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ABSTRACT

Correct gene expression is often critical and consequently stabilizing selection on expression is wide-
spread. Yet few genes possess highly conserved regulatory DNA, and for the few enhancers that have been
carefully characterized, substantial functional reorganization has often occurred. Given that natural
selection removes mutations of even very small deleterious effect, how can transcription factor binding
evolve so readily when it underlies a conserved phenotype? As a first step toward addressing this question,
I combine a computational model for regulatory function that incorporates many aspects of our present
biological knowledge with a model for the fitness effects of misexpression. I then use this model to study
the evolution of enhancers. Several robust behaviors emerge: First, the selective effects of mutations at a
site change dramatically over time due to substitutions elsewhere in the enhancer, and even the overall
degree of constraint across the enhancer can change considerably. Second, many of the substitutions
responsible for changes in binding occur at sites where previously the mutation would have been strongly
deleterious, suggesting that fluctuations in selective effects at a site are important for functional turnover.
Third, most substitutions contributing to the repatterning of binding and constraint are effectively
neutral, highlighting the importance of genetic drift—even for enhancers underlying conserved
phenotypes. These findings have important implications for phylogenetic inference of function and for
interpretations of selection coefficients estimated for regulatory DNA.

CORRECT spatial and temporal gene expression is
necessary for many developmental (Carroll et al.

2005; Davidson 2006; Prud’homme et al. 2007), cel-
lular (Breeden 2003), and physiological (Gasch et al.
2000) processes. Pervasive conservation of gene ex-
pression across many evolutionary timescales (Rifkin

et al. 2003; Denver et al. 2005; Gilad et al. 2006a,b;
Hare et al. 2008; Visel et al. 2008) suggests that most
genes are subject to stabilizing selection for an optimal
expression pattern most of the time. Indeed, there are a
number of vertebrate developmental enhancers that
show near complete expression conservation and se-
quence conservation over the last 75 million years of
evolution (Nobrega et al. 2003; Visel et al. 2008). On
this basis, one may be tempted to equate functional
conservation with evolutionary conservation of the
sequence encoding that function.

A number of observations make clear that this equa-
tion is not strictly true, however, and raise important
questions. In Drosophila melanogaster, for example, more
intergenic sequence appears to be constrained than can

be explained by known functions (Halligan et al. 2004;
Andolfatto 2005; Halligan and Keightley 2006)
and although less compact genomes show a correspond-
ingly smaller fraction of the genome under constraint
(Peterson et al. 2009), the amount of constrained DNA
is still inexplicably high. As an illustration, the signal of
conservation often extends beyond the regions bound
by transcription factors in in vivo assays (Li et al. 2008).
These observations either signal an important func-
tional role for these conserved but apparently unbound
regions [perhaps an important role for weak binding
(Tanay 2006)] or suggest that the conservation is a
vestige of a historical functional role (Dermitzakis et al.
2003), but is a poor predictor for present-day function
(Li et al. 2008). These alternatives have practical
implications. Indeed, a widely used method to identify
functional regulatory elements, phylogenetic footprint-
ing, looks for conserved sequences among many related
species (Tagle et al. 1988; Cliften et al. 2003). This
approach relies on the assumption that functional
elements will be conserved and nonfunctional elements
will not. When applied to noncoding DNA, this ap-
proach has fallen short of the success achieved in the
identification of protein-coding genes (Cliften et al.
2003; Kellis et al. 2003). While it does well in the
aggregate, identifying collections of genes enriched for
motifs, it remains unclear how well any individual motif
instance can be trusted (Tompa et al. 2005). The limited
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success of phylogenetic footprinting further suggests
that conservation of regulatory sequence is not synon-
ymous with conservation of regulatory function.

This uncoupling of function and conservation has
also become clear from detailed characterizations of en-
hancers for the even-skipped (eve) gene in Drosophila,
in which functional transcription factor (TF) binding
sites have been gained or lost while maintaining en-
hancer output (Ludwig et al. 1998, 2000, 2005). More
recently, turnover has been observed in other Drosophila
developmental enhancers (Ho et al. 2009), with sub-
stantial reorganization possible over long evolutionary
time frames (Hare et al. 2008). Turnover is also extensive
when viewed at a genome-wide scale (e.g., Moses et al.
2006), consistent with genes tending to have a flexible
regulatory architecture that is permissive of small-scale
rewiring while largely maintaining functional output.
Thus, qualitatively we know that both the functional
organization (i.e., which nucleotides bind transcription
factors) and the patterns of constraint (i.e., which
nucleotides are under purifying selection) evolve. Yet,
natural selection is effective in eliminating even delete-
rious mutations of very small effect [a few times the
reciprocal of the effective population size (Crow and
Kimura 1970)], raising the question of how the func-
tional organization of an enhancer evolves when the
expression phenotype is under stabilizing selection.

Here, I use a computational modeling approach that
relies on simple, biologically motivated assumptions
about how gene expression is implemented to examine
the relationship between functional organization and
patterns of selective constraint. My model consists of two
components: (i) a mapping from sequence to gene ex-
pression using a computational model that was shown
to have good predictive value for modeling expression
in the Drosophila segmentation pathway (Segal et al.
2008) and (ii) a mapping from gene expression to fit-
ness that provides a description of stabilizing selection
around an optimum. The first component captures
important mechanistic aspects of transcriptional regu-
lation and the second component allows one to model
evolution under a regime of stabilizing selection on
gene expression, i.e., to assume that the phenotype is
conserved. I then investigate the evolution of regulatory
DNA by running forward population simulations. In
this model, the fitness effect of each mutation is cal-
culable and follows directly from the mechanistic model
of transcription and the model for stabilizing selection.

This study differs from earlier efforts to model sub-
stitution processes on complex fitness landscapes in a
number of respects (Kauffman and Levin 1987; Orr

2005, 2006; Kryazhimskiy et al. 2009; Draghi et al.
2010). First, these earlier models are general and do not
consider constraints on the nature of the fitness land-
scape that result from modeling the biological function
of the sequence. The preference for such abstracted
models stems in part from how little is known about

fitness landscapes (Kryazhimskiy et al. 2009) and in
part from their simplicity, which makes them analytically
approachable. In contrast, the structure of the fitness
landscape in my model reflects a specific biological
function, namely transcription. Second, these earlier
efforts were concerned with the adaptive phase of the
substitution process, focusing primarily on the dynamics
of adaptive walks, such as walk length, adaptive step size,
and time intervals between adaptive events (Kauffman

and Levin 1987; Orr 2005, 2006; Kryazhimskiy et al.
2009), or more recently on questions of robustness
(Draghi et al. 2010). In contrast, I model evolution
under stabilizing (purifying) selection.

The most well-studied and biologically realistic
sequence–phenotype mapping is that of RNA secondary
structure. Computational predictions of secondary
structure are a good approximation to the biological
function of RNA, such that the evolution of these struc-
tures can be investigated using simulations. A number
of important results have come out of this body of work.
First and foremost is the existence and properties of
neutral networks—connected sets of mutationally ac-
cessible sequences all yielding the same structure
(Schuster et al. 1994). A population of sequences
encoding a structure with a large neutral network is
free to explore the network by drift. Thus structures with
large neutral networks are more robust to mutation and
may also be more evolvable (Huynen et al. 1996; Ancel

and Fontana 2000; Wagner 2008). The focus of these
studies has been primarily on the role that neutral
networks play in facilitating adaptation, rather than on
the process of turnover during the exploration of the
neutral network. Another difference between these
RNA landscapes and the landscapes that I consider is
that the former are discrete—mutations either result in
a different structure or not—and thus questions con-
cerning the role of weakly deleterious mutations are not
easily addressed. In contrast, in the case of regulatory
sequence landscapes, fitness is mediated through ex-
pression, which is quantitative, and under the model I
consider, very few, if any, sequences result in identical
fitnesses.

In one study to focus on the effects of purifying
selection and regulatory function, Lusk and Eisen

(2010) simulated enhancer evolution using binding site
composition as the measure of fitness. They considered
the case in which having too few TF binding sites is
lethal and all alleles above the threshold number of
binding sites are functionally equivalent (Lusk and
Eisen 2010). The authors required a binary classifica-
tion of sequence into what is or is not a binding site.
Instead, I determine the functional equivalency of al-
leles on the basis of their composite expression output
by using the affinities of TFs to all parts of the sequence.
Accordingly, my model allows the nature of turnover
to be an emergent property not tied to a priori architec-
tural requirements; for example, I do not necessarily
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view turnover as a two-step process, in which a new
binding site arises, obviating an existing one. Such two-
step models are forced to assume functional equivalency
of alleles with redundant binding sites (Lusk and Eisen

2010) or to assume an arbitrary selection coefficient for
the intermediate form (Durrett and Schmidt 2008).
Binding-site–oriented models may portray the turnover
process unrealistically because, in a population setting,
even a fewfold variation in a selection coefficient can be
the difference between having an appreciable or van-
ishingly small fixation probability. Mutations with small
selection coefficients may not correspond to binding
site creation or disruption, but could still determine
which evolutionary paths are possible.

A recent analysis of promoter substitution rates incor-
porates continuous estimates of transcription factor
binding, rather than discrete binding sites (Hoffman

and Birney 2010). The authors’ hidden Markov model-
based estimates of TF binding are similar in spirit to
part of the model that I employ; however, in assessing
the effect of mutations, the authors focus strictly on
the TF binding profile. In contrast, I model the expres-
sion resulting from TF binding and assume selection
acts on the expression phenotype, rather than directly on
binding.

By putting together a model for regulatory function
and a model for stabilizing selection on gene expres-
sion, I can address the question of how functional
turnover occurs despite strong stabilizing selection on
expression output. I show that selective constraint on
individual sites varies extensively over time and that this
variation explains much of the functional turnover.
Additionally, I show that both functional organization
and selective constraint evolve with a high degree of
historical contingency, whereby multiple realizations of
the evolutionary process show markedly different de-
grees of turnover. Admittedly, the modeling assump-
tions are obvious simplifications, as is always the case
with computational models of biology. But, importantly,
assumptions similar to these are often made—implicitly
or explicitly—when thinking about regulatory evolution
(Kellis et al. 2003; Wray et al. 2003).

METHODS

Model overview: Modeling the evolution of regula-
tory DNA using forward population simulations re-
quires computing the fitness for each haplotype that
arises in the population. I break this computation down
into two components: (i) a sequence-to-expression map-
ping and (ii) an expression-to-fitness mapping. I model
a number of distinct regulatory problems, each of which
can be thought of as the task faced by a particular gene
or enhancer: to be expressed correctly in a small number
of regulatory contexts, termed trans-backgrounds. In
turn, each trans-background can be thought of as a cell

type, a developmental time point, or a spatial position.
Trans-backgrounds are characterized by the expression
levels of the various input TFs in that background.
Together, the set of trans-backgrounds and the optimal
expression in those backgrounds, along with the nu-
cleotide binding affinities and interaction properties
of the TFs, define the complete regulatory problem
(see Figure 1 for a simple schematic). Fitness is then a
function of how close the expression pattern of an
enhancer is to the optimal expression for that regula-
tory problem.

I compute the expected expression of an enhancer
using a model proposed by Segal et al. (2008), the crux
of which is a probabilistic computation that sums the
contributions of all possible arrangements of TFs on the
regulatory sequence. This model is designed to capture
a number of important aspects of transcriptional reg-
ulation: (i) the locations of TF binding are determined
primarily by TF–DNA affinities, (ii) higher TF concen-
trations result in more binding, (iii) multiple TFs can-
not simultaneously bind the same stretch of DNA, and
(iv) protein–protein interactions may influence binding
(e.g., through cooperativity or quenching). This model
is well suited for studying substitution processes in
regulatory DNA because it performs a computation on
the entire enhancer, potentially allowing mutations at
any nucleotide to affect expression (Segal et al. 2008;
Fakhouri et al. 2010).

The remainder of the methods section provides a
detailed description of the Segal model, of how the
regulatory problems were selected, and of the forward
population simulations. Additional details are provided
relating to mutational opportunities and the classifica-
tion of functional mutations.

Details of the Segal model: The Segal model (Segal

et al. 2008) predicts expression from an enhancer
sequence, given prior information about the binding
specificities of TFs and the expression levels of the input
TFs. In addition, there are number of free parameters,
which were estimated in the original article for 44
enhancers involved in the Drosophila segmentation
pathway using a training set of observed expression
levels. Here I fix these parameters, which include the
activity levels of the TFs and their interactions, assuming
these are intrinsic aspects of the fully specified regula-
tory problem. Given the parameters appropriate for an
enhancer, the model computes the expression of that
enhancer and does not incorporate the temporal
dynamics of expression, autoregulation, or other sorts
of feedback.

According to the Segal model, at any given instant, and
in a particular trans-background, transcription factors
may occupy the enhancer DNA in any nonoverlapping
fashion. The particular instantaneous arrangement of
TFs bound to the DNA is termed a configuration. The
probabilities of the configurations, denoted P(ck) for con-
figuration ck, vary greatly, as determined by the affinities
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of the constituent TFs to their respective locations on the
DNA, the expression levels of the TFs, and their inter-
action properties. Given that a particular configuration
occurs, transcription of an mRNA occurs with probabil-
ity P(E j ck), which is a function only of the number and
kinds of TFs in the configuration. The expression out-
put of the enhancer is then assumed to be proportional
to the overall probability of expression, P(E), in that
trans-background, which is the sum of the contributions
toward expression of all possible configurations, weighted
by their probabilities:

PðEÞ ¼
X

ck

PðE j ckÞPðckÞ:

P(E) can be interpreted as the expression level as a
fraction of maximal expression (in a sense averaging
over potential transcription events). The probability of
configuration ck, P(ck), is the joint probability of its TFs
binding to the DNA, which can be factored into con-
ditional probabilities as follows:

PðckÞ ¼ PðTFm ;TFm�1; . . . ;TF1Þ
¼ PðTFm jTFm�1; . . . ;TF1Þ . . . PðTF2 jTF1ÞPðTF1Þ:

By making the standard Markov assumption, whereby
the probability of observing a TF bound at a certain
location is contingent only on the adjacent TFs, one
obtains the following factorization, where the TFs are
numbered according to their appearance on the se-
quence (in either direction):

PðTFm ; . . . ;TF1Þ
¼ PðTFm jTFm�1Þ . . . PðTF3 jTF2ÞPðTF2 jTF1ÞPðTF1Þ:

Let tTFi
be the expression level of the ith bound

TF and let PWMTFi
ðsx ; sx11; . . . ; sx1r�1Þ=PWMbðsx ;

sx11; . . . ; sx1r�1Þ be the affinity of the ith TF to the
DNA sequence at sites sx through sx1r�1 relative to
background [r is the width of the PWM and PWMb()
assumes equal affinity to each base]. Then, the
conditional probability of a TF binding given that
another TF is bound d nucleotides away is

PðTFi jTFi�1Þ } tTFi

PWMTFi
ðsx ; sx11; . . . ; sx1r�1Þ

PWMbðsx ; sx11; . . . ; sx1r�1Þ
gðTFi ;TFi�1; dÞ;

where g(tfi, tfi�1, d) accounts for the strength of the
interaction between tfi and tfi�1. The product over all
TFs, termed the weight (or energy) of the configura-
tion, w(ck), is proportional to the probability of interest

PðckÞ}wðckÞ

¼
YM
i¼1

tTFi

PWMTFi
ðsx ; sx11; . . . ; sx1r�1Þ

PWMbðsx ; sx11; . . . ; sx1r�1Þ
YM
i¼2

gðTFi ;TFi�1; dÞ;

where the constant of proportionality is simply the
reciprocal of the sum of all weights:

PðckÞ ¼
1P

k9
wðck9Þ

wðckÞ:

In addition to homotypic interactions, present in the
original Segal model, I also allow heterotypic interac-
tions (i.e., between two distinct TFs) and I allow for both
synergistic (e.g., cooperative binding) and antagonistic
TF interactions (e.g., quenching). Let 1 1 gjk be the
strength of the interaction when the ith TF, j, is bound
adjacently to the (i – 1)th TF, k, where gjk is positive for
synergistic and negative for antagonistic interactions
and gjk 2 (�1, ‘). The effect of the interaction then
decays as a function of the number of intervening
nucleotides, d:

gðTFi ¼ j ;TFi�1 ¼ k; dÞ ¼ 1 1 g jke�d2=y:

Here, y controls the rate of decay of the curve, which I
set to 80, as this means that 1 1 g jke�d2=y approaches 1 by
d � 20 bp for modest gjk [e.g., –0.9 , gjk , 9, a range
covering up to a 10-fold decrease or increase in P(ck)
due to the interaction]. I chose y ¼ 80 so that the
interaction does not extend across the entire toy
enhancer.

In addition to P(ck), the computation of expression
also requires the conditional probability of expression
given the configuration, P(E jck). To capture saturation
effects, whereby a little more or less binding does not
alter P(E j ck) when there is already either very little or
extensive binding, the authors chose a logistic function
of the sum of the contributions toward transcription of
all the TFs in that configuration. The ith TF in the
sequence, TFi ¼ k, has a parameter lk, which is positive
for activators and negative for repressors. The logistic
equation is

PðE jckÞ ¼
1

1 1 expð�
P

M
i¼0 lTFi

Þ ;

where l0 is the basal activity of the enhancer.
For a more detailed description, see the original

article (Segal et al. 2008). I made a few additional
decisions in my implementation that I presume were
similarly made by the original authors. These include
symmetrically modeling both forward- and reverse-
strand binding and modeling one empty configuration,
with probability 1=

P
wðckÞ.

Computation of expression: I computed P(E) by
Monte Carlo integration. Obtaining independent and
identically distributed samples from the configuration
distribution can be accomplished by building a con-
figuration progressively, sampling the TFs in the order
in which they appear in the configuration, conditional
on already sampled TFs. Despite a combinatorially
large number of configurations, sampling from P(ck)
can be done efficiently using a dynamic programming
algorithm.
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For my application, very small errors in the estimation
of expression could heavily influence the evolutionary
dynamics, producing fluctuations in the selection co-
efficients of mutations at a site simply as a result of noise
in the estimate of expression. I avoid this problem by
ensuring that errors in the estimation of P(E) are more
than an order of magnitude smaller than the reciprocal
of the effective population size, 1/N, which is the
magnitude at which the fate of mutations starts being
influenced by natural selection (for most simulations I
use N ¼ 1000). I determined that sampling 200,000
configurations from P(ck) is sufficient to achieve the
desired precision. For the simulations involving N ¼
10,000, I sample 106 configurations. The C11 source
code of my implementation is available upon request.

Generation of regulatory problems: I initially ex-
plored the parameter space of regulatory problems by
generating hundreds of regulatory problems and vary-
ing regulatory problem parameters, including the
number of TFs, TF binding affinities, target expression
levels, input TF expression levels, TF–TF interaction
parameters, and activity levels of the TFs. I then sampled
10,000 sequences uniformly under each of these regu-
latory problems, examining the fitness distribution for
each problem. These distributions are primarily de-
termined by the problem being solved, e.g., the input
expression of the TFs and the target expression. For
example, the following problem is impossible (i.e.,
no sequence produces the desired expression): two
trans-backgrounds, one with only activator TFs expressed
and for which the optimal expression level is silent,
combined with another trans-background with only
repressor TFs expressed and optimal expression at the
maximum. In contrast, one trans-background consisting
solely of high activator expression with a goal of max-
imal expression combined with another trans-background
of only high repressor expression with a goal of no ex-
pression can be satisfied by a large fraction of random
sequences. I chose to investigate a collection of nine reg-
ulatory problems with the property that only a small, but
nonzero fraction of randomly sampled sequences have a
high fitness (e.g., w $ 0.99) and such that these problems
collectively offer a broad variety of input and target
expression levels (supporting information, Figure S1).

To present comparable regulatory problems, I keep
many of the parameters identical, including using two
TFs (one activator, l1¼ 2, and one repressor, l2¼�3, in
a slightly repressive environment, l0¼�1) and employ-
ing the same TF–TF interaction matrix (g12¼ g21¼�0.5
and g11 ¼ g22 ¼ 2) and the same pair of TF binding
functions (Figure 1B). To assess whether the behaviors
of the model are robust with respect to the choice of
these parameters, I conducted additional simulations,
systematically varying these parameters (see File S1 for
details).

Definition of the expression–fitness function: I penalize
misexpression as a function of the Euclidean distance

between the expression computed for a haplotype and
the expression at the global fitness optimum for the
regulatory problem. I use a Gaussian kernel as the
fitness penalty for misexpression,

w ¼ exp
�ðe� oÞT ðe� oÞ

s2

� �
;

where w is absolute fitness, e is the expression output
vector (vector components are expression in each trans-
background), o is the optimum expression vector, and
s2 (equal to 0.6 in most simulations) is a scalar for the
steepness of the misexpression penalty. In some ways,
this specification is similar to parameterizations of
Fisher’s geometrical model (Fisher 1930), which can
also be used to model purifying selection (Martin and
Lenormand 2006); however, my mutational model is
not at the level of the phenotype, and instead it de-
scribes the mutation process on the sequence with an
explicit sequence-to-fitness mapping.

Forward population simulations: I use standard
Wright–Fisher multinomial sampling. The effective
population size, N, is constant, and the population is
haploid (equivalent to genic selection in a diploid
population). Although I chose u ¼ 2Nm ¼ 0.001 to ap-
proximate humans, to speed up drift I used a popula-
tion size of N ¼ 1000 and a correspondingly high point
mutation rate (as expected, results are comparable for
simulations with N ¼ 10,000 and 10,000N generations,
but keeping u ¼ 0.001; not shown). Mutations occur
uniformly on the sequence with equal mutation rates
among all base pairs and all simulations are without
recombination. All replicates for a particular regulatory
problem are initiated with the same initial haplotype at
frequency 1, which has initial fitness 1 and is therefore at
the global fitness optimum. Parameters for the popula-
tion simulations are shown in Table 1. For most analyses,
12 replicate simulations of each regulatory problem
were run, an arbitrary number, but sufficient to consider
variation among replicates. For select analyses requiring
a larger number of observed mutations, 100 replicate
simulations were run.

Computation of selection coefficients of mutation
opportunities: Mutation opportunities are those hap-
lotypes that are accessible with a single mutation from
an observed haplotype. To compute selection coeffi-
cients for these mutation opportunities, which I use in
the analyses, I use the standard definition, s ¼ w9=w � 1,
where w is the absolute fitness of the background upon
which the mutation could occur and w9 is the absolute
fitness of the haplotype generated by the mutation.

Classification of substitutions into large and small
functional effect: In classifying substitutions by func-
tional effect size, I use the Euclidean distance (Ed)
between the full occupancy profiles of the mutant and
background haplotypes. For example, if there are two
TFs and three trans-backgrounds and the enhancer is of
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length L, then I compute the Euclidean distance be-
tween the two vectors each of length 2 3 3 3 L. For
Figure 6, large-effect substitutions are defined as those
with Ed . 2 and small-effect substitutions are those with
Ed , 0.1.

RESULTS

Simulations of enhancer evolution: I investigate the
substitution processes during regulatory evolution and
the dynamics of turnover by running forward popula-
tion simulations in which the fitness of each enhancer
sequence is computed using a computational model for
expression, combined with a model for stabilizing se-
lection on that expression phenotype (see Figure 1 for a
simple schematic). In the methods section Model over-
view provides an overview of the model, defines termi-
nology, and is followed by sections offering additional
detail.

In brief, I combine the Segal model, which provides a
sequence-to-expression mapping, with a model of sta-
bilizing selection, which provides an expression-to-
fitness mapping. The bulk of the regulatory problems
that I investigate involve two TFs (an activator and a
repressor) and three trans-backgrounds (see Figure 1
for an example and Figure S1 for the full set). These
regulatory problems differ in their optimal expression
and the expression levels of the input TFs. All regulatory
problems that I investigate are nontrivial; i.e., few
random sequences encode an expression profile very
near the optimum.

I simulate the evolution of a constant-size population
by sampling alleles according to their fitnesses. This
provides a model of drift and selection, which is
essential for modeling the substitution processes of
enhancers because many mutations are likely affected
by both. I selected the simulation parameters to op-
timize the trade-off between simulation efficiency and
realism (shown in Table 1). The bulk of the results
involve nine regulatory problems. For each regulatory
problem I ran 12 replicate simulations starting from the
same initial sequence. The simulation duration of 2
million generations (2000N ) corresponds to a relatively
long evolutionary time: between 0.25 and 0.46 substitu-
tions per site, which is about the divergence observed
between human and mouse in the vicinity of transcrip-
tion start sites (Taylor et al. 2006). The population
mutation rate, u, corresponds to a plausible value for

Figure 1.—Schematic description of
the model. (A) The expression of an
enhancer sequence in each of the given
trans-backgrounds is determined ac-
cording to the Segal model. The fitness
is then computed using a model of sta-
bilizing selection, in which fitness is a
function of the Euclidean distance be-
tween the realized and the optimal ex-
pression. (B) The binding specificities
of the activator (top) and the repressor
(bottom) are shown as position-weight
matrices (PWMs), with the site-wise af-
finity of the TF to each nucleotide
shown scaled by information content
(in bits). These two PWMs are used
for the nine primary regulatory prob-
lems. (C) Each regulatory problem is
characterized by the expression levels of
the two TFs (horizontal and vertical axes)
in each of the three trans-backgrounds
(points of the triangle) with the tar-
get expression (red diamond) shown
on the adjacent 0–1 scale. The regula-
tory problem for enhancer 1 is shown.
See Figure S1 for the other regulatory
problems.

TABLE 1

Parameters for forward population simulations

Parameter Value Description

N 1000 Population size
m 5 3 10�7 Spontaneous point

mutation rate per base
pair per generation

u 0.001 Population point
mutation rate (2Nm)

L 100 bp Regulatory sequence length
G 2000N Generations simulated

572 K. Bullaughey

http://www.genetics.org/cgi/data/genetics.110.121590/DC1/11
http://www.genetics.org/cgi/data/genetics.110.121590/DC1/11


humans. Although regulatory modules are often on
the order of 1 kb, numerous developmental regulatory
modules in mouse and Drosophila are as small as 100 bp
(Kirchhamer et al. 1996). I chose to model 100-bp en-
hancers as these are large enough to allow an investiga-
tion of the dynamics of turnover and are easily visualized
and efficiently simulated (simulations of 500-bp en-
hancers yield similar results; not shown). I chose not to
model recombination given the short enhancers, and
consequently the entire sequence shares the same, sin-
gle evolutionary history. I sample the most common
haplotype at the end of the simulation and consider the
succession of haplotypes leading from the initial haplo-
type to this final one. Although much of what I report
involves simulations without insertions or deletions
(indels), I also investigated regulatory evolution with
indels, as these may be important mechanisms by which
regulatory regions evolve (Rockman and Wray 2002;
Lusk and Eisen 2010). All of the behaviors that I report
here are also seen when including indels (see File S1
and Figure S23, Figure S24, Figure S25, Figure S26,
Figure S27, Figure S28, Figure S29, Figure S30, and
Figure S31).

I ensure that the population starts at the global fitness
optimum by setting the optimum to the expression
produced by the initial haplotype. In my simulations,
populations invariably stay very close to this global
optimum, and thus adaptation is not seen other than
mutations compensating for weakly deleterious substi-
tutions (the lowest absolute fitness among all runs was
0.990 with a mean of 0.999 across runs; given the
optimum is at 1, the maximum selection coefficient
was thus Ns¼110). By choosing to model a population
near the global fitness optimum, I consider the effects of
stabilizing selection alone, without confounding these
with those of adaptive processes.

Selective constraint on individual sites varies greatly
over time: To consider how selective constraint within
an enhancer varies over time, I compute selection co-
efficients of each mutation that can occur at each site
in the observed enhancer sequences. More specifically,
for each haplotype ancestral to the most common one
at the end of a simulation, I compute the selection
coefficient for each of the 3L mutation opportunities
(i.e., opportunities to mutate to one of the alternative 3
bases in a sequence of length L). Nearly all of these
potential point mutations occur during the simula-
tions—many occurring multiple times—although only
a tiny fraction reach any appreciable frequency in the
population. Computing these 3L selection coefficients
provides a snapshot of the constraint facing a haplo-
type at a given time and is informative about feasible
substitutions. I then consider two summaries: the
maximum selection coefficient at each site among
the three alternative nucleotides (smax) and the aver-
age (s, also at each site). The former is suitable for
considering whether any of the substitutions are
feasible whereas the latter better summarizes the over-
all constraint on the site.

Perhaps the most striking finding is the large extent
to which the selection coefficients associated with
mutation opportunities fluctuate over time (Figure
2; Figure S13, Figure S14, Figure S15, Figure S16,
Figure S17, Figure S18, Figure S19, Figure S20, Figure
S21, and Figure S22 show the corresponding plots for
other enhancers/replicates). Large vertical stretches
of dark colors in Figure 2 show regions of enhancer
sequence in which deleterious mutations are possible,
such that s is low. Patches of light gray are sites where,
on average, point mutations are neutral. One can see
from this plot that, although there are regions in
which mutations are consistently (on average) delete-

Figure 2.—Evolution of constraint. Rows cor-
respond to the haplotypes formed by each succes-
sive substitution during the 2000N generation
evolutionary history. The initial haplotype is at
the top and the final one, which is the most fre-
quent haplotype at the end of the simulation, is
at the bottom. For each haplotype, the positions
(along the horizontal axis) are colored according
to N s: the mean population selection coefficient
of point mutations at that site (were they to oc-
cur), averaged over the three possible alternative
bases. N s is on a nonlinear scale that moves away
from zero in both directions logarithmically,
which expands the range sensitive to genetic drift.
The locations of substitutions (red circles) are in-
dicated on the background haplotype on which
they occurred (with the resulting haplotype in
the next row). This simulation is without indels.
Enhancer 7, replicate 3 is shown; plots for other
enhancers and replicates can be found in Fig-
ure S13, Figure S14, Figure S15, Figure S16, Fig-
ure S17, Figure S18, Figure S19, Figure S20,
Figure S21, and Figure S22.
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rious, s differs between successive haplotypes at a
substantial number of sites.

Figure 3 highlights one example site (position 2 of en-
hancer 6, replicate 7) that switches from having a rather
modest deleterious s to a highly deleterious one. In this
particular case, a substitution at position 3 causes this
dramatic change at position 2; it is followed by a second
substitution at position 5 nearly 500N generations later,
which largely restores s at position 2. Interestingly, the
two substitutions at positions 3 and 5 were approxi-
mately neutral yet they dramatically altered the selec-
tion coefficients of mutations at position 2 (see Figure
S22 for a plot of N s over time for all sites). Such fluc-
tuations in selection coefficients of mutations are the
rule rather than the exception, as the majority of sites
show substantial changes in the mean selection coef-
ficient (s) in one or more replicate simulations (small
panels in Figure 3). While in this example the critical
sites (2, 3, and 5) are all highly clustered, this is not

always the case, with appreciable changes in selective
effects at more distance sites (see Figure S2).

Patterns of selective constraint change when sites that
were previously constrained become candidates for
substitution and conversely, when previously uncon-
strained sites come under increased purifying selection.
This process requires that the selection coefficient
associated with a mutation opportunity switch between
being deleterious and being effectively neutral (i.e., the
fixation probability is within a fewfold of the neutral
fixation probability). As detailed in Figure 4, the number
of mutation opportunities whose selective effects are
altered by substitutions elsewhere in the enhancer has a
highly skewed distribution, with the majority of sub-
stitutions opening or closing only a few opportunities
for turnover. Yet not infrequently, a sizable number of
mutation opportunities switch from having deleterious
to effectively neutral selection coefficients (or the
reverse). Thus most substitutions are responsible for

Figure 3.—Change in selective pressures at single sites over time in replicate simulations of enhancer 6. Each of the 100 small
plots corresponds to one position in the 100-bp enhancer. N s (vertical axis) is shown over the 2000N generations (horizontal axis)
for each of the 12 replicate simulations (different colors). Replicate 7 of position 2 (red) is also shown in the large plot (top right).
See Figure S22 for a depiction similar to Figure 2 of N s for all sites for replicate 7. The range plotted is �100 , N �s , 9, although
N s is sometimes entirely below this range, resulting in plots appearing empty. Simulations are without indels.

574 K. Bullaughey

http://www.genetics.org/cgi/data/genetics.110.121590/DC1/30
http://www.genetics.org/cgi/data/genetics.110.121590/DC1/30
http://www.genetics.org/cgi/data/genetics.110.121590/DC1/12
http://www.genetics.org/cgi/data/genetics.110.121590/DC1/30


some change in constraint and a subset of substitutions
causes substantial selective repatterning. This fluctua-
tion in selection coefficients over time has important
implications for how one interprets constraint. For
example, on average only 55% of the sites of enhancer
7 (replicate 8) have nondeleterious mutational oppor-
tunities (Ns . �2), yet at some point or another during
that simulation all sites have one or more nondelete-
rious opportunities—in other words, despite high over-
all constraint, none or few of the sites are always
constrained (see Table S1).

Functional turnover is in a large part due to shifting
constraint: To consider the implications of changing
constraint for the evolution of function, I use maximum
occupancy as a measure of the functional importance of
a nucleotide. The occupancy of a nucleotide by a TF
is the expected fraction of time during which the TF
binds, overlapping the nucleotide, in a given trans-
background; maximum occupancy of a nucleotide is the
maximum occupancy over TFs and trans-backgrounds.
Figure 5 shows how maximum occupancy evolves during
one simulation. The vertical banding illustrates func-
tional conservation of TF binding. Although most bands
remain intact, there are cases where the binding site is
essentially knocked out (yellow circle in Figure 5), newly
created (red circle), split into two (blue circle), or
shifted (see Figure S13, Figure S14, Figure S15, Figure
S16, Figure S17, Figure S18, Figure S19, Figure S20,

Figure S21, and Figure S22 for other enhancers/
replicates). Although many sites show similar binding
between the beginning and the end of the simulations,
there is a subset that experiences radical changes in
occupancy levels; for example, among the 12 replicate
simulations of enhancer 3, 6% of sites see either an
increase or a decrease in maximum occupancy of .0.5
between the beginning and the end of the simulation
(see Figure S3). How, then, do these changes in occu-
pancy occur?

The substitutions that most dramatically alter the TF
occupancy profile of the enhancer (i.e., contribute most
to functional repatterning) are often mutations that
would have been deleterious had they occurred on an
earlier allelic background (see Figure 6 and Figure S11).
In contrast, substitutions that do not substantially re-
pattern TF binding are much less often deleterious on
earlier allelic backgrounds. In other words, many of the
function-repatterning substitutions were able to sub-
stitute only because the pattern of constraint shifted.
This result exemplifies the extensive context depen-
dence [sometimes referred to as physiological or func-
tional epistasis (Brodie 2000)] of this enhancer and
suggests that such context dependence is of particular
importance to mutations that lead to functional repat-
terning. More generally, a substantial fraction of sub-
stitutions occur at sites that at one point in time could
have mutated only to deleterious alleles (Nsmax , –4).

Figure 4.—Counts of
mutations that switch from
effectively neutral to dele-
terious (or deleterious to
neutral) after a single sub-
stitution at another site. As
a result of each substitution,
each of the 3(L � 1) ¼ 297
mutation opportunities at
other sites may have a selec-
tion coefficient that is dif-
ferent from what it was on
the old haplotype. Most
substitutions affect a small
number of mutation oppor-
tunities at other sites, while
some affect a considerable
number of mutation oppor-
tunities, often with a sub-
stantial overall net increase
or decrease in effectively
neutral mutation opportu-

nities. (A) The number line showing the two categories of selection coefficients: deleterious (Ns , �4) and effectively neutral (jNsj
, 2). I consider switches between these two ranges, excluding�4 , Ns , �2, so that the transitions represent substantial changes in
the probability of fixation (at least a 4-fold difference, but typically larger, e.g., 75% have a .15-fold difference, pooling across en-
hancers). (B) The effects of substitutions observed in simulations of enhancer 1. Each dot corresponds to a substitution, with its
position given by the number of mutation opportunities that switch categories in either direction (horizontal axis) and the net num-
ber of mutation opportunities that switch from deleterious to neutral (subtracting out neutral to deleterious switches; left vertical
axis). Points scatter away from the horizontal line (at zero) when there are more mutation opportunities switching one way than the
other (i.e., points above the line indicate a net increase in neutral mutation opportunities). The orange line shows the counts (right
vertical axis) of substitutions with the given number of mutation opportunities that switch. The 12 replicate simulations of enhancer
1 are pooled to produce this. (C) Summaries of the distributions of mutation opportunities that switch categories for each enhancer
(replicates pooled).
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For example, using the final haplotype as a proxy for
present-day constraint, a sizable subset of substitutions
occurred at sites that are presently constrained (see
Figure S4). Thus, observing a substitution at a site does
not necessarily imply that the site is currently uncon-
strained. Conversely, a site that is presently constrained
will not necessarily remain constrained.

Fixation by drift of nearly neutral mutations under-
lies variability among evolutionary realizations: To gain
insight into the variability among evolutionary realiza-
tions, I consider the change in constraint over time for
12 replicate simulations of each enhancer. I measure
change in constraint by the correlation between the
mean selection coefficients, s, of the initial haplotype
and those of each subsequent haplotype. Strikingly,
distinct realizations of the same evolutionary process
often result in dramatically different amounts of turn-
over in the pattern of constraint (Figure 7). Like the
evolution of constraint, the evolution of functional
organization (i.e., TF occupancy) exhibits variation in
the extent of departure from the original functional
organization (Figure S5).

While variation among regulatory problems may be
due to the distinct regulatory problem solved by each
enhancer, variation within replicates of the same
enhancer reflects the chance fixation of repatterning
mutations by genetic drift. The probability of a
mutation fixing by genetic drift is a well-known
function of the selection coefficient (Ewens 2004),
with mutations quickly becoming unlikely to fix as Ns
becomes increasingly negative (e.g., for Ns ¼ �10, the
probability of fixation is 1/2200 that of a neutral mu-
tation). One explanation for variation among replicate
simulations is that repatterning is largely the result of
the chance fixation of large-effect, deleterious muta-
tions, which occur rarely, and hence inconsistently
across replicate simulations. While there is clearly a
relationship between the selection coefficient of a

substitution and how much that substitution repat-
terns constraint or binding, the relationship is weak.
There are very few deleterious substitutions, and many
effectively neutral substitutions have large repatterning
effects (Figure S6 and Figure S7). So although clearly an
important factor, the chance fixation of large-effect,
deleterious mutations may be insufficient to explain
the full extent of the variation among replicates.

Another process that appears to underlie the varia-
tion among replicate simulations is that some substitu-
tions can open opportunities for repatterning, leading
to more repatterning in some replicates than in others.
Supporting this hypothesis is the observation that a
large fraction of substitutions alter the amount of
repatterning of TF binding that is likely to subsequently
occur (e.g., after such a substitution occurs, the pattern
of TF binding evolves more, on average, over the next
500N generations than if the substitution had not
occurred). Interestingly, even effectively neutral muta-
tions are capable of altering the amount of patterning
expected (Figure S8).

Chance may thus play an important role (e.g.,
Lenormand et al. 2009) in shaping regulatory evolution
in two ways: directly, through the occasional fixation of
large-effect repatterning mutations by genetic drift, and
indirectly, because drift may fix mutations that do not
themselves cause much functional repatterning, but
that open opportunities for repatterning. For both the
direct and the indirect effects of drift, nearly neutral
mutations play an important role. In light of how much
the turnover in function and constraint varies among
evolutionary realizations, the divergence among orthol-
ogous regulatory sequences—which might be thought
of as distinct realizations of the evolutionary process—-
may therefore not be due solely to changes in the
underlying regulatory problem, but also to the stochas-
tic nature of drift and how substitutions alter the oppor-
tunities for future repatterning.

Figure 5.—Evolution of TF binding over time.
Rows correspond to the haplotypes formed by each
successive substitution in the 2000 N-generation
evolutionary history. The initial haplotype is at
the top and the final one is at the bottom. For
each haplotype, the positions (along the hori-
zontal axis) are shaded according to maximum
occupancy (i.e., the largest fraction of time bound
by any TF among the various trans-backgrounds).
The locations of substitutions (purple circles) are
indicated on the background haplotype on which
they occurred. Larger colored circles are cases
where a binding site disappears (red, left), arises
(orange, right), or splits into two overlapping
sites (blue, center). This simulation is without
indels. Enhancer 6, replicate 6 is shown; for more
examples see Figure S13, Figure S14, Figure S15,
Figure S16, Figure S17, Figure S18, Figure S19,
Figure S20, Figure S21, and Figure S22.
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DISCUSSION

As models of regulatory function become more pre-
dictive ( Jaeger et al. 2004; Segal et al. 2008; Fakhouri

et al. 2010), it is plausible that they also better reflect the
underlying biology. It is then worth asking whether such
models offer insight into the evolution of regulatory
DNA. To my knowledge, the present simulation study is
the first of its kind to combine a model of regulatory
function shown to have substantial predictive value in a
real biological setting (Segal et al. 2008) with a model of
fitness to gain insight into the evolution of regulatory
DNA.

Although I model only toy enhancers, the behaviors
of the simulations are hopefully informative because
the small number of assumptions was chosen to reflect
important aspects of regulatory function. Most nota-
bly, these simulations suggest that even under a regime
consisting solely of stabilizing selection on the expres-
sion phenotype, substantial functional reorganization
is possible. Both the evolution of functional organiza-
tion and that of selective constraint show extensive
context dependence and involve a large fraction of
sites and substitutions. Pervasive context dependence
means that when a mutation arises at a particular site,
it may have a different selection coefficient from
previous mutations to the same base at that site. This
fluctuation in the selection coefficients of mutation
opportunities is a primary avenue for functional turn-
over. Thus, rather than seeming puzzling, the obser-
vations that functional sequence does not always
appear conserved and conserved sequence may not
be functional should be expected from simple assump-
tions. Together, these findings have important implica-
tions both for the use of phylogenetic comparisons to
infer function (or lack thereof) and for population
genetic analyses, notably the inference of selection
coefficients.

Challenges posed by markedly changing selection
coefficients: Much of our intuition for thinking about
selection on DNA stems from work modeling mutations
in protein-coding genes. The redundant nature of the
genetic code and the high ratio of synonymous to
nonsynonymous substitutions led Kimura to make the
simplifying assumption that mutations fall into two
categories, those that are neutral and those that are
‘‘definitely deleterious’’ (Kimura 1977), and that, be-
cause of the genetic code, the category to which a site

Figure 6.—Large functional changes are facilitated by pre-
ceding substitutions. I consider two classes of substitutions:
ones that substantially change TF occupancy and ones that
produce little change (on the basis of the Euclidean distance
between the full occupancy profiles; see methods). The top
two plots illustrate a single, observed substitution of the large-
effect class while the bottom plot is a collated summary of all
substitutions falling into these two classes for 100 replicates of
enhancer 3. (Top) For the particular T to G substitution
(solid red dot) I consider each of the most recent 10 ancestral
haplotypes (vertical lines) leading up to it. I then compute
the selection coefficient associated with the haplotypes (mid-
dle) had that mutation occurred on that earlier background.
As can be seen, had the mutation occurred only two haplo-
types earlier, it would have been deleterious and highly un-
likely to fix. (Bottom) I calculate the proportion of
substitutions (vertical axis) that would have been deleterious
had they occurred x substitutions in the past (horizontal axis).
Mutations are considered deleterious if Ns , �4. Purple
circles show the fraction of large-effect substitutions that
would have been deleterious on ancestral haplotypes, and

gray diamonds show these fractions for a comparably sized ran-
dom subset of substitutions that did not alter TF binding. No-
tably, substitutions with large effects more often would have
been deleterious, suggesting that in many cases, one or more
of the preceding substitutions altered the selection coefficient
of the mutation, making it effectively neutral and thus allowing
it to substitute. Bars indicate the 90% interquantile range of the
fractions based on subsampling with replacement.
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belongs is easily determined. This basic premise [even if
approximate (Kreitman 1996)] has been hugely impor-
tant for estimating neutral rates of evolution (Bromham

and Penny 2003), understanding the histories of dupli-
cate genes and gene families (Gu et al. 2002), measuring
constraint (Eyre-Walker and Keightley 1999), and de-
tecting adaptively evolving proteins using either McDonald–
Kreitman-style tests (McDonald and Kreitman 1991) or
PAML-style tests (Yang and Bielawski 2000). This
assumption is also employed in the widely used Poisson
random field methods for estimating selection coeffi-
cients (Sawyer and Hartl 1992; Bustamante et al.
2005).

Implicit in this categorization is that mutations at a
site are considered independent of the background on
which they arise. While originally developed for protein-

coding genes, these methods have been used to detect
positive selection in noncoding regions (Torgerson

et al. 2009) and similar assumptions have been employed
to estimate the constraint in intergenic regions (e.g.,
Shabalina et al. 2001) and estimate the distribution of
selective effects in noncoding regions (Kryukov et al.
2005). Studies interested in constraint on TF binding
sites make this type of assumption in using the position-
specific substitution rates in TF binding motifs as a
proxy for constraint (Moses et al. 2003; Kim et al. 2009).

As shown here, however, the regulatory code has a more
complex architecture (Wray et al. 2003), with marked
context dependence. Selection coefficients associated
with mutation opportunities change dramatically over
time as substitutions occur in the background, and thus
one cannot safely assume the selection coefficient is a

Figure 7.—Change in the organiza-
tion of selective constraint over time.
Each row of plots corresponds to a dis-
tinct regulatory problem with 12 repli-
cates arranged horizontally (shown in
alternating shades of gray). For each
simulation, only the haplotypes ances-
tral to the most common haplotype at
2000N generations are considered.
For each haplotype, the pattern of con-
straint is summarized by s at each site
(so that a given haplotype is repre-
sented by a vector of length 100 bp).
The Pearson correlation between the
N s vectors for the initial haplotype
and the haplotype x substitutions later
is shown as a single bar; the vertical axis
is [0, 1]. Correlations for each succes-
sive haplotype relative to the first are ar-
rayed in sequence along the horizontal
axis. Thus the width of each small plot
is the number of substitutions on that
lineage in 2000N generations.

Figure 8.—The distribution of selec-
tive effects over time. Each plot shows
the proportion (over time) of the en-
hancer sequence in each of three selec-
tive classes: neutral (tan), weak
purifying selection (blue), and strong
purifying selection (purple). The selec-
tive bin into which a site is placed is de-
termined by the maximum selection
coefficient, smax, among the three possi-
ble point mutations at that site, relative
to the observed base. The vertical axis
indicates the cumulative fraction of
sites in the three bins. The bins are cho-
sen to reflect three categories of sites
(neutral, weakly deleterious, and dele-
terious), which have markedly different
fixation probabilities. Time is indicated

on the horizontal axis in units of 1000 generations (for a total of 2 million generations). Four replicates are shown for each of two
regulatory problems: enhancer 2 (A) and enhancer 6 (B). Binning by smax rather than N s ensures that sites are considered strongly
constrained only when indeed all substitutions are highly unlikely.
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fixed property of the site. In fact, the overall fraction of
constrained sites across the whole enhancer changes
substantially over time, as do the fractions of weakly
constrained and neutral sites (Figure 8). For example,
the fraction of the sequence that experiences only neu-
tral mutations shifts from �70% to ,40% (seven of the
nine regulatory problems show changes in constraint
at least this large in one or more replicates, for a total of
30 replicates of 108). Thus, even the distribution of s
across sites changes over time, suggesting that it may not
be appropriate to think of assigning s from a fixed dis-
tribution, let alone ascribing a fixed value to an entire
class of sites.

Phylogenetic interpretations: Replicate simulations
can be interpreted as independent evolutionary trajec-
tories from the same ancestral sequence and are thus
equivalent to an idealized star phylogeny. During the
evolution of this phylogeny, stabilizing selection for a
particular optimum expression pattern is unchanging.
Yet different replicates exhibit markedly different
amounts of turnover in functional organization and
selective constraint. In a phylogenetic context, one may
be tempted to infer that the selective pressures them-
selves have changed, and yet these simulations show this
need not be a valid conclusion. Instead, the varying
levels of turnover reflect the high degree of historical
contingency apparent in this model, combined with the
stochastic nature of genetic drift.

This variability among replicate simulations is also
important for interpreting particular functional changes.
As an illustration, Figure 9 shows maximum occupancy
over time for the 12 replicate simulations of the left
quarter of enhancer 4. This part of enhancer 4 has high
maximum occupancy, and yet several of the replicate
simulations show substantial decreases in maximum
occupancy. Thus, were one to observe an evolutionary
realization after which nucleotides 3–8 still showed strong

binding at the end, one might be inclined to assume this
site is highly conserved and necessary for proper expres-
sion; alternatively, observing replicate 3 or 6 might suggest
binding was dispensable. A more nuanced perspective is
that few binding sites are completely necessary or com-
pletely dispensable and that the evolutionary outcome is
simply one realization among many possible ones. Thus,
differences in the rate of turnover are not necessarily
indicative of changes in selective pressures or function,
but may result simply from which particular mutations fix
by drift: not only those that directly repattern function,
but also those that open up new opportunities to re-
pattern function.

Limitations to the model of regulatory function: The
informativeness of this approach hinges on the validity
of the model; although the Segal model showed an im-
pressive fit to data in one context (Segal et al. 2008), it is
unclear how well it captures the evolutionary processes
that I investigate here, after incorporating my model of
fitness effects of misexpressison. Also, there are a number
of important departures of my model from known reg-
ulatory biology. First, I am not modeling nucleosome
binding or other aspects of chromatin organization, such
as methylation or histone modifications. These features
of regulatory biology are known to affect gene regulation
(Li et al. 2007) and are important to regulatory evolution
(Field et al. 2009).

Nucleosomes, for example, compete with transcrip-
tion factors for DNA (Workman and Kingston 1992)
and have been suggested to also induce synergistic TF–
TF binding (Mirny 2009; Wasson and Hartemink

2009), compartmentalize enhancers (Raveh-Sadka et al.
2009), and affect the variability of gene expression
(Tirosh and Barkai 2008). Although nucleosome
binding is comparatively well understood and can be
accurately modeled (Kaplan et al. 2009) and integrated
into models such as the one I am using (Raveh-Sadka

Figure 9.—The evolution of TF binding varies markedly over replicate evolutionary realizations. Each of the 12 plots corre-
sponds to a replicate simulation of enhancer 4, showing TF binding (maximum occupancy) for the leftmost 25 nucleotides
of each haplotype (rows) on the lineage leading to the most common haplotype at 2000N generations (bottom). For a complete
description of this style of plot, see Figure 5. Pink circles show the locations of substitutions. These simulations were run without
indels.
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et al. 2009), I chose to forgo this layer of complexity in
favor of focusing on a smaller set of features of trans-
cription, which suffices to address a preliminary set of
questions about turnover.

Second, the regulatory problems that I investigate
do not necessarily correspond to those faced by real
enhancers. Instead I rely on the observation that the
behaviors I characterize are general, depending little
on the number of TFs or regulatory contexts modeled
(not shown), the entropy of the TF binding functions
(Figure S9 and Figure S12), and the TF–TF interaction
parameterizations (not shown). Additionally, the qualitative
patterns are apparent for a broad spectrum of strengths
of stabilizing selection on the expression phenotype
(Figure S10 and Figure S11).

Third, I do not model recombination within the
enhancer. This is probably a reasonable approximation
for small enhancers, like those I investigate. Given this
short enhancer size (100 bp) and the relatively small
population mutation rate (u ¼ 0.001), the majority of
substitutions are sequential (i.e., the mutations did not
cosegregate), suggesting the results would not differ
substantially in the presence of recombination. For
larger enhancers or particularly high rates (like in
Drosophila), intraenhancer recombination may have
important effects on enhancer evolution, and thus this
remains an important topic for future work.

On the whole, the observations resulting from this
model of regulatory evolution appear to be quite robust
and should help better guide the interpretation of
comparative genomic approaches as well as the design
of methods to infer selection on regulatory DNA.

The relevance of nearly neutral mutations: A nice
feature of this modeling approach is that it offers insight
into aspects of the evolutionary process for which there
is not much information in available or readily obtain-
able data. For example, measurements of selection co-
efficients can at best detect effects of size jsj . 0.01 in
yeast (DeLuna et al. 2008). Yet it may be that many of
the important dynamics of regulatory evolution under
stabilizing selection involve mutations of small func-
tional effects and even smaller fitness effects. By using a
computational model, quantities such as selection
coefficients and the amount of binding at each position
in the enhancer are directly computable and can be
related to the few assumptions underlying the model.

Indeed, this model of regulatory evolution reveals the
role that neutral mutations play in remodeling function
and constraint. The label of ‘‘neutral’’ ascribed to a mu-
tation is simply a statement about the fitnesses of indi-
viduals carrying the allele relative to those that do not. If
one assumes mutations have substantial functional con-
sequences only when they also have substantial fitness
consequences, then turnover may be possible only if
combinations of weakly deleterious mutations and com-
pensatory mutations substitute jointly (Kimura 1985).
Such a process is highly dependent on the effective

population size—and for parameters relevant to hu-
mans, may not be common (Durrett and Schmidt

2008). Yet one need not presume that a mutation that is
neutral with respect to fitness is neutral with respect to
function. As shown here, effectively (or nearly) neutral
mutations can not only alter the functional organization
of the enhancer directly; they can also shift the pattern
of selective constraint at other sites, opening up oppor-
tunities for subsequent functional change. Importantly,
this process is prevalent at even modest population sizes
and levels of diversity.
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