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Abstract
Type 1 diabetics must inject exogenous insulin or insulin analogues one or more times daily. The
timing and dosage of insulin administration have been a critical research area since the invention
of insulin analogues. Several pharmacokinetical models have been proposed, and some are applied
clinically in modeling various insulin therapies. However, their plasma insulin concentration must
be computed separately from the models’ output. Furthermore, minimal analytical study was
performed in these existing models. We propose two systemic and simplified ordinary differential
equation models to model the subcutaneous injection of rapid-acting insulin analogues and long-
acting insulin analogues, respectively. Our models explicitly model the plasma insulin and hence
have the advantage of computing the plasma insulin directly. The profiles of plasma insulin
concentrations obtained from these two models are in good agreement with the experimental data.
We also study the dynamics of insulin analogues, plasma insulin concentrations, and, in particular,
the shape of the dynamics of plasma insulin concentrations.
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1. Introduction
Since their inventions, insulin analogues have made a dramatic evolution in diabetes
management ([5], [12]). The diabetics’ lives are tremendously improved with newly
developed insulin regimes using insulin analogues. There are approximately 20.8 million
diabetics in the United States, accounting for 7% of the total population (American Diabetes
Association, http://www.diabetes.org). The total worldwide diabetic population is estimated
at 190 millions. The cause of diabetes is still not fully understood. But it is confirmed that
diabetes mellitus can induce many complications, for example, cardiovascular disease,
blindness (retinopathy), nerve damage (neuropathy), and kidney damage (nephropathy).
([9]). Many researchers have engaged in research in this area with the objectives of
understanding how the system works ([19], [21], [35], [37]), what leads to the dysfunction
of the system ([4], [38]), how to detect the onset of diabetes, how to prevent or postpone the
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onset ([3], [8], [20]), and ultimately providing more efficient, effective, and economic
insulin therapies ([24], [36], [41]).

The real cure for diabetes, at least for type 1 diabetes ([11]), would be the transplantation of
a pancreas or Langerhans islets in pancreas. However, due to immunological issues, the
implantation is usually not successful. Approaches for β-cell neogenesis or cell
differentiation from stem cells are still at the research stage ([11], [6]). So, the most widely
used therapy is still the daily insulin subcutaneous injection. The purpose is simply to supply
the need of insulin in one’s body exogenously, which mimics the physiological insulin
secretion occurring in normal subjects. Normally, insulin is secreted from the pancreas in
two time scales in an oscillatory manner: pulsatile oscillations accounting for the basal
insulin, and ultradian oscillations controlled by plasma glucose concentration levels ([21],
[25], [32], [35], [37]). Table 1 lists part of the currently available insulin analogue products
for clinical uses.

To understand the dynamics of the insulin analogues from subcutaneous injection to
absorption, several mathematical models have been proposed ([2], [16], [16], [23], [27],
[31], [36], [39], [40]). A critical review of most of the models was given by [24], which
omits only the most recent work, for example, Tarin et al. [36]. The partial differential
equation (PDE) models proposed by Mosekilde et al. ([23]), which were simplified by
Trajanoski et al. ([39]) and Wach et al. ([40]), are implemented in an internet-based decision
support system, DiasNet, for patients and healthcare professionals ([26]). The siblings ([39],
[40]) of the model proposed in [23] and the model in [36] quantitatively depict the dynamics
of insulin analogues in different molecular forms at injection depot, which agrees with
experimental data ([18], [24], [36]). The computations of plasma insulin concentrations fit
the experimental data as well.

However, no analytical and qualitative studies were performed in these models. For
example, under what conditions, does a positive and bounded solution of the PDE models
exist? How many peaks can the plasma insulin concentration have? Apparently, the trivial
solution is the unique homogeneous steady state of all these PDE models. Is it stable? In
addition, according to the experiment performed in [39], the diameter of the boundary of the
diffusion is about one half inch after 15 minutes, and about two inches after 24 hours (Figure
6 and Figure 7 in [39]). Thus the diffusion effect at the injection depot is relatively
negligible when considering the plasma insulin concentration in systemic circulation. In this
paper, to systemically model the behavior of the plasma insulin concentration, we
incorporate the plasma insulin concentration as a variable and propose two ordinary
differential equation (ODE) models to model the dynamics of the administration of rapid-
acting insulin analogues and long-acting insulin analogues. We perform rigorous qualitative
analysis first, followed by numerical simulations. This provides models that are more
reasonable in physiology and molecular chemistry and simpler for computation of plasma
insulin concentration. The profiles of plasma insulin concentrations produced from our
models agree well with the experimental data. Potentially, the models proposed in this
paper, together with the glucose-insulin regulation model proposed by [21] and [19], could
form the foundation for artificial pancreas if integrated with a glucose monitoring system.

We arrange this paper as follows. In the next section, we discuss the background of insulin
analogues; then in Section 3 we propose models of the exogenous injection of insulin
analogues. In Section 4, we analyze the dynamics of the models, followed by numerical
simulations of the models in Section 5. We will end this paper with a discussion section.
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2. Background
Diabetes is a disease in which β-cells in the pancreas do not produce insulin or the cells in
body do not utilize insulin properly. Insulin is a pancreatic hormone needed to convert
glucose into energy needed for daily life. Glucose is the basic fuel for cells in the body.
After insulin binds the insulin receptors of the cells (for example, adipose and muscle cells),
the glucose transporter GLUT4 takes the glucose molecules from the plasma into the cells so
that the glucose can be metabolized.

Diabetes is classified into type 1 diabetes, type 2 diabetes, and gestational diabetes. Type 1
diabetes is usually diagnosed in children and young adults, and so has also been called
juvenile diabetes. In type 1 diabetes, β-cells in the pancreas do not produce insulin. The
majority of diabetics have type 2 diabetes. In type 2 diabetes, either the β-cells do not
produce enough insulin or so-called insulin resistance caused by the dysfunctional system
prevents the cells to take up glucose efficiently. Pregnant women who have never had
diabetes but develop high plasma glucose levels during pregnancy are said to have
gestational diabetes. Glucose is toxic when its concentration is high, a condition known as
hyperglycemia. Hyperglycemia is often accompanied with that the body cells are starving
for energy, and over time, eyes, kidneys, nerves, or the heart can be hurt.

At the β-cell level, the propensity of insulin to self-associate into hexamers is crucial for the
hormones’ processing and storage. The additions of zinc ions and phenolic compounds into
human insulin can not only prevent undesirable chemical degradation and promote the
hexamer conformation, but also prevent physical denaturation. This property of insulin has
been exploited in pharmaceutical formulation to produce stable solution preparations and
microcrystallines used for diabetes treatment. (Refer to [1]).

During the late 1980s, biotechnology provided the laborious techniques needed in chemical
modifications or semisynthesis that results in the success of recombinant DNA (rDNA)
technologies for the creation of new insulin analogues ([5]). Consequently, a new research
area has been opened since then. Several different types of insulin analogues have been
created and put in clinical practices ([5], [12], [29], [43]). In 1996, the first rapid-acting
insulin analogue, lispro, was introduced into clinical application. It is an evolutionary
development of genetically engineered human insulin with a short duration of action
because of its weakened propensity to self-associate into dimers. The rapid-acting insulin
analogue is designed and developed in making the pharmocokinetic profile of injection to be
similar to its normal physiological counterpart to better help cells to utilize glucose
postprandially. Lispro exists in its respective formulations as hexamers that are stabilized
with zinc-ions and phenolic preservatives to assure two years of shelf life at 4°C. But,
structurally, lispro’s formulation differs from other insulin analogues because its hexamer
complex dissociates into monomeric subunits virtually instantaneously after subcutaneous
injection, resulting in a plasma absorption profile indistinguishable from that of a pure
monomeric insulin ([5]). The effectiveness of rapid-acting insulin analogues in controlling
postprandial glycemia has been demonstrated. In addition, thanks to the rapid action, the use
of the rapid-acting insulin analogues provides the convenience of injecting a few minutes
before or after the meal ingestion. This prompt action has reduced frequency of both
hyperglycemic and hypoglycemic episodes using conventional short-acting insulin ([43]).

Beginning in 2002, glargine, a new long-lasting insulin analogue that has the advantage of
maintaining a twenty-four-hour effect with no peak, was put into clinical use. Glargine is
also developed by rDNA technology. Comparing to human insulin, both A and B chains of
the molecule contain amino acid changes. This change leads to a shift of the isoelectric point
towards a neutral pH, which results in a molecule less soluble after injected. At the injection
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site, a molecule depot is subcutaneously formed, from which insulin is slowly released. The
absorption is so slow that no peak of insulin concentration will occur during the long lasting
twenty-four-hour release-absorption duration. Thus the long-acting insulin analogues are
desirable to simulate the physiological pulsatile insulin secretion that occurs in nondiabetic
subjects. ([12], [29].)

To mimic the behavior of insulin secretion in normal subjects by using insulin analogues,
insulin pumps are designed to deliver rapid-acting or short-acting insulin twenty-four hours
a day through a catheter placed under the skin. The insulin doses are separated into basal
rates and bolus doses that simulate the insulin pulsatile secretion and ultradian secretion in
oscillatory fashion, respectively. The dosage of basal insulin and bolus insulin delivery,
however, can be adjusted manually according to different daily activities. Automated
programmable corrections based on feedback information from glucose monitoring and
more efficient and robust algorithms would be more desirable. Furthermore, the effect
would be even better with the combined use of a rapid-acting insulin analogue to mimic the
basal insulin and a rapid-acting insulin analogue to mimic the bolus insulin.

3. Modeling the subcutaneous injection of insulin analogues
It is well accepted that subcutaneous insulin absorption is a complex process that can be
influenced by many factors, e.g., insulin’s hexameric, dimeric and monomeric states;
injection locations; volume; temperature; and blood flow near the injection site ([24]).
Insulin analogue in its hexameric form is the predominant associated state after the
subcutaneous injection of the soluble insulin preparation. The progressive dissociation of the
hexamers into smaller units, dimers and monomers, is facilitated by the diffusion of the
liganded phenolic molecules and zinc ions in the subcutis, which is caused by the diffusion
in the intercellular dilution of the insulin concentration. Then the insulin in dimeric form and
monomeric form can penetrate the capillary membrane and be absorbed into plasma ([1]).
Figure 1 shows putative events occurring under the subcutis after the injection. The
chemical molecular reaction diagram is given as

(1)

where H (U/ml) stands for hexamer and D (U/ml) for dimer, p (min−1) is the transform rate
from one hexameric molecule to three dimeric molecules, and pq (q has unit ml2/U2) is the
transform rate from three dimeric molecules to one hexameric molecule.

Mosekilde et al. ([23]) proposed a model with the hypotheses that only the dimeric form of
insulin can be absorbed into plasma and that the fraction of soluble insulin dissociating into
a monomeric form is negligible. This model was simplified by Trajanoski et al. ([39]) under
the assumption that the binding state in the model proposed by [23] can be negligible due to
its short-acting time. This is reasonable for rapid-acting insulin analogues, and the resulting
model contains the first and second equation without the binding term. Wach et al. ([40])
further simplified the model in [39]. To enable the computations of the models, a spherical
depot centered at subcutaneous injection site is assumed and fifteen or more shells are
spatially discretized with homogeneous concentration, so that the plasma insulin
concentration can be calculated by integration of the concentration of dimers over the
distribution volume. Based on the models in [23] and [39], Tarín et al. ([36]) reinforced the
imaginary bound state with diffusion and proposed a model to study the dynamics of long-
acting insulin analogues such as glargine. A similar approach is applied in computing the
plasma insulin concentration by integrating the concentration of dimers over the
subcutaneous discretized depot volume.
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Notice that the diffusion effect of both hexamers and dimers applies to a small local scope of
the injection site so the impact of the diffusion to the whole metabolic system is negligible
according to the experiment performed in [39] (Figure 6 and Figure 7). Based on the
molecular reaction diagram (1) and the law of mass action, and in light of the existing
models ([24], [23], [39], [40]), we propose following model to simulate the dynamics of the
rapid-acting insulin analogues of the whole metabolic system:

(2)

with H(0) = H0 > 0, D(0) = 0, and I(0) = I0 ≥ 0, where H(t) (U/ml) stands for concentration
of insulin analogue in hexameric form, D(t) (U/ml) for concentration of insulin analogue in
dimeric form, and I(t) (U/ml) for plasma insulin concentration at time t ≥ 0. As no
experimental study is observed, to create a bridge between the local injection of insulin
analogue and plasma insulin concentration in the whole body, we hypothesize that the rate
of dimers penetrating the capillary is inversely proportional to the plasma insulin
concentration, which is depicted by the term bD(t)/(1 + I(t)) in the second equation and the
term rbD(t)/(1 + I(t)) in the third equation of model (2), where b (U/min) is a constant
parameter ([23], [40] and [36]), and r ≤ 1, as only fractional molecules can become plasma
insulin ([36]). The constant di (min−1) in the third equation is the insulin degradation rate
that has been assumed as linear ([21], [35], [38]). We will analyze model (2) in Section 4.

While rapid-acting insulin analogues, when injected right before or after meal ingestion, can
simulate the physiological insulin secretion triggered by elevated plasma glucose
concentration, another type, so-called long-acting insulin analogue, is needed to mimic the
physiological pulsatile insulin secretion in normal subjects, also known as basal insulin.

Since the depot releases insulin slowly, a continuous delay exists in the process of
transforming insulin analogue in hexameric form to dimeric form. As in [36], we use an
imaginary state, called bound state, to simulate the delay. The transformation is inverse-
proportional to the concentration of the hexamer, so the change rate of the transformation
can be determined by Cmax/(1 + H(t)), where Cmax (U/ml) is the maximum capacity of the
transformation. Thus we obtain following model:

(3)

with B(0) = B0 > 0, H(0) = 0, D(0) = 0, and I(0) = I0 ≥ 0, where B(t) (U/ml) stands for the
concentration at the bound state for the insulin analogue in hexermeric form, H(t) (U/ml) for
concentration of insulin analogue in hexameric form, D(t) (U/ml) for concentration of
insulin analogue in dimeric form, and I(t) (U/ml) for Insulin concentration at time t ≥ 0. The
term kB(t)Cmax/(1 + H(t)) in the first and second equations is due to that the insulin analogue
in the depot formed near the injection site is transformed into hexameric form gradually and
the transform is inversely proportional to the concentration of the insulin in hexameric form
with the maximum transformation capacity Cmax ([23], [36]), where k (min−1) is the
constant absorption rate. This avoids the situation in which the behavior of the solutions are

Li and Kuang Page 5

Math Biosci Eng. Author manuscript; available in PMC 2011 January 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



unpredictable even if H(t) > Cmax, which is an issue in the existing models ([23], [36]).
Other notations are the same as those in model (2).

Apparently model (2) is a special case of model (3) without the imaginary bound state. We
will analyze model (3) in the next section.

4. Analysis of the models
In this section, we state the analytical results without proofs. The proofs of Proposition 1,
Theorem 4.1, and Theorem 4.3 can be found in the appendices. We skip the proofs of
Proposition 2 and Theorem 4.2 as the proofs can be carried out similarly. Results similar to
that of Theorem 4.3 for model (3) can be obtained without further effort, so we also skip the
statement.

It is clear that both model (2) and model (3) have unique equilibriums (0, 0, 0) and (0, 0, 0,
0), respectively. Furthermore, we have

Proposition 1. All solutions of model (2) with the initial condition H(0) = H0 > 0, D(0) = 0,
and I(0) = I0 ≥ 0 are positive and bounded.

Theorem 4.1. The origin (0, 0, 0) of model (2) is a global attractor.

Proposition 2. All solutions of model (3) with the initial condition B(0) = 0, H(0) = H0 > 0,
D(0) = 0, and I(0) = I0 ≥ 0 are positive and bounded.

Theorem 4.2. The origin (0, 0, 0, 0) of model (3) is a global attractor.

Below, we analyze the shapes of the solutions of model (2). Similar arguments can be
applied to analyzing the shapes of the solutions of model (3), and the same results can be
obtained.

Theorem 4.3. Let (H(t), D(t), I(t)) be a solution of model (2) with initial condition H(0) =
H0 > 0, D(0) = 0 and I(0) = I0 ≥ 0. Then

a. H′(t) < 0.

Furthermore, if p ≥ b(H0 + I0/r)r, then

b. There exists a tD ∈ (0, ∞) such that D(t) is monotonically increasing in (0, tD) and
decreasing in (tD, ∞).

c. If the initial condition I(0) = I0 > 0, I(t) either has a unique local minimum in (0,
tD) and a unique local maximum in (tD, ∞) or is monotonically decreasing in (0,
∞). If the initial condition I(0) = 0, I(t) has a unique local maximum in (tD, ∞).

Remark 1. According to Theorem 4.3, if both D(t) and I(t) assume their maximums, then
D(t) attains its peak before I(t) does. When the initial condition I(0) > 0, which is clinically
realistic ([29], [34]), I(t) decreases in a very short time right after the insulin analogue is
injected. This is due to that a short time is needed for insulin analogue to dissolve into
smaller molecules and then absorbed into plasma. This case is not covered by previously
existing models ([24], [27], [36], [39], [40], [42]). When the initial condition I(0) = 0, I(t)
will assume a unique maximum value in (0, ∞). This is in agreement with the numerical
simulations in existing models ([24], [27], [36], [39], [40], [42]).

Remark 2. The condition in Theorem 4.3 for (b) and (c) is satisfied in the simulations of
lispro and aspart in section 5 (Figure 5) according to the selection of the parameters based
on [14] and [18].
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5. Numerical simulations
In this section we perform numerical simulations according to model (2) and model (3).
Then we compare the profiles obtained with the measured data. The simulations are
performed in Matlab, and the measured data are from [5], [18], and [36]. The plasma insulin
concentration I(t) is a variable of the systems (2) and (3). So, no separate and additional
effort is needed for calculations. The dynamics of the insulin concentrations are well in
agreement with the measured data given in [5], [14], [18], and [36].

As observed by Trajanoski et al. ([39]), the changes of the parameter p in model does not
alter the results significantly. So, we have used the same values of p = 0.5 and q = 0.13 as
[39] and [40], and r = 0.2143. We choose r = 0.2143 because usually only part of an insulin
analogue can be absorbed into plasma ([36]). To simulate insulin lispro, we choose the
parameters b = 0.0068 and di = 0.081 for simulating insulin lispro, while choosing b =
0.0060 and di = 0.0775 for simulating insulin aspart. The values of di and b are selected in
view of the interquartile range of the best model 10 and 9 proposed in [42] (Table III(a)).
The initial value H(0) = H0 is selected as follows: H0 = 9.4U/72.3kg45ml/kg = 0.0029U/ml
= 2.9 × 103µU/ml, as 9.4U/kg lispro or aspart was injected subcutaneously in the
experiments performed in [14] and the plasma volume is assumed to be 45 ml/kg by [36]. I0
= 6µU/ml according to [14]. It is easy to verify the condition in Theorem 4.3 holds and thus
all conclusions are true. Figure 2 reveals that the profiles for insulin analogues lispro and
aspart produced from model (2) are very well in agreement with the clinically measured data
given in [14]. Figure 3 shows the simultaneous profiles and overall relationships of each of
the dynamic variables in the dynamical system. The calculation is simply achieved by the
solver ode23 in Matlab while solving the ordinary differential equation system. This
significantly simplified the computations in existing models ([24], [39], [40] for examples.)
Notice that the existing models ([24], [39], [40]) were proposed before the first rapid-acting
insulin analogue lispro was introduced (refer to the second section of this paper and [5]), and
the models proposed in [36] are for bolus and continuous subcutaneous insulin injection
(CSII). Model (2) proposed in this paper is for bolus injection only, and comparing with the
profiles produced by these models is not valid. Nevertheless, with slightly tuned parameters
([39]), b = 0.0135, di = 0.076 and r = 0.35, the profile in Figure 4 produced by model (2) is
compatible with the simulation in Figure 4 in [39] for the case of monomeric analogues.

Model (3) involves more parameters than model (2), because of the imaginary bound state.
We use the same p = 0.5 and r = 0.2143 as above when simulating rapid-acting insulin
analogues by model (2). For other parameters, we choose q = 3.04, b = 0.02 and Cmax = 15
as in [36]. We assume that di = 0.0215, given that the value is within the interquartile range
shown in [42] (Table III(a)). The parameter k corresponds to the rate of disengagement of a
hexamer from its bound state κ in [36]. Since we model the disengagement by the term
−kB(t)Cmax/(1 + H(t)), k shall be significantly smaller than κ in Tarin et al. (2005). Thus we
choose k = 2.35 × 10−5. The initial value B(0) = B0 is selected as follows: B0 = 0.3U/kg/
45ml/kg = 0.0067U/ml = 6.7 × 103µU/ml as 0.3U/kg was injected subcutaneously in the
experiments performed in [18] and the plasma volume is estimated to be 45 ml/kg by [36]. I0
= 12µU/ml according to [18]. Figure 5 reveals that when compared with the clinical
measurement ([18]) of plasma insulin concentration of a subject using insulin glargine, our
simulated profile is in agreement with the measured data in [18] and shows significantly
better fitting than the profile given by Figure 3 in [36]. Figure 6 demonstrates the
simultaneous profiles and overall relationships of each of the dynamic variables in the
dynamical system. Similar to model (2), the computation of the numerical solution of the
plasma insulin concentration is greatly simplified as obtaining I(t) is part of solving the
ordinary differential equation numerically. Involving a delay parameter in the model (3) to
replace the imaginary bound state may result in a more accurate model. Additionally, it is
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well known that the delayed effect could cause oscillations, either damped or sustained. The
apparent discrepencies in the experimental result could be more accurately modeled by a
model involving an explicit delay. The apparent discrepencies of the data and the solution
might also be due to stochastic factors. Applying a bias to the solution could improve the
simulation ([28]). We will investigate this in a future study.

6. Discussions
Type 1 diabetics do not produce insulin. To maintain lifestyle close to normal, it is necessary
to exogenously infuse insulin analogues and dynamically adjust the injection timing and
dose. Some insulin analogues, e.g., lispro and aspart, take effect quickly. That is, after only a
few minutes, the injected insulin analogue has been absorbed and starts to help the body’s
cells to metabolize the glucose. Some insulin analogues, e.g., glargine and ultralente, take
longer for absorption and then function to help the cells to take up glucose.

Basically, there are two types of therapies to administrate the injection. In the first, a
diabetic takes one or two shots a day with long-acting insulin analogues. The insulin
gradually absorbed into the plasma supplies the whole day’s need of the patient. The patient
somehow must adjust his or her lifestyle to accommodate the way the exogenous insulin
infusion works. The more advanced method is using a insulin pump. With an insulin pump,
instead of adjusting his or her life style, the patient can match insulin levels to his or her
daily activities by adjusting the doses and injection timing. All type 1 diabetics at all ages
can use insulin pumps, and more and more people with type 2 diabetes are starting to use
insulin pumps too. (refer to American Diabetes Association, http://www.diabetes.org).
However, because of the expense, not all diabetics choose to use insulin pumps.

The regulation of glucose-insulin endocrine metabolism occurs in our daily life
continuously. To mimic the normal physiological insulin secretion in type 1 diabetes, at least
theoretically, the best way is to use glargine as the basal insulin for physiological pulsatile
secretion, and apply lispro or aspart as the bolus insulin for the physiological secretion
stimulated by elevated plasma glucose concentration level. With feedback information of
plasma glucose concentration monitored periodically, dynamically adjusting the timing and
doses of subcutaneous insulin injection is desirable. To this end, a more advanced,
dynamical, and efficient algorithm for determining the timing and doses is needed. The two
new systemic models proposed in this paper can be used for this purpose. These two models,
(2) and (3), are systemic in pharmacology, simpler and reasonable in mathematics, and
significantly simplify the computing procedures in clinical practices; thus, model (2), model
(3) and the model proposed in [21] and [19] can form a foundation of an artificial pancreas if
integrated with a glucose monitoring system.

Schlotthauer et al. ([30]) integrated three submodels to create a closed-loop control model,
called nonlinear model-based predictive control (NMPC), to mimic the operation of normal
pancreas. The three submodels include 1) a subcutaneous–plasma insulin absorption model
to compute the plasma insulin; 2) a glucose regulation model; and 3) a subcutaneous glucose
sensing model. When selecting the first sub-model, the authors evaluated the models
proposed by [23], [39] and [40] and found that it is difficult to integrate these models in
NMPC, as these models deal with single injections and it is hard to compute precise insulin
concentration. Thus the authors used an autoregressive model for a substitute. The second
submodel simulates the plasma glucose concentration. As stated by the authors of [30],
NMPC lacks robustness and can have instability depending on the parameters. Neither
model (2) nor the model in [21] and [19] has such issues as analytical analysis on both
models assuring the desired dynamics. Apparently, it would be better choices to choose
model (2) as the first submodel and the model in [21] and [19] as the second submodel.
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Notice that the existing models ([24], [39], [40]) were proposed before the rapid-acting
insulin analogue was put into clinical usage (refer to the second section of this paper and
[5]), and the models proposed in [42] are for bolus and continuous subcutaneous insulin
injection (CSII). So model (2) proposed in this paper is, to our knowledge, the first attempt
for modeling bolus injection of rapid insulin analogues. Nevertheless, with parameters I(0) =
0, p = 0.5, q = 0.13, b = 0.0135, di = 0.076 and r = 0.35 (mostly from [39] but fine-tuned),
model (2) produces a compatible profile (Figure 4) to the simulation in Figure 4 in [39],
which illustrates the absorption of equimolar doses of monomeric analogues.

We should also notice that, at the small injection depot, the existing PDE models with
diffusion terms will be more accurate than the newly proposed models in this paper. Thus
the inverse relationship demonstrated by [39] between the absorption and doses at the depot
is not observed. However, the aims of the new ODE models proposed in this paper are to
analyze and simulate the dynamics of plasma insulin concentration at the whole systemic
level and to avoid unexpected behaviors not being handled by the existing PDE models.
Nevertheless, it might be plausible that Michaelis-Menten kinetics is imposed on insulin
absorption as in model (3) and model (4) in [42], although the authors implied that these two
models are not the best choice in applications ([42]). We will study this in the future.

A hypothesis is made when considering the rate of dimers penetrating the capillary
membrane. Since the simulations are in agreement withwhile the experimental data, it might
be worth to perform new experiments to verify this new hypothesis.
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Appendix A. Proof of Proposition 1
Proof of Proposition 1. Observe that model (2) is monotone, hence an argument similar to
the proof of Theorem 2.1 on page 81 of ([33]) can be applied to establish the following: if
H(t) or D(t) is not always positive for all t > 0, then there exists t0 > 0 such that H(t0) = 0,
D(t0) = 0, and H(t) > 0, D(t) > 0 for 0 < t < t0.

Now, assume that H(t) or D(t) is not always positive for t > 0. Then, there exists t0 > 0 such
that H(t0) = 0, D(t0) = 0, and H(t) > 0 and D(t) > 0 for 0 < t < t0. So

Therefore,

By continuity,

So H(t) > 0, D(t) > 0 for t > 0.
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If there exists t̂ > 0 such that I(t̂) = 0 and I(t) > 0 for 0 < t < t̂, then 0 ≥ I′(t̂) = rbD(t̂) > 0. This
contradiction implies that I(t) > 0 for t > 0.

Now we show that all solutions are bounded. Let

(4)

Then

So there exists a constant A ≥ 0 such that

This implies that H(t), D(t) and I(t) are uniformly bounded.

Appendix B. Proof of Theorem 4.1
The following fluctuation lemma, which is needed in the proof of Theorem 4.1, is
elementary ([13]).

Lemma 6.1. Let f : R → R be a differentiable function. If l = lim inft→∞ f(t) < lim supt→∞
f(t) = L, then there are sequences {tk} ↑ ∞, {sk} ↑ ∞ such that for all k, f′(tk) = f′(sk) = 0,
limk→∞ f(tk) = L and limk→∞ f(sk) = l.

Proof of Theorem 4.1. Consider F(t) defined in (4). All we need to show is that A = 0. Let

Then

So limt→∞ G(t) = B ≥ 0 exists. Thus I(t) = F(t) − G(t) → A − B as t → ∞. So for any
sequence {tn} ↑ ∞, I(tn) → A − B as n → ∞.

Denote

By the fluctuation lemma, there exists a sequence sn → ∞ such that D′(sn) = 0 for each n
and limn→∞ D(sn) = D ̅. Then from the second equation in system (2),
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(5)

Let ε > 0, then there exists T > 0 such that H(t) ≤ H ̅ + ε when t ≥ T. Then, for n sufficiently
large, H(sn) ≤ H ̅ + ε and (5) becomes

Letting n → ∞,

This is true for all ε > 0, therefore

or

Similarly, there exists a sequence  such that  for each n and
. From the H equation in system (2),

Let ε > 0, then there exists T′ > 0 such that D(t) ≤ D ̅ + ε for all t ≥ T′. For all n large,
 and therefore

Letting n → ∞ and then ε → 0 gives

or H ̅ ≤ qD ̅3. Therefore
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Hence D ̅ = 0 and H ̅ = 0, so that, since D(t) > 0 and H(t) > 0, limt→∞ D(t) = limt→∞ H(t) = 0.
From the asymptotically autonomous limiting form of the equation for I(t) in (2), it follows
that limt→∞ I(t) = 0.

Appendix C. Proof of Theorem 4.3
We need following lemma to prove Theorem 4.3.

Lemma 6.2. H(t) ≤ H0+I0/r, D(t) ≤ H0+I0/r, and I(t) ≤ rH0+I0 for all t ≥ 0.

Proof. Notice that rH′(t) + rD′(t) + I′(t) ≤ 0. Thus rH(t) + rD(t) + I(t) ≤ rH(0) + I(0).

Proof of Theorem 4.3. Notice that H′(0) < 0. First we prove part (a). If there exists t0 > 0
such that H′(t0) = 0, without loss of generality, we have H′(t) < 0 for 0 < t < t0, and

Thus

Therefore, for small δ > 0, H′(t) > 0 when t ∈ (t0 − δ, t0). This is a contradiction.

Now we turn to proving part (b). Assume D′(tD) = 0, tD > 0. Notice that

Thus at tD,

Clearly, if I′(tD) ≤ 0, D″(tD) ≤ pH′(tD) < 0; otherwise, since p ≥ b(H0 + I0/r)r,

So, for any extreme point t̂ of D(t), we have D″(t̂) < 0. Therefore it is a local maximum
point. It is easy to see that tD is the unique maximum point and thus the global maximum

point since D(0) = 0 and limt→∞ D(t) = 0. In fact, assume  is another local maximum point

of D(t), without loss of generality, assume . Thus

. If , there exists a  such

that D(t0) assumes a local minimum, which is a contradiction. If , similar

argument shows that there must be a local minimum point in  if D(t) ≠ D(tD) for some
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. However, D(t) ≡ D(tD) for  implies that D′(t) = D″(t) = 0 for all

, which is a contradiction.

It follows that D′(t) ≠ 0 in (0, tD) and (tD, ∞). Since 0 = D(0) < D(tD) and D(tD) > 0 =
limt→∞ D(t), it is clear that D′(t) > 0 for t ∈ (0, tD) and D′(t) < 0 for t ∈ (tD, ∞). We
complete the proof of part (b).

For part (c), notice that D′(t) > 0 for t ∈ (0, tD), D′(t) < 0 for t ∈ (tD, ∞), D′(tD) = 0, and

(6)

We first show that I(t) does not assume a local extreme value at tD. If I′(tD) = 0, then I″(tD) =
0 according to (6). Since I‴(tD) = rbD″(tD)/(1 + I(tD)) < 0, there exists a δ > 0 such that I″(t)
> 0 for t ∈ (tD − δ, tD) and I″(t) < 0 for t ∈ (tD, tD + δ). Since I′(tD) = 0, I′(t) < 0 for t ∈ (tD −
δ, tD), and I′(t) < 0 for t ∈ (tD, tD + δ). Thus I(t) does not assume a local extreme value at t =
tD.

Suppose that I(t) assumes a local extreme value at t0 ∈ (0, ∞), then I′(t0) = 0. By (6), I″(t0) =
rbD′(t)/(1 + I(t)) > 0 if t0 ∈ (0, tD), and I″(t0) = rbD′(t)/(1 + I(t)) < 0 if t0 ∈ (tD, ∞). Using a
similar argument to the proof of part (b), if I(t) assumes an extreme value in (0, tD), then it
must be a local minimum thus it is unique; if I(t) assumes an extreme value in (tD, ∞), then
it must be a local maximum so it is unique. Furthermore, because of their uniqueness, if they
exist, they are the global minimum and global maximum.

When the initial condition I(0) > 0, since D(0) = 0, we have I(t) < I(0) for small t > 0. Thus,
either I(t) does not attain any extreme value in (0, ∞), that is, I(t) decreases to vanish in (0,

∞); or I(t) has a local minimum point  first followed by a local maximum point

 since limt→∞ I(t) = 0. That is, I(t) is monotonously decreasing for ,

increasing for , and then decreasing to vanish in .

When the initial condition I(t) = 0, since I(t) = 0, limt→∞ I(t) = 0 and I(t) > 0 for t ∈ (0, ∞),

I(t) must have a global maximum point . If I(t) has a local minimum

point  and thus I(t) must have a local maximum point between ,
which is a contradiction. That is, I(t) is increasing for t ∈ (0, tI) and decreasing to vanish in
(tI, ∞). We complete the proof of Theorem 4.3.
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FIGURE 1.
Putative events occurring at subcutis after injection of insulin analogues. The hexamer is too
big to penetrate the capillary membrane, while the dimer and monomer succeed, so that the
absorption into plasma occurs.
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FIGURE 2.
Comparison of the simulated plasma insulin concentration produced by model (2) and the
measured data. The measured data of aspart and lispro are from [14].
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FIGURE 3.
Dynamics of hexamer, dimer and insulin concentrations produced by model (2).
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FIGURE 4.
Comparison of profile produced by model (2) (I(0) = 0, p = 0.5, q = 0.13, b = 0.0135, di =
0.076, r = 0.35) (solid line) and the simulation in Figure 4 in [39] (dashed line, adapted from
[39]), illustrating the absorption of equimolar doses of monomeric insulin analogues.
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FIGURE 5.
Comparison of the simulated plasma insulin concentration (solid line) by model (3) (p = 0.5,
q = 3.04, r = 0.2143, c = 15, b = 0.025, k = 2.35 × 10−5 and di = 0.0215) with the measured
data from [18] (circle ○). The dashed line is the simulation by the model in [36], which is
adapted from [36] showing from 0 hour to 16 hours.
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FIGURE 6.
Dynamics of concentrations of hexamer (dotted line), dimer (dashed line) and insulin (solid
line) simulated by model (3) when p = 0.5, q = 3.04, c = 15, r = 0.2143, b = 0.025 and di =
0.0215
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TABLE 1

Pharmacokinetics of Available Insulin Products ([7]).

Insulin Onset Peak Duration

Lispro 5–15 minutes 30–90 minutes 3–5 hours

Aspart 10–20 minutes 1–3 hours 3–5 hours

Regular insulin 30–60 minutes 1–5 hours 6–10 hours

Buffered regular insulin 30–60 minutes 1–3 hours 8 hours

Lente 1–3 hours 6–14 hours 16–24 hours

NPH 1–2 hours 6–14 hours 16–24+ hours

Glargine 1.1 hours None 24 hours

Ultralente 4–6 hours 8–20 hours > 24 hours
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