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ABSTRACT

Genome-wide mapping analyses are now commonplace in many species and several networks of
interacting loci have been reported. However, relatively few details regarding epistatic interactions and
their contribution to complex trait variation in multicellular organisms are available and the identification
of positional candidate loci for epistatic QTL (epiQTL) is hampered, especially in mammals, by the
limited genetic resolution inherent in most study designs. Here we further investigate the genetic
architecture of reproductive fatpad weight in mice using the F;, generation of the LG,SM advanced
intercross (Al) line. We apply multiple mapping techniques including a single-locus model, locus-specific
composite interval mapping (CIM), and tests for multiple QTL per chromosome to the 12 chromosomes
known to harbor single-locus QTL (sIQTL) affecting obesity in this cross. We also perform a genome-wide
scan for pairwise epistasis. Using this combination of approaches we detect 199 peaks spread over all 19
autosomes, which potentially contribute to trait variation including all eight original Fy loci (AdipI-§),
novel sIQTL peaks on chromosomes 7 and 9, and several novel epistatic loci. Extensive epistasis is
confirmed involving both sIQTL confidence intervals (C.I.) as well as regions that show no significant
additive or dominance effects. These results provide important new insights into mapping complex

genetic architectures and the role of epistasis in complex trait variation.

HE development and elaboration of techniques
such as interval mapping (LANDER and BOTSTEIN
1989), composite interval mapping (CIM) (ZeNG 1994),
and methods based on complex pedigree structures
(JANNINK el al. 2001) have produced an extensive
repertoire for the statistical exploration of genotype—
phenotype relationships, especially for single loci. Using
these approaches, genome-wide analyses have identified
single-locus QTL (sIQTL) underlying variance in char-
acters as varied as agronomic traits and pest resistance in
corn (PAPST et al. 2004), life span in fruit flies (WILsSON
et al. 2006), alkylator-induced cancer susceptibility in
mice (FENSKE et al. 2006), murine skeletal morphology
(KENNEY-HUNT et al. 2008), and an ever-expanding list of
human diseases and disorders including age-related
macular degeneration (e.g., KLEIN et al. 2005), type 2
diabetes (e.g., SLADEK et al. 2007; ZEGGINT et al. 2008),
and Crohn’s disase (e.g., DUERR et al. 2006). In addition,
several studies have successfully employed epistatic QTL
(epiQTL) mapping strategies to describe multilocus
networks (e.g., CHEVERUD el al. 2001; STYLIANOU et al.
2006; WENTZELL et al. 2007; FAWCETT et al. 2008, 2010).
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However, most mapping studies in model systems
involve either Fy intercross populations or recombinant
inbred (RI) strain panels (see also HANLON et al. 2006).
These populations harbor limited recombination and
so tend to identify relatively large confidence intervals,
complicating the physiological investigation of statisti-
cal results. Furthermore, while RI strain sets represent a
fourfold expansion of the Fy recombination-based map,
they require a minimum of 20 generations of brother—
sister mating (SILVER 1995) and the number of strains
per set is usually low, especially in mammals. Conversely,
the production of advanced intercross (Al) lines involves
many generations of outbreeding in a relatively large
population. This preserves heterozygosity, retains many
more recombinant gametes in the gene pool, decreases
the average size of segregating linkage blocks, and in-
creases mapping resolution (HALDANE and WADDINGTON
1931; BARTLETT and HALDANE 1935; HANsoON 1959a,b,c,d;
Darvast and SoLLER 1995; RockMAN and KRUGLYAK
2008). Specifically, the F;y generation of a murine Al
line represents an approximately fivefold expansion of
the Fy map and thus an improvement in resolution over
both Fs intercross and RI line study designs.

Obesity and related phenotypes are among the most
intensively studied complex traits in mice and the
LG,SM Al has proven particularly useful in the identi-
fication of adiposity QTL. Previous work in this cross has
characterized over 70 loci contributing to variance in
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fatpad weight, body weight, and relevant organ weights
(CHEVERUD et al. 1999, 2001, 2004a,b; FAWCETT et al.
2008). In addition, a recent study used the combined Fy
and F,( generations (FAWCETT et al. 2010) to fine map
loci for a suite of obesity-related characters and achieved
an average confidence interval (C.I.) for fatpad loci of
4.14 Mb. These C.I.s were subsequently tested for
epistasis and extensive interaction was confirmed,
though several direct-effect loci identified in the Fy
and Fo,5 generations failed to replicate and were thus
not included. However, in a full genome-wide scan for
pairwise epistasis in the Fy generation of this cross
(Jarvis and CHEVERUD 2009) 38 fatpad loci, which were
notidentified using a single-locus mapping model, show
significant epistatic interactions. Consistent with results
from other experimental systems (reviewed in PHILLIPS
2008) this suggests that many biologically relevant loci
are invisible to single-locus scans. Thus, combining the
increased genetic resolution of an F; Al line study, with
the full range of single-locus and epistatic mapping
strategies promises to produce novel insights into the
contribution of epistatic interactions to variation in
reproductive fatpad weight in mice. Furthermore, the
accumulating data on positional candidate genes (e.g.,
CHEHAB 2008; GAT-YABLONSKI and PHILLIP 2008;
IcHiHARA and YaAMmADpA 2008; CHEVERUD ef al. 2010)
provides the opportunity to explore functional hypoth-
eses for identified loci and their interactions.

Utilizing the F;, generation of the LG,SM Al line
(CHEVERUD et al. 2001), we further characterized the
complex genetic architecture underlying murine re-
productive fatpad weight. We first performed a sIQTL
scan on the original eight chromosomes harboring
direct effect loci in the Fy generation (1, 6-9, 12, 13,
and 18) as well as the four shown to harbor sIQTL in the
combined Fo—F,( population (3, 4, 10, and 16) (FAwCETT
et al. 2010). Composite interval mapping and two QTL
tests were subsequently performed, the latter when mul-
tiple loci on a single chromosome were suspected. Fi-
nally, we carried out a full genome-wide scan for pairwise
epistasis. To identify the most meaningful set of loci to
screen for candidate genes, marker genotypes repre-
senting sIQTL and epiQTL that exceeded their ap-
propriate thresholds were combined in linear models,
first for each chromosome separately and ultimately
the entire genetic system. Confidence intervals for
peaks that remained significant in the full model were
screened for positional candidate loci and potential
physiological interactions via both the Mouse Genome
Informatics (MGI) database (www.informatics.jax.org/)
and a literature search.

MATERIALS AND METHODS

Data: The population analyzed is the F;, generation (N =
1298; 85 full-sib families; average litter size 8.45) of an Al line,
generated from an Fs intercross of the inbred mouse strains

SM/]J and LG/] (CHAI 1956a,b; CHEVERUD et al. 1996, 2001;
KRAMER et al. 1998; VAUGHN et al. 1999). The animal facility is
maintained at a constant temperature of 21° with 12-hour
light/dark cycles. Animals were fed a standard rodent chow
(PicoLab Rodent Chow 20 (no. 5053) with 12% of its energy
from fat, 23% from protein, and 65% from carbohydrate) ad
libitum and were weaned at 3 weeks of age. After weaning,
animals were housed in single-sex cages containing no more
than five individuals.

Between the Fy and Fy( generations, the population was
maintained at an effective size of ~300 with 75 mating pairs
and no variance in family size. Mating between littermates was
actively avoided. At greater than 13 weeks of age, animals were
killed and necropsies performed. The reproductive fatpads of
each animal were removed, combined, and weighed on a
digital scale to the nearest 100th of a gram. Phenotypes were
statistically corrected for age at necropsy, sex, litter size, and
parity status (whether or not they were mated to produce the
Fi1), using multiple regression, and the residuals used for
further analysis. Genotypes for each individual were obtained
at 1470 polymorphic SNPs across the genome by GoldenGate
Assay (Illumina; San Diego) using DNA extracted from liver
tissue obtained at necropsy. Intermarker genotypes were
imputed at 1-cM intervals using the equations of HALEY and
KxoTT (1992).

Mapping analyses: A single-locus QTL (sIQTL) scan at all
measured and imputed loci was first conducted on chromo-
somes 1, 3, 4, 6-10, 12, 13, 16, and 18 using the regression
model

Y,=p+taXX,+dX Xy + error, (1)

where Y; is the vector of corrected phenotypes, W is a con-
stant, and X,; and X,; are the vectors of genotype scores; a
and d are the fitted additive and dominance regression
coefficients, respectively. The sums of squares for both model
terms were pooled for significance testing. The results of the
full genome-wide sIQTL mapping in the combined Fo-F;,
generations were previously reported (FAWCETT et al. 2010).

CIM (ZENG 1994) was applied to the identified, preliminary
confidence intervals using the following model:

Yz'jk = u+aXX,u-+d><X,ﬁ+err0r|X,l]-deX,,kXdk. (2)

In this case, Xeojp Xap Xato and Xy, represent vectors of genotype
scores at loci >20 F;y, cM up- and downstream of the
confidence interval on whose effects the within-interval
regressions were conditioned. This eliminates the effects of
proximal and distal QTL on the same chromosome from
being confounded with the target QTL. When multiple peaks
on the same chromosome were suggested, the fit of all
pairwise two-locus models were compared to the appropriate
single-locus case using a x* test with 2 degrees of freedom (d.f.)
(erit =2 * abs [ln(l/ponc) - ln(l/ptwo)]: where pone and ptwo
are P-values from the one- and two-locus models, respectively
(SorAaL and RoHLF 1995).

Finally all genome-wide, between-chromosome, pairwise
combinations of measured and imputed autosomal loci were
tested using the following epistatic mapping model:

Y,7 = M, + aa(X,”' X Xa]) + dd(Xm' X X,]]) + dd(Xdl X X,”)

3
+ dd(X 4 X X gj) + error | X ;i X ;X i X g, (3)

where aa, ad, da, and dd are the additive-by-additive, additive-
by-dominance, dominance-by-additive, and dominance-by-
dominance epistasis regression coefficients, and X,; X;; X,;
Xy represent vectors of the corresponding additive and
dominance genotypes at the two loci involved. The sums of
squares and degrees of freedom for all four epistatic compo-
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nents were pooled for initial significance testing. The raw
probability associated with each multiple regression for all
mapping analyses above was transformed to a linear scale
using the base 10 logarithm of the inverse of the probability of
no epistasis (LPR =log;¢(1/p)), producing values comparable
to LOD scores obtained through maximum likelihood analysis
(LANDER and BoTsTEIN 1989).

Thresholds: Interpretation of these analyses is complicated
both by the large number of comparisons involved as well as
the family structure present in the population. To account for
these two issues simultaneously, simulations were performed
using the known pedigree of all individuals between the Fy and
Fi¢ generations to generate a null distribution of expected
effects from which the appropriate single-locus LPR threshold
was determined (FAWCETT et al. 2008, NORGARD et al. 2009).
Given a heritability of reproductive fatpad weight in the F;( of
0.47 (from sib correlations) chromosome-specific thresholds
foridentifying novel sIQTL ranged from 6.15 (chromosome 8)
to 6.6 (chromosome 1). The experiment-wide threshold for
novel sIQTL detection was 7.34. For the purposes of replica-
tion, a corrected pointwise threshold (equivalent to P= 0.05)
of 3.32 was applied for sIQTL peaks within previously
identified confidence intervals.

Following the method described in FAWCETT et al. (2010),
the analysis-wide epistasis threshold for the identification of
novel interactions was calculated to be 8.33. The threshold for
tests between a given sIQTL and all other unlinked markers in
the analysis was 6.06 and the analogous chromosome-specific
thresholds ranged from 4.73 (chromosome 8) to 5.25 (chro-
mosome 1). The corrected pointwise threshold for epistatic
tests between two sIQTL was 3.44. Tests involving sIQTL are
partially protected from multiple comparisons as they were
identified with independent information.

Confidence intervals: Due to the complexity of our map-
ping strategy, the conventional 1 LPR drop criterion was
applied to define all reported confidence intervals. When
multiple peaks, either sIQTL, epiQTL, or both occurred in the
same region, the most proximal and most distal 1 LPR drop
was used to determine C.I. endpoints. C.Ls for sIQTL peaks
were also calculated for each location individually using the
standard deviation of the simulated distribution of 1000
mapping iterations involving known effects on simulated
chromosomes (NORGARD et al. 2009). The two techniques
yielded very similar C.I. for all sSIQTL, although the simulation-
based intervals were slightly smaller.

Linear models: We constructed and evaluated separate
chromosome-specific models using the linear model function
in R (R DEVELOPMENT CORE TEAaM 2009) before combining
their results into a full model of the genetic system. This
process began with terms representing each significant effect
at all sIQTL peaks identified by the single-locus model
(Equation 1) and composite interval mapping (Equation 2).
For example, the chromosome 1 model (see Figure 1A) began
with five sIQTL terms representing the additive (P= 0.00726)
and dominance (P=0.0007) effects at 20.15 Mb, the additive
(P=0.000268) and dominance (P= 0.0383) effects at 70.77 Mb
and the dominance effect (P=1.06 X 107%) at 134.82 Mb. The
additive effect at 134.82 Mb was nonsignificant in the
sIQTL mapping model (P = 0.868) and so was not included.
Likewise, the chromosome 13 model (see Figure 1B) included
two terms representing the additive effects at 53.54 Mb (P =
3.05 X 107°°) and 90.61 Mb (P = 4.88 X 10-*), respectively. In
this case, neither dominance effect was significant in the
sIQTL mapping model (P=0.798 and P= 0.634) and so both
were excluded. When considered jointly, some individual
terms (e.g., the dominance effect only at 70.77 Mb on
chromosome 1) no longer remained significant (P < 0.05)
in type I ANOVA tables (using the “anova” function). Such

terms were removed. For those chromosomes not found to

harbor sIQTL, a similar process was performed beginning with
all significant interactions.

Next, individual coefficients from the epistatic mapping
model (aa, ad, da, dd; Equation 3) at all peaks that exceeded
their appropriate thresholds in the epiQTL scan were similarly
examined to determine the type or types of interactions
occurring. Terms representing all significant interactions were
then added stepwise to each appropriate chromosome-specific
model. Only epistatic terms that remained significant (P <
0.05) in both type I and type II ANOVA tables, using the R
functions “anova” and “Anova” (the latter from the package
“car”), respectively, and did not cause any established additive
or dominance effects to become nonsignificant (P < 0.05)
were retained to define each final chromosome-specific
model. These stringent criteria were established to obtain a
tractable number of high-confidence C.I. to screen for
positional candidates and physiological interactions.

Next, additive and dominance terms from all chromosome-
specific models were combined and terms that became non-
significant in either type I or type I ANOVA tables (or both)
were culled to define the “sIQTL system.” This model in-
cluded 20 terms at 18 loci (15 additive and 5 dominance;
boldface type in supporting information, Table S1). Epistasis
terms significant in the chromosome-specific models were
then added stepwise to the sIQTL system as above to define the
“full model.” In addition to the 20 marginal-effect terms, this
model includes 23 interactions involving 26 different epiQTL
confidence intervals. Finally, since many epiQTL peaks occur
at locations not represented in the sIQTL system, the
appropriate additive and dominance terms for each interac-
tion were added to the full model to ensure that the identified
epistatic contributions were not unduly biased upward by
variance attributable to single-locus effects. This had relatively
little effect and resulted in the elimination of only 3 inter-
actions, all of which are significant in type I tests. The results
from the full model are reported with these nominally
significant terms noted in boldface type (Table 1, see below).

Candidate genes: All C.Is for peaks identified in the full
model were screened for plausible positional candidate genes
and known interactions. This involved both queries of the MGI
database for functional variants affecting adiposity as well as a
broad literature search and was intended to generate mean-
ingful and testable physiological hypotheses regarding the
observed statistical associations.

RESULTS

Replication and identification: Significant marginal
effects, epistatic effects, or both are observed in the Fy,
population on all eight chromosomes harboring the
original Adip loci and three of the four additional
chromosomes implicated in the combined Fo-F;
sIQTL scan (Figure SI). In the Fy, alone, there were
no significant sSIQTL on chromosome 16. Similar to the
results of FAWCETT et al. (2010), peak LPR scores from
either the single-locus scan or composite interval
mapping at or near the confidence intervals of five Adip
loci exceeded the experiment-wide threshold (7.34) for
novel QTL detection (Adipl, LPR = 9.2; Adip2, LPR =
8.9; Adip3, LPR = 8.3; Adip5, LPR = 9.6; and Adip8, LPR =
12.3). All three remaining Fy loci exceed the point-
wise threshold (3.32) required for tests within pre-
viously defined confidence intervals (Adip4, LPR =
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5.6; Adip6, LPR = 5.24; and Adip7, LPR = 4.8).
Additional sIQTL on chromosomes 3, 4, and 10 also
replicated. Interestingly, the chromosome 4 locus
(Adip24) (FAWCETT et al. 2010; LPR = 12.65) roughly cor-
responds to two loci previously reported in the litera-
ture as Adipl1 and AdipI2in a cross between C57BL/6]
and DBA/2] (KEIGHTLEY el al. 1996; BROCKMANN et al.
1998; StyLIANOU et al. 2006). Finally, composite interval
mapping revealed novel loci on chromosomes 7 and
9 that both exceed their appropriate chromosome-
specific thresholds of 6.36 and 6.38, respectively. A total
of 22 potential marginal effect peaks were identified
(Table S1).

epiQTL mapping: In the genome-wide scan for
epistasis, 177 peaks involving 217 interactions exceeded
their appropriate significance thresholds and physically
cluster into ~51 potential epiQTL (Table S1). Additive-

I I I

100 110 120

by-additive interactions were the most common (98),
additive-by-dominance or dominance-by-additive were
the next most common (97), and dominance-by-
dominance interactions were the most rare (22). Con-
sistent with the results of JaArvis and CHEVERUD (2009)
and several other studies (see PHiLLIps 2008), many of
these occurred at locations showing no significant
marginal effects in this cross, though some occurred at
locations significant in sIQTL scans in other crosses
(Table 1; Figure 1; Table S1; Figure S2; Figure S3; Figure
S4; Figure Sb; Figure S6; Figure S7; Figure S8; Figure S9;
Figure S10; Figure S11; Figure S12; Figure S13; Figure
S14; Figure S15; Figure S16; Figure S17; Figure SI18;
Figure S19; Figure S20).

Linear models: In total, we identified 199 sIQTL and
epiQTL peaks that potentially contribute to trait varia-
tion. These cluster into roughly 73 confidence intervals
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showing a variety of combinations of additive, domi-
nance, and epistatic effects (Table S1). To identify the
most robust signals, we systematically added vectors of
genotype scores representing each into linear models
and determined the set that is simultaneously signifi-
cant in both type I and type II tests. We began by
establishing a single-locus model that contained all
sIQTL peaks that remain significant together. This
sIQTL system includes 20 marginal-effect terms (15
additive and 5 dominance) and shows an adjusted R®
value of 0.2254 (F'statistic = 18.64 on 20 and 1281 d.f.).
We next added epistatic peaks stepwise to generate a full
model of the genetic system. This full model (Table 1)
includes 23 additional interaction terms (9 aa, 10 ad/da,
and 4 dd) involving 26 different epiQTL confidence
intervals and shows an adjusted R* value of 0.3322 (I
statistic = 15.71 on 43 and 1257 d.f.). Using a x?
goodness-of-fit test with 23 (43-20) d.f. this represents
a highly significant improvement in fit over the base
sIQTL model (P < 10%). Following the addition of all
marginal terms involved in epistasis, three interaction
terms become nonsignificant at the P < 0.05 level in
either type I or type II tables or both (boldface terms in
Table 1). Removing these interactions from the full
model, its adjusted R? value is 0.3220 (F'statistic = 16.07
on 40 and 1260 d.f.), which also represents a highly
significant improvement in model fit (P < 10~%).
Positional candidates: While in-depth functional as-
says and other detailed molecular studies are required to
sort out the biological basis of QTL and their interac-
tions, examination of positional candidate genes in
sIQTL confidence intervals suggests testable physiologi-
cal hypotheses for several observed statistical effects. In
general, confidence intervals contain a variety of candi-
date loci including transcription factors, components of
various signaling cascades (e.g., the Wnt, Insulin, and Igf
signaling networks), neuroendocrine hormones and
their receptors, as well as genes directly implicated in
glucose processing and metabolism. For example, the
C.I. found at 6:133.92-142.67 Mb contains the promising
candidate Lrp6, a low-density lipoprotein receptor-related
protein that is thought to contribute to variation in a va-
riety of metabolic risk factors in humans (KAHN et al.
2007; MANTI et al. 2007) and CdknlIb, a cyclin-dependent
kinase inhibitor with known effects on pancreatic islet
mass in diabetic mice (UcHIDA et al. 2005). Both Lip6
and Cdknlb have differences in expression level in
white fat (P = 3.82 X 107"* and 0.013, respectively) and
in the liver (P = 1.62 X 107" and 7.48 X 107% respec-
tively) between the two parental lines in this cross (J. M.
CHEVERUD, unpublished results). The C.I. 18:58.77-
80.76 Mb shows potential functional links to mamma-
lian neurotransmitter signaling via Htr4 (GARDNER
et al. 2008), as do 13:40.74-55.35 Mb via Cplx2 (BRACHYA
et al. 2006) and Drdla (DE LEEUW VAN WEENEN el al.
2009). In addition, the region 6:114.73-121.97 Mb con-
tains neuroendocrine candidates Adipor2 (YAMAUCHI

et al. 2007; Z1EMKE and MANTZOROS 2010) and Ankrd26
(BERA et al. 2008), which also shows a significant differ-
ence in expression in liver between LG/J and SM/] (P =
0.0002) (J. M. CHEVERUD, unpublished results). Together,
these loci suggest a functionally similar genetic archi-
tecture to the emerging picture of type 2 diabetes in
humans (Doria et al. 2008).

There are also a number of strong candidate loci for
observed epistatic interactions. The most striking in-
volves the C.I.s 13:0-24.24 Mb and 1:118.37-138.01 Mb,
which contain Inhba and Inhbb, respectively. The pro-
teins encoded by these loci are components of the Ac-
tivin and Inhibin complexes, which have wide-ranging
effects on a variety of physiologic, homeostatic, and
metabolic processes including mammalian repro-
duction, inflammation, and adipocyte differentiation
(WooDRUFF and MATHER 1995; Hiral ef al. 2005;
WERNER and ALzZHEIMER 2006). Interestingly, 13:0—
24.24 Mb participates in five separate interactions that
are significantin the full model (Table 1) and appears to
interact with aregion (9:68.10-95.10 Mb) containing an
important receptor for serotonin (Hrlb).

Glutamate signaling and metabolism are also likely to
underlie a portion of fatpad variation due to epistasis in
this cross. The interacting epiQTL CI 1:42.41-52.71 Mb
and 9:68.10-95.10 Mb contain the enzyme that catalyses
the first reaction in the primary pathway for the renal
catabolism of glutamine (Gls) and the first rate-limiting
enzyme in glutathione synthesis (Gclc), respectively. Gls
also shows differential expression in white fat cells
between the parental lines (P = 0.00097). Ghrelin and
its associated pathways also appear as likely candidates.
For example, 1:118.37-138.01 Mb contains Gpr39, a
member of the ghrelin receptor family. This C.I.
interacts with 6:133.92-142.67 Mb, which harbors Pde3a,
alocus known to be downstream of ghrelin signaling in
platelets (ELBATARNY et al. 2007) and which shows
significant differences in gene expression in white fat
between SM/] and LG/] (P = 0.00018) and 12:73.42—
89.12 Mb, which contains Hifla, whose protein product
increases the expression of Vegf (HOFFMANN et al. 2008).
Interestingly, Vegfc shows a significant difference in
expression in white fat between the parental lines (P =
0.001) and Vegfb shows differences in liver (P= 0.009).
Ghrelin is also known to increase the expression of Vegf
in human luteal cells (TROPEA ¢t al. 2007) and Vegf, in
turn, is thought to be an important regulator of adipo-
genesis and obesity (Cao 2007). A final interesting
epiQTL CI is 12:108.99-120.28 Mb. It contains DIkI,
Meg3, and Rtll, all three of which appear to participate
in an interacting (and imprinted) network affecting
growth in mice (GABORY et al. 2009).

DISCUSSION

While the family structure of an outbred population
complicates some aspects of the mapping process, the Fy
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(and later) generations of advanced intercross lines hold
an intrinsic advantage in mapping resolution over more
conventional study designs. Here this advantage trans-
lated into a variety of results with important implications
for mapping complex trait variation and new insights
into the genetic architecture of murine fatpad weight.

The first and most striking result of this analysis from
a mapping perspective is the relatively low level of
overlap in the physical positions of sIQTL and epiQTL
peaks despite the analytical bias toward finding epistasis
involving sIQTL due to their protected status with
respect to multiple comparisons. Though slight discrep-
ancies may be expected due to subtle patterns of
linkage, larger map distances between peaks likely
indicate that multiple functional variants are present.
Indeed, when both types are observed in close proxim-
ity, epistatic peaks tend not to line up well with their
single-locus counterparts and epiQTL are frequently
observed in regions showing no significant marginal
effects at all (Figure 1; Table 1; Table SI; Figure SI;
Figure S2; Figure S3; Figure S4; Figure S5; Figure S6;
Figure S7; Figure S8; Figure S9; Figure S10; Figure S11;
Figure S12; Figure S13; Figure S14; Figure S15; Figure
S16; Figure S17; Figure S18; Figure S19; Figure S20).
This supports the notion that a relatively large number of
variable, functionally relevant loci exert their influence
on complex trait variation primarily via epistatic inter-
actions rather than through conventional additive and
dominance effects. Itis also interesting to note that some
regions interact with multiple locations in the genome.
For example, proximal chromosome 13 (13:0-24.24 Mb)
shows five significant interactions in the full model,
including two with separate locations on chromosome
1. Identifying such repeated signals may be useful in
developing significance thresholds that help ameliorate
the penalties incurred by performing multiple compar-
isons. Such consistency may also help distinguish epiQTL
at the center vs. the edges of functional networks.

Next, in keeping with observations in congenic lines
(e.g., CHRISTIANS et al. 2006) as well as other recent sIQTL
mapping studies (FAWCETT et al. 2010), Fo confidence
intervals were frequently observed to divide into multiple
significant sIQTL (Figure 1; Figure SI). Interestingly,
we observe similar splitting of single-locus and epistatic
signals. For example, at the proximal end of chromo-
some 1 (Figure 1A) marginal-effect peaks observed in the
Fs, combined Fy_s, and in an intercross between SM and
NZO (obq7, TAYLOR et al. 2001) appear to resolve in our
mapping population into three distinct peaks with two
marginal effect loci flanking an epiQTL. This suggests
that the original Fy and the subsequent Fo_s signals in this
cross were composites of both single-locus and epistatic
effects and that the boundaries of previously reported
C.I. may have been influenced by epistatic contributions
to singlelocus values. Thus, current estimates of the
number of loci underlying trait variation are likely to be
overly conservative and reported effect-size estimates are

potentially biased by the presence of multiple, closely
linked functional elements. Interestingly, it also suggests
that confidence intervals identified in other intercross
experiments, especially those that share a parental strain,
can be productively evaluated under a priori epistatic
hypotheses, which may also ease issues related to multiple
testing. On this account, it is also striking that the epistatic
network identified in STYLIANOU ¢t al. (2006) as Chr4-
Adipll is centered on a region also identified here as
contributing to the epistatic architecture of fatpad weight.

The results of composite interval mapping also
suggest that adjacent sIQTL and epiQTL impact the
mapping process. For example, there is a dramatic and
unexpected increase in significance (nearly three or-
ders of magnitude) for the additive sIQTL peak at
134.82 Mb on chromosome 1 when composite interval
mapping was applied (Figure 1A). While this is the most
dramatic example, such effects were repeatedly ob-
served (Figure S1) and on chromosomes 7 and 9, this
resulted in the identification of two novel loci. In-
terestingly, this suggests that adjacent functional var-
iants with opposite effects were fixed in the original
parental lines during their production. Indeed, inspec-
tion of the regression coefficients from the full linear
model shows that the epistatic peak closest to the sIQTL
signal at 134.82 Mb on chromosome 1 (DD with
12:73.42-89.12 Mb) and the marginal signal itself share
a positive sign. However, the two slightly centromeric
interactions involving the additive value on chromo-
some 1 (AA with 13:0-24.24 Mb and AD with 6:133.92—
142.67 Mb) are both negative. Conditioning on these
adjacent markers is indeed expected to enhance the
signal of the neighboring additive effect, consistent with
our observations. Thus, comparing the results of a
conventional single-locus mapping model and compos-
ite interval mapping may be an indirect means of
identifying neighboring functional variants. Further
mapping in later generations of this advanced intercross
will provide a great deal of additional information on
the sign, magnitude, and physiological basis for these
observed effects as recombination is expected to further
separate their statistical signatures.

Conclusions: The application of multiple mapping
approaches, including an epistatic model, is a vital
strategy for characterizing complex genetic architec-
tures. Contrary to suggestions based on human genome-
wide association study findings, we found substantial
numbers of pairwise epistatic interactions involving
many more loci than show single-locus effects that
account for an important portion of trait variation. This
is likely due to the genetic structure of our experimental
population where allele frequencies are intermediate;
there are no rare alleles in our mapping system. This is
critical since epistasis is known to produce predomi-
nantly additive and dominance variance when relatively
rare alleles are involved (CHEVERUD and RouTmAN
1995; CHEVERUD 2000).
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Here, the use of a combination of techniques was
further enhanced by the improved genetic resolution
offered by Al lines. While single-locus scans remain the
most tractable, pairwise epistatic relationships can now
be dissected in great detail as well, and the identification
of candidate loci for such interactions is possible. This is
especially true for characters for which a large body of
literature exists describing the mechanistic relation-
ships among candidate genes and related pathologies.
In such cases, incorporating a priori information re-
garding functional interactions can be used to help
focus epistatic mapping studies and both ease the
difficulties associated with multiple comparisons and
facilitate the physiological interpretation of statistical
results. It is an exciting prospect that even more fine-
scale mapping of these loci will be possible in later
generations of the LG,SM Al line. Undoubtedly future
analyses, coupled with the incorporation of sequence
information from the parental lines, will aid in further
refining the physiological hypotheses presented here
for fatpad variation and greatly contribute to our
understanding of the statistical signatures of complex
genetic architectures.
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FILE S1
Supporting Data

File S1 is available for download as a .csv file at http://www.genetics.org/ cgi/content/full/genetics.110.123505/DC1.

Animal, Sire, and Dam IDs are given for all individuals used in these analyses along with sex, age at necropsy (in days),
whether they were used as breeders for the I}1 generation, their reproductive fatpad weight (in grams) and all measured

genotypes given as -1, 0 and 1 indicating SS, LS/SL and LL genotypes respectively.
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FIGURE S1.—Mapping results for the remaining chromosomes that harbor sIQTL for reproductive fatpad weight in the Fio of
the AIL 3 (A), 4 (B), 6 (C), 7 (D), 8 (E), 9 (I), 10 (G), 12 (H) and 18 (I). Results from the single-locus model are given as connected
grey dots, composite interval mapping as smooth black lines and epistatic interactions by other connected shapes. Confidence
intervals from previous analyses are represented by horizontal bars below each QTL plot.
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FIGURES S2-S20

Figures S2-S20 are available for download as individual PDF files at http://www.genetics.org/cgi/content/full/genetics.110.123505/DC1.

FIGURE $2-20.—Heat maps graphically depicting the mapping results from the genome-wide scan for epistasis. Each figure
has consistent x-axes representing a given chromosome, y-axes represent the second chromosome in the mapping model and
color represents LPR score for the particular test. Colors change at breakpoints of LPR = 3.44 (the minimum threshold value,
see text), 4,5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 with the associated colors: “violet”, “lightblue”, “royalblue”,

“lightgreen”, “forestgreen”, “yellowgreen”, “yellow”, “goldenrod”, “orange”, “darkorange”, “lightpink”, “red”, “darkred”,
“black”, “grey”, and “white”. Thus, lightblue indicates an epistatic LPR score greater than 4 but less than 5.



J. P. Jarvisand J. M. Cheverud 5SI

TABLE S1
The 199 sIQTL and epiQTL peaks that cluster into roughly 73 separate confidence intervals that show
significant marginal and/or epistatic effects in chromosome specific models. Terms included in the sIQTL

system (see text) are given in bold.

Table S1 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.123505/DC1.



