
kBT

�
lðxÞ; (2)

where 3(x) is the dielectric constant at position x, r indicates the charge

density of the protein (given by assigning partial atom charges), ci
N denotes
the concentration of ion species i at an infinite distance from the molecule,

zi is its charge, kB is the Boltzmann constant, T is the temperature, and l(x)

indicates the ion accessibility.

For the calculation of association rates to be correct, the volume consid-

ered around the protein has to be large enough that the gradient of the poten-

tial will approach zero at its outer boundaries. At the same time, for

a correct calculation, it is crucial to ensure that the potential close to the

protein surface is well described. To comply with the large volume and

high resolution requirements, we use the manual focusing mechanism

(mg-manual) provided by the Adaptive Poisson-Boltzmann Solver

(APBS), and solve the PB equation on differently sized grids ranging

from 33 � 33 � 33 with isotropic spacing of d ¼ 16 Å to 193 � 193 �
193 with isotropic spacing of d ¼ 0.35 Å. The respective coarser solutions

are used as an outer boundary condition for the finer one.
Transition path theory

Although individual realizations of the stochastic dynamics (Eq. 1) are

random, we are interested in the deterministic expectation values of this

random process, such as transition rates, fluxes, and pathway probabilities.

To obtain these quantities, we apply TPT (22,32,33) to the Markov jump

process, which results from discretizing the Fokker-Planck equation associ-

ated with Eq. 1.

The main concepts of TPT are briefly restated here. Given an ergodic

stochastic process, such as BD in a potential, LD, or Markov jump process

(e.g., on a grid), TPT provides the statistical properties of the ensemble of

reactive pathways between two disjoint subsets (A and B) of the state space.

Consider a hypothetical, infinitely long trajectory. A trajectory fragment

is called a reactive trajectory if it leaves A and subsequently enters B.

In particular, trajectories that return to A before reaching B are not consid-

ered part of the reactive trajectory ensemble (see Fig. 1 b for an illustration).

To calculate TPT quantities in practice, one must discretize the configu-

ration space. We consider that the configuration space is partitioned into

small sets, here briefly called states. In the scenario of protein-ligand

binding, set A is defined as comprising configurations in which the ligand

can freely diffuse, here chosen to contain all states in space that are

>250 Å away from the center of mass of the protein. In turn, set B is chosen

to contain all states that correspond to bound or metastable precomplex

protein-ligand configurations.

The essential quantity needed to compute the statistical properties of

transition pathways between A and B is the forward committor, qi
þ, defined

as the probability that the process when being at state iwill reach set B next,

rather than returning to set A. In the context of protein-ligand association,

qi
þ denotes the probability to associate to the binding site (at B) rather

than to dissociate to set A. In the Materials and Methods section, we explain

how the forward committor qi
þ can be efficiently calculated for a given

dynamical model. Furthermore, we need the backward committor proba-

bility qi
�, which is the probability when being at state i that the process

was previously in set A rather than in set B, i.e., it reached state i from

the dissociated states A and had not been bound before. For reversible

stochastic processes, as in the present case, it is simply given by qi
� ¼

1 � qi
þ. Let kij be the transition rate between states i and j, without taking

into account the choice of A and B. To be able to infer information about the

reactive parts of the trajectory, i.e., the parts that leave A and go to B, one

must consider only the part of kij that involves trajectories that come from

the dissociated A set and will go on to the associated B set, i.e., qi
�kijqj

þ.
The reactive probability flux is hence given by

fij ¼ piq
�
i kijq

þ
j ; (3)

where pi denotes the Boltzmann weight of state i, i.e., the overall proba-

bility for the process to be in the volume element represented by state i.

This definition still contains recrossing events of reactive trajectories. To

account only for the net reactive probability flux from A to B, the reactive

flux fji associated with recrossings of the reactive trajectory is subtracted
Biophysical Journal 100(3) 701–710
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from the forward flux fij, leading the following expression for the net reac-

tive probability flux:

f þij ¼ max
�
0; fij � fij

�
: (4)

It is important to note that the flux is conserved, i.e., the amount of flux

leaving A equals the amount entering B, and for all intermediate states i

the influx equals the outflux. This property leads directly to an expression

for the transition rate from A to B, as explained in the next section. Refer

to Fig. 2 for an illustration of TPT in a two-dimensional model of

protein-ligand association.
FIGURE 2 (a) Illustration of TPT in a simple two-dimensional protein-

ligand binding model. The dissociated state of the ligand, state A, and the

associated state B are shown. Panels a–c show a situation in which no

potential is present and the ligand can diffuse freely until it associates to

the protein. Panels d–f illustrate a situation where the protein has surface

charges, generating energy minima that attract the ligand. (a and d) The

different potentials. (b and e) The forward committor qþ, revealing for areas
on top of the charged protein a higher probability to reach the binding site

compared with the uncharged protein. (c and f) The reactive flux density

and integrated flux lines calculated from the flux field resulting from the

fluxes fij
þ. For the neutral protein, it becomes apparent that the ligand
Binding rate calculation

The expected number of A/B transitions per time unit is given by the total

flux (33):

FAB ¼
X
i˛A

X
j;A

f þij ¼
X
i˛A

X
j;A

pikijq
þ
j : (5)

This quantity includes the fact that the ligand must diffuse back to the A

area before another transition to B is considered. Hence, to calculate the

A/B transition rate, we need to take the probability into account, that

the ligand is moving from A to B, i.e., it was in A last:

pA ¼
X
i˛S

piq
�
i ; (6)

where S is the set of all states. Therefore, the transition rate is given by (14)

kAB ¼ FAB

pA

; (7)

where kAB is the rate at which a ligand molecule binds starting from set A.

To compute the bimolecular association rate of PBP and Pi, the rate at which

ligand molecules arrive at the A sphere has to be taken into account. Based

on the assumption that protein and ligand diffuse freely upon a distance r

(i.e., in our scenario the ligand enters the A sphere), according to Erban

and Chapman (34), the diffusion-limited association constant kOn can be

obtained by

kOn ¼ 4pD

 
r �

ffiffiffiffiffiffiffi
D

kAB

r
tanh

 
r

ffiffiffiffiffiffiffi
kAB
D

r !!
; (8)

where D is the diffusion constant, and r denotes the radius of the A sphere.

Note that kOn is a concentration-dependent rate (e.g. in nm3s�1), and kAB is

the rate of a single-molecule event (in s�1).

diffuses freely and the binding pathways are restricted only by spatial

constraints. In the charged scenario, the ligand is strongly attracted by

the top side of the protein, creating a high reactive flux density in that

area that distorts the pathway ensemble accordingly. (b) Transparent

Connolly surface of the PBP (E. coli) showing secondary structure

elements. The yellow region depicts the B set. A subset of mutated amino

acids is shown in Van der Waals representation. The dotted surface repre-

sents points that are accessible by the phosphate ion. The indicated plane

denotes the projection area used to visualize first hitting densities (as in

Fig. 3). (c) Connolly surface representation of PBP with transparent inter-

mediate 1 (red) and intermediate 2 (blue) committor isosurfaces.
MATERIALS AND METHODS

Molecular model and simulation setup

The coordinates of the open form mutant T141D of the PBP from E. coli

(Protein Data Bank (PDB) (35) code 1OIB, Chain A) served as a template

to create several in silico mutants of the protein. The mutagenesis tool of

PyMOL (version 0.99rc6) was used to create mutants D56N, D137T,

K43M, K43Q, R134Q, R135Q, R134Q/K167Q/K175Q (3 mut.), R134Q/

K167Q/K175Q/D21N/D51N/D61N (6 mut.), and T141D, chosen in agree-

ment with previous work on PBP (28). The wild-type (wt) was modeled by

replacing Asp-141 with Thr-141.

We carried out energy minimization of the structures in a TIP3P water box

by running 2000 steps of the steepest-gradient algorithm using the Gromacs

(version 4.5) program (36) with the CHARMM (37) force field. For

continuum electrostatic calculations, we added partial charges and atom radii

by using the PDB2PQR suite (38) with CHARMM force-field parameters.

PDB2PQR makes use of PROPKA (39) to determine the protonation state
Biophysical Journal 100(3) 701–710
of ionizable amino acids at a given pH, which was set to 7 here. Furthermore,

the program automatically optimizes the hydrogen-bonding network of the

structures by rotating residues when necessary. All calculated pKa values

canbe found in theSupportingMaterial.Wecalculated theelectrostatic poten-

tial of the resulting structures at zero ionic strength using APBS (40), with

dielectric constants of 3P ¼ 4.0 for the protein interior and 3S ¼ 78.0 for the

solvent. As the joint diffusion constant, D¼ 8� 10�6cm2s�1 (41) was used.
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Space discretization

To calculate the TPT quantities for the protein-ligand binding process,

a finite volume space discretization is required that extends over a large

volume and at the same time has a high resolution close to the protein

surface. Therefore, we developed a simple adaptive discretization scheme

based on the numerical gradient of the electrostatic potential. The proce-

dure starts from a coarse cubic 33 � 33 � 33 grid with an edge length of

528 Å and refines interior grid points based on a local error criterion. By

using central finite differences, one computes the potential derivatives in

each Euclidean direction for each point, employing the discretization pre-

sented here as well as a finer discretization in which additional grids points

have been added halfway between each pair of initial grid points. When at

a given refinement point the two derivatives differ by more than a specified

threshold (here 0.01 kT/Å), the refinement is accepted and another grid

plane is added, intersecting with this refinement point and perpendicular

to the connection between the two coarse grid points. This procedure is iter-

ated until no more planes are added. Grid points that lie inside the protein

(defined as having a minimal distance to protein atoms of <3.2 Å) are not

taken into account, and are dismissed from the final grid. The resulting grids

had an average size of 173 � 151 � 177 points (a total of 4,623,771

elements) with box lengths ranging from 16 Å for distant boxes to 0.5 Å

in the vicinity of the protein.
Rate matrix computation

When considering BD (Eq. 1), one can compute the transition rates between

volume elements of the regular grid defined above by using the discretiza-

tion scheme introduced by Latorre et al. (42). The resulting matrix K is

a discrete model of the entire ensemble dynamics of the protein-ligand asso-

ciation process, and all subsequent analysis can be conducted based on this

matrix. A matrix element kij specifies the number of transitions per time unit

to a volume element j conditional on starting at element i, and is computed

as follows:

kij ¼

8>>>>><
>>>>>:

D

hi;jdi/j

exp

�
� 1

2kBT

�
Vj � Vi

��
j˛fNig

�P
j

kij; j ¼ i

0 otherwise;

(9)

where Ni denotes the st of all volume elements that share a face with

element i, D is the joint diffusion constant, Vi designates the potential at

grid point i, hi,j denotes the distance between grid points i and j, and di/j

stands for the length of the ith volume cell in the direction of j.
A and B definition and committor computation

After obtaining the space discretization of the volume around the protein,

we assign the A and B sets. For the set of free-diffusing configurations of

the phosphate ion (A set of states), all volume elements whose center is

farther than 250 Å away from the geometric center of the protein are

chosen. Note that the choice of A is irrelevant as long as it is far enough

away from the protein that the electrostatic forces will be zero in A.

Defining A farther away from this minimal distance will increase r but

decrease kAB, resulting in the same concentration-dependent binding rate

as in Eq. 8. Set B of the bound/precomplex configurations is chosen to

include all volume elements that are within a 3 Å radius of the geometric

center of Thr-10, Ser-38, and Ser-139 (shown as the yellow region in

Fig. 2 b). The choice of B will affect the pathways and association rates

because it defines the bound state.
With the discrete rate matrix (Eq. 9), the forward committor can be

computed by solving the constrained linear problem:

Kq ¼ 0

s:t:qi ¼ 0ci˛A

qi ¼ 1ci˛B; (10)

where A and B are the sets of discrete states corresponding to dissociated

and associated states, respectively. This problem is solved by reordering

the states in the order (S, A, B), where S¼ (AW B)C, yielding the following

structure in K and q:

K ¼
0
@KSS KSA KSB

KAS KAA KAB

KBS KBA KBB

1
A; q

0
@ qS

qA ¼ 0

qB ¼ 1

1
A; (11)

This allows Eq. 10 to be rewritten as:

KSSqS ¼ KSB (12)

This can easily be solved by standard numerical methods to obtain the

unknown qS. In the present application, the number of unknowns is on

the order of 106. To solve this task, we use the implementation of the iter-

ative BiCGStab algorithm provided by the Java Matrix Tookit (43). In

scenarios where the rate matrix is obtained based on direct sampling of

trajectories, the entries have a statistical error. In this case, the uncertainties

of the rates and the corresponding uncertainties of molecular properties

derived from K should be evaluated (44). However, in this study, no statis-

tical error is involved because the rates kij are directly obtained from

a discretization of the transport equation.
Free-energy profile of ligand association

Because the forward committor is the probability to associate rather than

dissociate, it measures the progress of the reaction and thus represents

a kinetic reaction coordinate (45), with 0 representing the dissociated

configuration (A) and 1 representing the associated configuration (B). The

free energy along this coordinate is given by

FðqÞ ¼ �kBTlnðrðqÞÞ þ const; (13)

where r(q) denotes the stationary density of the set of states having a com-

mittor value q and is calculated in our discrete model by

rðqÞ ¼
X

i; qi˛½q�D
2;qþD

2�
exp

��VðxiÞ
kBT

�
(14)

using a sliding window with width D ¼ 0.005 over the range of

q˛½D
2
; 1� D

2
�.
Binding flux field and visualization

To visualize the phosphate association pathways, we calculated a vector

field of reactive fluxes. For this purpose, we assigned a total flux vector

to each grid point i by vectorially summing all outgoing fluxes fij
þ. To visu-

alize the resulting vector field, as shown in Figs. 3, we used the Mayavi2

program (46). Starting from a fixed number of points spherically distributed

with distance 80 Å from the geometric center of the protein, the program

follows the streamlines along the flux vectors, thus tracing out possible

binding pathways. The streamlines are colored according to the local flux
Biophysical Journal 100(3) 701–710
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strength, i.e., the norm of the total flux vectors. The lighter the coloring, the

stronger the encountered flux.

To better visualize how the association pathways behave near the protein,

we calculated where they hit the protein surface for the first time. To this

end, we defined a surface at a distance of 10 Å around the phosphate-acces-

sible surface. At each surface element, the flux through the surface, quan-

tified by the reactive TPT flux fij
þ (Eq. 4), was calculated. For the sake

of visualization, we calculated an orthogonal projection of surface elements

onto a two-dimensional plane that divided the surface into two halves. The

plane is depicted in Fig. 2 b. In the projection, only surface elements on the

half of the binding site were taken into account.
RESULTS AND DISCUSSION

The results of the modeling and analysis of Pi association to
the PBP and various in silico mutants are presented below.
Selected mutants are summarized in Fig. 3, and the results
for the remaining structures are shown in the Supporting
Material.
Free-energy profiles and association rates

The left column of Fig. 3 shows the free-energy profile of
phosphate associations along the committor coordinate.
For most of the investigated mutants, the free energy
decreases with increasing committor value, indicating that
binding of phosphate is energetically favorable. An inspec-
tion of the free-energy profiles of different mutants shows
the existence of several minima along the committor coordi-
nate. Such minima indicate that the phosphate ion is more
likely to be found at certain positions in space with corre-
sponding committor values, and these configurations may
be metastable. Interestingly, the two committor isosurfaces
shown in Fig. 2 c are especially relevant for the phos-
phate-binding process: for each mutant, at least one of these
two isosurfaces describes configurations associated with
a minimum in its free-energy profile. Whenever a minimum
could be assigned to one of the isosurfaces, it is marked with
a red or blue dot in the free-energy profile. Phosphate
configurations represented by the outer isosurface (red)
are termed intermediate 1, and configurations described by
the inner isosurface (blue) are termed intermediate 2.

In the wt protein, both intermediate 1 and intermediate 2
free-energy minima indicate two metastable configurations
of the phosphate before it reaches the binding site. The
A197W mutant (see the Supporting Material) exhibits
a very similar profile and an almost equal association rate
FIGURE 3 Free-energy profiles, first hitting densities, and pathways for sele

protein has neutral net charge; blue, positive net charge; red, negative net charg

dissociated (qþ ¼ 0) to the associated state (qþ ¼ 1). A red or blue dot is shown w

in Fig. 2 c. Second column: Surface density of reactive trajectories that hit the ex

sent projected Ca positions of mutated amino acids. Note that for clarity, the colo

reactive flux of ligand association (see text) for the different mutants, which rep

corresponds to a higher local reactive flux. Here, the same color scheme is used f

Red/blue corresponds to negative/positive charged mutations relative to the wt
of 26.4 M�1s�1 compared with 27.9 M�1s�1 for the wt,
indicating that this mutation has little effect on the phos-
phate ion binding capability. For mutants R134Q/K167Q/
K175Q (3mut.) and R134Q/K167Q/K175Q/D21N/D51N/
D61N (6mut.), the intermediate 1 configuration is destabi-
lized, and thus only the configurations corresponding to
intermediate 2 are found to be metastable. Both mutants
have the same three positively charged amino acids replaced
by neutral substitutes, but in the 6mut.mutant the associated
loss of charge is compensated for by additionally replacing
three negatively charged amino acids with neutral substi-
tutes. The destabilization of intermediate 1 indicates that
residues Arg-134, Lys-167, and Lys-175 are necessary for
holding the phosphate ion at the protein surface. Interest-
ingly, losing this kinetic trap along the binding coordinate
does not increase the association rate of phosphate; rather,
it is decreased by a factor of 3 for the 6mut. mutant
(9.3 M�1s�1) and by a factor of ~10 for the negatively
charged 3mut. mutant (2.5 M�1s�1). In consideration of
its relevance for attracting phosphates and thereby
enhancing the binding efficiency, we henceforth refer to
the positive charge patch around residues Arg-134, Lys-
167, and Lys-175 as the anion attractor.

To further assess the relevance of positive surface
charges, we considered the single-point mutations R134Q
and R135Q. R134Q neutralizes one residue of the anion
attractor, whereas R135Q neutralizes a residue that is found
between the anion attractor and the phosphate-binding site,
thereby interfering with the phosphate transport route.
Although both mutants show a reduced association rate,
this reduction is fivefold for R135Q and only twofold for
R134Q. The corresponding free-energy profile of R135Q
also reveals this effect by showing smaller binding (commit-
tor) probabilities for intermediate 1 and 2 configurations
compared with the R134Q mutant.

The mutants discussed so far mainly affected residues in
the vicinity of the anion attractor. For a more comprehensive
assessment of phosphate association, we also considered
mutations D56N, D137T, K43Q, and K43M. Mutations
D56N and D137T both neutralize a negative charge and
increase the association rate by a factor of ~3 compared
with the wt. Due to the consequently stronger attraction of
the negatively charged phosphate ion, the minimum associ-
ated with intermediate 2 configurations vanishes, whereas
intermediate 1 trapping is still present, albeit with an
increased probability to reach the binding site from these
cted mutants of Pi associating to the PBP. Text background coloring: gray,

e. First column: Free-energy profile of the ligand when it travels from the

henever a minimum could be assigned to one of the two isosurfaces shown

tended protein surface per unit of time. In each plot, the black points repre-

r axis is scaled separately for each mutant. Third column: Streamlines of the

resent the ensemble of association pathways. A lighter streamline coloring

or all pictures. Fourth column: The positions of mutated residues are shown.

structure.
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configurations. The intermediate 2 minimum also disappears
for the negatively charged K43M/K43Q mutants. However,
in contrast to the positively charged D56N/D137T mutants,
the association rate is reduced by a factor of almost 3, and
the binding probability associated with intermediate 1
configurations is strongly reduced, as evidenced by the
left-shifted minimum in the free-energy profiles.

Finally, we discuss the T141D mutant. The free-energy
profile of this mutant is remarkably different from other
mutants that also introduce a negative net charge of �1e.
In fact, a free-energy minimum can also be assigned to inter-
mediate 1 configurations, but the associated binding proba-
bility is very small. Furthermore, the free-energy difference
between unbound and bound phosphate is positive,
rendering phosphate binding unfavorable. This can also be
observed at the corresponding association rate, which is
also drastically reduced and a factor of 5 smaller than the
smallest association rate found for almost all other mutants
with a negative net charge of �1e. This result may be ex-
plained be the location of the mutation, which introduces
a negative charge very close to the phosphate-binding site,
repelling the phosphate there. Unlike other mutations that
introduce negative charges, in this case the phosphate ion
cannot avoid the repulsive region via alternative pathways
to reach the binding site. Consequently, this mutation has
the largest effect on the association efficiency of the phos-
phate ion.
Streamlines and first hitting density

The free-energy profiles and rates described above provide
information about the macroscopic or effective properties
of the phosphate association process, but they provide little
information about the fine details of phosphate association.
Dynamical properties provide more information that can be
accessed with the TPT approach: the shape of the binding
pathways and the distribution of where they hit the protein
surface. Fig. 3 shows representative pathways of the associ-
ation pathway ensemble. These plotted pathways are
streamlines that follow the reactive flux field of binding.
The number of reactive trajectories that pass a volume
element per unit of time is expressed by streamline coloring.
The brighter the coloring, the more reactive trajectories pass
through the surrounding volume elements. This manifests as
almost white coloring in the vicinity of the binding site,
where the increasing bundling of reactive trajectories leads
to an increased flux density. To obtain additional informa-
tion where the phosphate association pathways attack the
protein, we measured how many reactive trajectories per
unit of time hit surface elements in a distance of 10 Å
around the protein. This hitting density is visualized by
a planar projection in the second column of Fig. 3 along
with the positions of the mutations.

The neutrally charged structures wt and A197W share
a similar pattern in the first hitting density and distribution
Biophysical Journal 100(3) 701–710
of pathways. The phosphate trajectories attack the protein
on both sides of the phosphate-binding side, with a prefer-
ence for the side where the anion attractor is located. The
corresponding streamline illustrations show that some phos-
phates make the first contact with the anion attractor and
then crawl over the surface to the binding site. This picture
is not qualitatively different for the positive D56N and
D137T mutants. Here again, both sides of the protein are
approached by the phosphate and the surface crawling still
occurs. However, due to the increased net charge of the
protein, the number of reactive trajectories is strongly
increased. A change in both hitting density and approach
pathway distribution can be observed for K43M/K43Q. In
this case, the number of pathways that attack the protein
at the side of the mutation is reduced, and the streamlines
show that the phosphate is no longer attracted to the surface
at the respective position. An even stronger distortion is
observed when the positive patch is neutralized as in the
6mut. and 3mut. mutants. The number of pathways that hit
the extended protein surface above the positive patch is
significantly reduced in both cases. Furthermore, the flux
lines show that the pathways are not attracted to the positive
patch, but rather straightly approach the phosphate-binding
site from the bulk. Due to the negative net charge of the
3mut. mutant, the number of phosphates that reach the
binding site per unit of time is reduced, as indicated by
the darker flux lines. Although the T141D mutation strongly
reduces the association rate, it does not exhibit a change in
the first hitting density, and the topology of the association
pathways is not affected. The surface attraction of the phos-
phate ion is still present; however, the number of phosphates
that reach the binding site is strongly reduced, i.e., this
mutation affects only the last step of association. Although
mutations R134Q and R135Q do not show a pronounced
effect on the first hitting density, they do show a difference
in the flux line picture. The surface attraction at the positive
patch is less pronounced in the R134Q mutant compared
with R135Q.

In the studies discussed so far, we investigated the
binding dynamics of a single phosphate ion in the dilute
limit, i.e., in the absence of other solutes. In a biological
scenario, the situation is much more complex, as the cytosol
is densely filled with various species of different sizes,
shapes, and charges. Although such heterogeneous
complexity is of limited interest to the biophysicist, it is
very interesting to work out some of the principles that
contribute to the phosphate-binding dynamics (and, more
generally, to all ion-binding dynamics) in the cell. For
example, how does phosphate binding occur in a phos-
phate-rich environment, i.e., where phosphates compete
for binding? To model this, we investigated Pi association
in a model in which a phosphate ion was already trapped
at the positively charged surface patch. An HPO4

�2 ion
was placed in the vicinity of Arg-134, Lys-167, and Lys-
175, and the association dynamics were computed based
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on the resulting electrostatic potential. The computed free-
energy profile, the first hitting density, and the binding path-
ways are depicted in Fig. 3 b. The free-energy profile shows
that the trapping property of the positively charged patch is
lost when it is already loaded with a negatively charged ion,
and the minima corresponding to the intermediate 1 isocom-
mittor surface are no longer present. Moreover, the overall
binding free energy is nearly zero. The hitting density plot
shows that the pathways avoid the protein at the bound
phosphate location and are redirected farther down. The
streamlines additionally reveal that the second phosphate
does not crawl over the anion attractor; rather, it reaches
the binding site from space.
CONCLUSION

In this study, we have presented a computational approach
to systematically investigate protein-ligand association
kinetics. Whereas existing computational approaches permit
the calculation of binding energies and rates using a variety
of molecular and dynamical models, our method provides
an extensive analysis of the entire ensemble of association
pathways by which a ligand approaches its target protein,
and their relative probabilities. In this study we used a simple
electrostatic interaction model in combination with rigid-
body BD; however, our analysis approach can be readily
applied to any MD model that allows one to calculate or
estimate transition probabilities or rates between the
substates of the protein-ligand configuration space.

We demonstrated the usefulness of our approach by
studying the binding of Pi to the PBP from E. coli and
several in silico mutants of it. The results of our analysis
reveal that protein mutations that affect surface charges
may have effects ranging from subtle to drastic on the asso-
ciation kinetics and association pathways. Some mutations
affect only association rates without significantly altering
the associating pathways, i.e., they scale the fluxes. Other
mutations change the association pathways of Pi, and the
associated change in the rate may be of very different
magnitude depending on the exact location of the mutation.
In this context, it is noteworthy that the association rates ob-
tained here are in good agreement with rates calculated by
Huang and Briggs (28) using BD sampling (see Supporting
Material for comparison).

Overall, all of the systems studied here exhibit binding
via a broad ensemble of parallel pathways, indicating a fun-
nel-like energy landscape that narrows down toward the
bound state. This is very similar to the situation in protein
folding (47).

Consequently, only very few single-point mutations are
able to effectively disable Pi binding. The only single-point
mutation observed to do this was next to the binding site
and thus affected nearly all binding pathways at the bottle-
neck where they converged. Most of the other constructed
single-point mutations disabled only a subset of pathways,
allowing other parts of the pathway ensemble to take over,
and resulting in only a mild reduction of the association
rate. Multiple mutations at critical positions, however, were
much more effective and could efficiently disable binding.

Our analysis of the mutagenetic behavior revealed the
importance of two anion attractors on the surface of PBP
that unspecifically attract all negatively charged molecules.
This unspecific attraction brings anions closer to the phos-
phate-binding site, thereby trapping them in a region of
limited size. As a result, the PBP wt exhibits superdiffusive
association, i.e., association with a rate that is about three-
fold greater than the free-diffusion association rate to the
binding site, which is estimated to be 9.2 M�1s�1. With
favorable mutations, the association rate may be sped up
to about 10 times the free diffusion rate.

After an anion reaches the attractor, phosphate specificity
is introduced in the subsequent step, i.e., the actual complex
formation, where binding of phosphate is energetically
favored over other anions by a detailed interaction
(25,48). The resulting catch-and-select mechanism may be
a general strategy that allows ions to be efficiently screened
before being specifically selected. To experimentally verify
our findings, it may be useful to assess the relevance of
different pathways on the protein surface by labeling
specific surface residues and Pi, and to investigate their
contact dynamics using a technique such as NMR.

The grid-based discretization used here to define config-
urational substates is restricted to a few dimensions and is
thus limited to study simple problems, e.g., a point-like
ligand that approaches a rigid protein. However, in future
work, the approach will be extended to gridless data-based
discretization of configuration spaces, as they are frequently
used in Markov model analyses of protein internal dynamics
(14). With this extension, it will be possible to perform
a flux analysis of association pathways for complex
protein-ligand and protein-protein binding with a full
dynamical treatment, such as all-atom MD in explicit
solvent.
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