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Abstract

Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in
hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by
glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes
to their activation. Because destruction of third ventricle (III-V) tanycytes is sufficient to alter blood glucose levels and food
intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we
demonstrate the presence and function of monocarboxylate transporters (MCTs) in tanycytes. Specifically, MCT1 and MCT4
expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both
transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were
undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of
glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression
of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based
on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and
MCT4-expressing tanycytes.
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Introduction

The ventromedial hypothalamus (VMH) is involved in the

regulation of satiety and feeding behavior through its capacity to

detect changes in glucose concentrations [1]. The VMH, formed by

the arcuate nucleus (AN) and the ventromedial nucleus (VMN),

contains both glucose-excited (GE) neurons, which increase their

firing rate with increasing glucose concentrations, and glucose-

inhibited (GI) neurons, which respond to increases in glucose

concentration by decreasing their electrical activity [2,3]. Current

literature describes mechanisms by which GE neurons detect

changes in extracellular glucose. The most studied of these

mechanisms is similar to that described in pancreatic b-cells and

involves glucose uptake by neuronal metabolism through glucoki-

nase and ATP production [1,4,5,6]. Recently, a non-metabolic

pathway that involves the participation of sodium-dependent

glucose co-transporters (SGLT) has been described [7,8]. Further-

more, an alternative pathway that involves a metabolic interaction

between AN neurons and surrounding glia via lactate has also been

proposed. Different in vitro studies have shown that lactate can

influence the behavior of GE neurons from the VMH [4,6],

suggesting that this monocarboxylate is required for glucose sensing

in the brain. In this context, it has been proposed that glycolytic

metabolism of glucose to lactate by hypothalamic glial cells and the

subsequent release to neighboring neurons using monocarboxylate

transporters (MCTs) may lead to enhanced ATP synthesis, closure

of KATP channels, and neuronal depolarization [9].

MCTs are a family of transporters which mediate facilitated

diffusion of lactate and several other metabolically important

monocarboxylates, such as pyruvate and ketone bodies [10,11,12].

To date, fourteen isoforms of MCTs have been identified

[10,11,12,13,14]. Protein and mRNA expression studies have

shown elevated MCT1 and MCT2 expression levels in the central

nervous system. MCT1 has a widespread distribution; its

expression has been detected both in lactate-producing and

lactate-consuming tissues (e.g., erythrocytes and heart, respective-

ly) [15]. MCT1 displays a Km of 7.7 mM for lactate influx [16]. In

the brain, MCT1 has been localized in astrocytes, blood vessels,

and ependymal cells [12,17,18,19,20]. MCT2 expression is mainly

restricted to neurons in the cortex [20], hippocampus, and

cerebellum [21,22,23]; it has a Km of 0.8 mM for lactate influx

[10]. MCT4 has been observed in lactate-producing tissues (e.g.,

skeletal muscle and astrocytes) [24,25] and displays a Km of

34 mM for the efflux of lactate [15]. Recently, MCT4 has been

localized to the paraventricular nucleus, specifically in astrocytes

and ciliated ependymal cells [12].

Neurons from the VMH are in close contact with highly

elongated ependymal cells known as tanycytes [26,27], which are
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the main glial cell present in the basal hypothalamus[28,29,30].

Tanycytes are classified into four different types, a1, a2, b1, and

b2, according to their histological properties [30,31,32]. a2 and b1

tanycytes are localized in the lower lateral wall of the III-V, and

they have extended cell processes that contact the neurons in the

AN and VMN as well as the blood vessels in the hypothalamus

and lateral median eminence (ME). We have demonstrated that

these cells express proteins involved in the b-pancreatic glucose

sensing mechanism. For example, the glucose transporter 2

(GLUT2) has been observed in the apical membrane of tanycytes,

thus contacting the cerebrospinal fluid (CSF) [29]. Furthermore,

tanycytes express glucokinase (GK) [30]. Therefore, periventric-

ular hypothalamic tanycytes may be involved in detecting glucose

concentration in the CSF of the ventricular system and generating

lactate as an intercellular messenger, informing the neurons of

glucose levels and regulating glucosensing activities. To test this

hypothesis, we evaluated MCT1 and MCT4 expression and

function in hypothalamic cells. MCT1 and MCT4 were found to

be mainly expressed in tanycytes and involved in lactate influx and

efflux. Taken together, these data suggest that hypothalamic

tanycytes could be responsible for hypothalamic glucosensing.

Results

Differential distribution of MCT1 and MCT4 in the
hypothalamus

MCT expression in rat hypothalamus was initially analyzed

using RT-PCR with primers specific for MCT1 and MCT4

mRNAs. The conditions were optimized using RNA from the rat

kidney cortex for MCT1 and skeletal muscle for MCT4. The

amplified cDNA bands were 400 and 369 bp, which are the

expected sizes for MCT1 and MCT4, respectively (Fig. 1A, lanes 2

and 6). No amplification product was observed in samples without

reverse transcriptase, indicating the absence of DNA contamina-

tion. Quantitative RT-PCR analysis showed that MCT1 expres-

sion in hypothalamic cells is 20 times higher than MCT4 (Fig. 1B).

MCT1 expression was also demonstrated using Western blot

analysis of proteins isolated from rat kidney (positive control tissue)

and hypothalamus (Fig. 1C, lanes 1–2). Similarly, MCT4 was

evaluated using protein extracts from rat skeletal muscle (positive

control tissue) and hypothalamus (Fig. 1C, lanes 4–5). Analysis of

hypothalamus protein extract using anti-MCT preabsorbed with

inductor peptides showed the absence of bands (Fig. 1C, lanes 3

and 6).

MCT distribution was further assessed in frontal hypothalamic

sections by immunohistochemistry. The high specificity of the

antibodies used in this study is shown in Figure S1; anti-MCT1

reactivity was determined in the kidney (Fig. S1A), and anti-

MCT4 reactivity was evaluated in skeletal muscle (Fig. S1H). In

the brain, MCT1 was primarily detected in endothelial cells,

astrocytes from several regions, and in the marginal zone (Fig.

S1B–G). MCT4 was detected in astrocytes from the hippocampus,

corpus callosum, cortex, and AN (Fig. S1I–N). In the hypothalamus,

MCT1 was mainly detected in the AN periventricular region

(Fig. 1D and F). However, MCT4 was concentrated in the AN

lateral area (Fig. 1E–F). Thus, MCT1 and MCT4 are differentially

localized within the hypothalamus.

MCT1 localization in tanycytes
a and b-tanycytes were identified with an anti-vimentin

antibody (Fig. 2A, B–D). a-tanycytes possessed long fine pro-

cesses contacting blood vessels and VMN neurons (Fig. 2B–C,

arrows). b1 and b2-tanycytes presented stronger vimentin

immunoreaction and branched processes which contact both AN

neurons (b1-tanycytes) or the ME (b2-tanycytes) (Fig. 2B and D,

arrows). Multilabeling immunohistochemistry revealed MCT1

(green), GLUT1 (blue), and vimentin (red) colocalization (Fig. 2E).

High magnification images were used to define the exact

localization of the transporters in these cells. Polarized immunore-

actions for MCT1 was detected in a-tanycytes (Fig. 2F–G, arrows)

specifically in the ventricular cellular membranes (Fig. 2G, arrow

head) and on end-feet processes contacting the endothelial cells of

the blood vessels (Fig. 2G, arrow), which was similar to the pattern

observed with anti-GLUT1 (Fig. 2H). However, the highest staining

was found in the endothelial cells that form the blood-brain barrier

(Fig. 2G, arrows). High MCT1, GLUT1, and vimentin (white

colour) colocalization was detected in tanycyte end-feet processes

contacting blood vessels (Fig. 2I, double arrow heads).

The strongest staining for MCT1 was concentrated in b1-

tanycytes (Fig. 2J–K, arrows), particularly in the apical cellular

membranes (Fig. 2K, arrow heads) and in the processes that

contact AN neurons, blood vessels, and the external region of the

brain (Fig. 2K and O, arrows). Colocalization of MCT1 with

GLUT1 was detected in the ventricular area (Fig. 2L and M,

arrow heads) and in several cell processes (Fig. 2L–M and P–Q,

arrows). The Rr value estimated for MCT1/GLUT1 colocaliza-

tion was 0.6260.02 in the periventricular AN, which was

statistically significant compared to the value in the lateral AN

(control area) 0.260.02 (p,0.01). Intense MCT1, GLUT1, and

vimentin colocalization (white) was observed in the apical tanycyte

membranes and end-feet processes contacting blood vessels

(Fig. 2M, double arrow heads). The Rr value estimated for

MCT1/vimentin colocalization was 0.460.02 in the periventric-

ular AN, which was statistically significant compared to the value

in the lateral AN (control area) 0.0260.02 (p,0.01), and the Rr

value estimated for GLUT1/vimentin colocalization was

0.660.02 in the periventricular AN, which was statistically

significant compared to the value in the lateral AN (control area)

0.1560.02 (p,0.01). Reduced immunoreaction for MCT1 and

GLUT1 was detected in tanycyte processes located in the external

region of the brain (Fig. 2O–Q) and in b2-tanycytes present in the

ME (Fig. 2R–U). Astrocytes detected in glial-limiting membrane

(Fig. 2Q) and ME (Fig. 2U) were also positive for MCT1.

MCT4 cellular localization in tanycytes
As shown in Fig. 1, MCT4 was mainly located in the lateral

region of the AN. Therefore, to define the relationship between

MCT4 expression and tanycyte distribution, a detailed immuno-

histochemical analysis using anti-vimentin and anti-GFAP anti-

bodies in the hypothalamic basal area was undertaken. b1-

tanycytes with short processes that contact the periventricular AN

were primarily identified with anti-vimentin (Fig. 3A–D). Howev-

er, b1-tanycytes with long processes that contact the lateral AN

were mainly identified with anti-GFAP (Fig. 3A–D). Thus, two

distinct groups of b1-tanycytes were identified. b1 cells with a

dorsal ventricular localization (b1d) are positive for GFAP

(processes) and have reduced immunoreaction for vimentin (apical

localization) (Fig. 3E–L). Additionally, tanycytes with ventral

ventricular localization (b1v) are mainly positive for vimentin and

have reduced immunoreaction for GFAP (Fig. 3M–P). Hypotha-

lamic astrocytes are mainly codistributed with b1d-tanycytes and

b2-tanycytes in the ME.

MCT4 (green) and vimentin or GFAP (red) colocalization was

next assessed (Fig. 4A–C). MCT4 distribution was evaluated using

high magnification imaging; it was detected principally in b1d-

tanycyte processes that contact lateral AN neurons, showing strong

GFAP coexpression (Fig. 4C and D–F, arrows), but low-to-absent

vimentin colocalization (Fig. 4G–I, arrows). The Rr value estimated

MCT Function in Hypothalamic Tanycytes
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for GFAP/MCT4 colocalization was 0.560.01 in the lateral AN,

which was statistically significant compared to the value in the

periventricular AN (control area) 0.260.01 (p,0.01). Additionally,

MCT4 was observed in subependymal and ME astrocytes (data not

shown) and blood vessels (Fig. S1J,N).

Functional characterization of MCT1 and MCT4 in
primary cultures of tanycytes

To analyze MCT1 and MCT4 tanycyte expression, primary

tanycyte cultures were obtained. Most cells exhibited a polarized

morphology that consisted of a wide proximal cytoplasmic region

containing the nucleus and a long basal process (data not shown).

Immunohistochemical analysis revealed an intense positive

reaction with anti-vimentin (Fig. 5A), anti-DARPP32 (Fig. 5B),

and anti-Kir 6.1 (Fig. 5C) antibodies; however, reduced immuno-

reaction using anti-GFAP antibodies was observed (Fig. 5D). RT-

PCR and Western blot analyses demonstrated MCT1 and MCT4

expression in tanycyte cultures (Fig. 5E and I, lane 2 respectively).

Total kidney cortex or skeletal muscle RNAs or protein extracts

were used as positive controls for MCT1 and MCT4 expression,

respectively (Fig. 5E and I, lane 1). Immunocytochemical analysis

confirmed MCT1 and MCT4 expression in tanycytes (Fig. 5F–L,

arrows). An average of 92% expressed MCT1 and 94% expressed

MCT4 (Fig. 5H and L).

Figure 1. MCT1 and MCT4 expression and localization in adult rat hypothalamus. A, RT-PCR analysis of MCT1 and MCT4. MCT1 RT-PCR
products obtained using total RNA isolated from: Lane 1, kidney cortex; 2, hypothalamus; 3 RT(-) of hypothalamus; 4, water in the PCR reaction. MCT4
RT-PCR products obtained using total RNA isolated from: Lane 5, skeletal muscle; 6, hypothalamus; 7 RT(-) of hypothalamus; 8, water in the PCR
reaction. B, Quantitative RT-PCR analysis of the MCT1 and MCT4 mRNA levels in samples isolated from rat hypothalamus. **p,0.001. Data represent
the means 6 SD of the ratio of MCT mRNA to cyclophilin mRNA from three independent experiments. C, Western blot analysis of MCT1 and MCT4.
Lanes 1–3, MCT1; 4–6, MCT4. Total protein extracts were prepared from renal cortex (lane 1), hypothalamus (lanes 2 and 5), negative control (lanes 3
and 6), and skeletal muscle (lane 4). Negative controls were performed in hypothalamus with primary antibodies preabsorbed with inductor peptides
(lanes 4 and 6). D, Immunohistochemistry of MCT1 and confocal microscopy analysis. MCT1 is observed in the arcuate nucleus periventricular region
(arrows). E, Immunohistochemistry of MCT4 and confocal microscopy analysis. MCT4 is localized in the arcuate nucleus lateral area (arrows).
F, Schematic representation of basal hypothalamus. AN, arcuate nucleus; III-V, third ventricle; ME, median eminence; PT, pars tuberalis. Scale bar D–E,
200 mm.
doi:10.1371/journal.pone.0016411.g001
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The uptake of radioactive lactate was used to analyze the

functional activity of MCTs in tanycyte cultures. To further

reduce the effects of metabolism and transamination of pyruvate to

alanine, short incubation times and low temperatures were used in

all experiments. The uptake of 25 and 250 mM lactate was almost

linearly correlated with time up to 120 s at 4uC (Fig. 6A). Using

these optimized conditions, the basic transport parameters for

lactate uptake in primary cultures of rat tanycytes were

determined. Dose-response studies using 1-min assays revealed

that lactate transport was saturated at concentrations above

150 mM (Fig. 6B). Data analysis suggested the presence of two

kinetic components for lactate transport. When the data were

transformed and plotted according to Lineweaver-Burk, this

observation was confirmed (Fig. 6C). Transformation showed

apparent Km values of 6 mM and 48 mM, and Vmax values of

13 nmol/(min6106 cells) and 100 nmol/(min6106 cells), corre-

sponding to MCT1 and MCT4, respectively. The uptake of

lactate in cultured tanycytes increased with increasing H+

concentration. At a substrate concentration of 0.1 mM, lactate

uptake at pH 6.0 was more than three times faster than that

observed at pH 8.0 (Fig. 6D). The proton effect was found to be of

a non-cooperative nature, which was corroborated by a Hill plot

that yielded a straight line with a slope (Hill coefficient) of 0.44

(Fig. 6E). To determine if other monocarboxylates might also serve

as substrates for the lactate transporter in tanycytes, competition

experiments were performed. At an extracellular concentration of

0.1 mM lactate (4uC, pH 7.0), transport was strongly inhibited by

10 mM pyruvate. Incubation with MCT inhibitors, pCMBS and

4-CIN, decreased lactate uptake up to 80% and 90% respectively;

floretin and DIDS also potently inhibited lactate uptake (Fig. 6F).

Because tanycytes may uptake lactate using MCT1 and MCT4,

lactate efflux was also examined. Specifically, the cultured

tanycytes were incubated with 5 mM glucose for 15, 30, and

60 min. Lactate release was evaluated by HPLC of cell culture

supernatant. After incubation with glucose for 15 min, 150 nmol

lactate/mg protein was detected; however, this value was two-fold

increased after 30 and 60 min (Fig. 7A). These results demonstrate

that glucose induces lactate efflux in cultured tanycytes. Lactate

efflux generated by 5 mM glucose (30 min) was inhibited 50% by

5 mM 4-CIN and 80% by 3 mM pCMBS; DIDS did not

significantly inhibit lactate efflux (Fig. 7B).

Discussion

Hypothalamic glial cells known as a and b-tanycytes are

specialized ependymal cells that bridge the CSF and the

neuroendocrine neurons localized in the AN. Tanycytes express

GLUT2 and GK, two proteins known to participate in glucosen-

sing mechanisms [29,30]. Injection of alloxan, a GK inhibitor, into

the III-V impairs feeding behavior and blood glucose concentra-

tion in treated rats [33]. These impaired responses are thought to

be associated with the destruction of III-V tanycytes, neuronal

swelling and decreased AN neuropeptide Y mRNA. However,

once the alloxan-induced tanycyte destruction is reversed, feeding

behavior was restored [33]. In this study, we demonstrate that

tanycytes express MCT1 and MCT4, and both isoforms are

involved in the influx and efflux of lactate. Studies performed in

ventromedial hypothalamic slices have shown that glucose-

responsive neurons also respond to changes in lactate concentra-

tion [4,6]. Intracerebro-ventricular (ICV) infusion of either glucose

or lactate is sufficient to decrease blood glucose level through the

inhibition of liver glucose production [34]. Interestingly, the

coinfusion of glucose or lactate with oxamate, an inhibitor of lactic

dehydrogenase, in the III-V abolished the effects of both ICV-

glucose and ICV-lactate on blood glucose levels, demonstrating

that the conversion of glucose to lactate and subsequent generation

of pyruvate are required for changes induced by ICV-glucose [34].

Moreover, the selective distribution of MCTs between neurons

and astrocytes suggests that lactate plays a key role in brain energy

metabolism. In particular, MCT1 and MCT4 would be essential

to ensure lactate release. However, to date, no information is

available concerning the expression of MCTs in tanycytes, the

main glial cell present in the AN [28,29,30].

Our detailed immunohistochemical and functional analyses of

MCT isoforms, both in situ and in vitro, indicated that MCT1 is

expressed in the b1 tanycytes of adult rats. Previous localization

studies of MCTs in the hypothalamus have only reported their

expression in ciliated ependymal cells [18,20,35] and astrocytes

[12]. The data reported here represent the first evidence that

hypothalamic tanycytes highly express these transporters. MCT1

expression was mainly observed in the blood-brain barrier

endothelial cells, astrocytes from several regions, and in the brain

marginal zone, which is in agreement with previous findings

[12,17,18,19,20,35,36]. Moreover, MCT4 expression was detect-

ed in astrocytes from hippocampus, corpus callosum and cortex

[12,25].

Q-RT-PCR analysis revealed that MCT1 is more highly

expressed than the MCT4 isoform in the hypothalamic tissue,

which was confirmed by immunohistochemical analyses. Specif-

ically, MCT1 was localized to the periventricular area whereas

MCT4 expression was observed in the lateral area of the III-V.

Furthermore, MCT1 expression was localized preferentially in cell

bodies and processes of b1v-tanycytes, without any cellular

polarization. These tanycytes may be in contact with neuropeptide

Y-expressing neurons (periventricular area) and affect the activity

of GI neurons [37,38]; however, further studies are needed to

demonstrate this hypothesis.

MCT4 expression was demonstrated in hypothalamic b1d-

tanycytes in the present study. Specifically, MCT4 expression was

restricted to GFAP-positive processes contacting lateral AN

neurons. The MCT4 distribution suggests a preferential sorting

of this transporter to the b1d-tanycytes processes that contact GE

neurons in the lateral AN (POMC-positive neurons in mouse

brain) [39,40]. It is possible that lactate released by b1d-tanycytes

impacts POMC neurons, stimulating satiety. Accordingly, it has

been recently demonstrated that central administration of lactate

lowers food intake and body weight in rats [41]. To demonstrate

the functional expression of the lactate transporters, primary

Figure 2. MCT1 and GLUT1 codistribution in b1-tanycytes. A, Schematic representation of hypothalamic area showed in B and E. B, rat frontal
brain section using anti-vimentin antibodies. C, High magnification of a1-tanycytes using anti-vimentin antibodies. D, High magnification of b2-
tanycytes using anti-vimentin antibodies. E, rat frontal brain section using anti-vimentin (red), anti-GLUT1 (blue), and anti-MCT1 (green) antibodies.
F–I, a1-tanycyte area, MCT1 and GLUT1 were observed in the ventricular cellular membranes and end-feet processes contacting blood vessels. J–M,
b1-tanycyte area, MCT1 was expressed in the proximal area of the cells colocalizing with GLUT1 and vimentin (head arrows). b1-tanycyte processes
contacting periventricular AN neurons were strongly positive for MCT1 (arrows); colocalization with GLUT1 was also observed in blood vessels
(arrows). N–Q, b1-tanycyte processes contacting the external region of the brain showed lower reaction for MCT1 and GLUT1. R–U, b2-tanycytes and
processes in the median eminence showed negative immunoreaction for MCT1 and GLUT1. AN, arcuate nucleus, III-V: third ventricle, ME: median
eminence. Scale bar: B and E, 150 mm; C–D, and F–U, 50 mm.
doi:10.1371/journal.pone.0016411.g002
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Figure 3. Dorsal and ventral b1-tanycytes distribution in the basal hypothalamus. A, Schematic representation of the hypothalamic basal
area showing dorsal and ventral b1-tanycytes. B, Low magnification of the basal hypothalamic area using anti-vimentin antibodies (green) and the
TOPRO nuclear stain (blue). C, Low magnification using anti-GFAP antibodies (red) and the TOPRO nuclear stain (blue). D, Differential distribution of
vimentin and GFAP in dorsal and ventral b1-tanycytes. E–L, Dorsal b1-tanycytes (b1d) showed reduced vimentin staining. The reaction was
concentrated in the ventricular area (E, head arrows), which was also positive for GFAP (F–H). The processes of these cells were strongly positive for
GFAP (J–L, arrows). M–P, Ventral b1-tanycytes (b1v) showed intense immunoreaction for vimentin (M) and very low staining with anti-GFAP (N–P). AN,
arcuate nucleus, III-V: third ventricle, ME: median eminence. Scale bar: B–D, 150 mm; E–G, I–K and M–O, 50 mm; H, L and P, 25 mm.
doi:10.1371/journal.pone.0016411.g003
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hypothalamic glial cell cultures were obtained. The cell cultures

presented a highly elongated and polarized form similar to

tanycytes observed in vivo. These cells were immuno-positive for

three tanycyte markers, vimentin, DARPP32, and Kir 6.1 [29,42],

and to a minor degree for GFAP. Immunohistochemical analysis

of MCT expression showed the presence of MCT1 and MCT4 in

cultured cells. These findings are analogous to what is observed

in vivo. RT-PCR and Western blot analyses confirmed the ex-

pression of MCT1 and MCT4 in cultured tanycytes, and mole-

cular weight analyses revealed that tanycytes expressed a 43-kDa

MCT isoform. Overall, the immunolocalization and immunoblot-

ting data strongly support the concept that the cells isolated from

the hypothalamic area and grown in vitro corresponded to primary

cell cultures enriched in differentiated hypothalamic tanycytes.

Transport and competition assays revealed that tanycytes

express two functionally active transporters directly involved in

lactate uptake. The higher affinity transport component had the

expected properties of MCT1, with a transport Km of 6 mM [16].

In contrast, kinetic analysis of the lower affinity transporter

revealed an apparent Km of approximately 34 mM, which fits the

Figure 4. MCT4 localization in dorsal b1-tanycytes. A, Low magnification of hypothalamic area using anti-MCT4 antibodies (green), anti-
vimentin antibodies (red), and the nuclear stain, TOPRO (blue). B, Low magnification using anti-MCT4 antibodies (green), anti-GFAP antibodies (red),
and the TOPRO nuclear stain (blue). C, High magnification showing GFAP-positive processes of b1d-tanycytes in contact with lateral AN neurons. b1d-
tanycytes processes were positive for MCT4 and GFAP (D–F). MCT4 was expressed in a number of b1-tanycyte processes, which expressed vimentin
(G–I, arrows). AN, arcuate nucleus, III-V: third ventricle, ME: median eminence. Scale bar: A–B, 150 mm; C–I, 50 mM; J–L, 25 mm.
doi:10.1371/journal.pone.0016411.g004
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description of MCT4 using radiolabeling techniques [15]. The

uptake of lactate in cultured tanycytes increased with increasing

H+ concentration; the proton effect was of a non-cooperative

nature as demonstrated with a Hill coefficient of 0.44, which has

been reported to be the value for MCT1 and MCT4 [15,16].

Lactate transport was strongly inhibited by 10 mM pyruvate as

both isoforms transport pyruvate [15,43]. Additionally, 5 mM 4-

CIN decreased lactate uptake by 80% as was expected since 4-

CIN displays an IC50 of approximately 350 mM for lactate uptake

in both isoforms [15,43]. Floretin also strongly inhibited lactate

uptake, which is similar to that observed in COS cells that express

both MCT isoforms [44]. In addition, a smaller but significant

inhibitory effect on lactate uptake was observed with 1 mM DIDS,

which was similar to that observed in MCT4-expressing oocytes

[15]. Specifically, a maximal inhibition of 60% was obtained even

after the addition of millimolar concentrations of this inhibitor,

which completely inhibits MCT1-mediated lactate uptake [15].

Therefore, kinetic data and sensitivity to inhibitors confirmed that

these transporters corresponded to MCT1 and MCT4, coinciding

with the immunohistochemical and RT-PCR data.

In order to support the metabolic interaction between tanycytes

and AN neurons, lactate efflux analysis from isolated tanycytes was

performed. Physiological concentration of glucose induced lactate

efflux in cultured tanycytes, which was similar to the lactate efflux

reported in astrocytes exposed to glutamate [45]. The sensitivity to

pCMBS is a distinct characteristic of specific members within the

MCT family; this molecule inhibits MCT1 and MCT4, but not

MCT2 [43]. More than 90% inhibition for influx and efflux was

observed, confirming that MCT1 and MCT4 are involved in

both mechanisms. DIDS did not significantly alter lactate efflux,

Figure 5. MCT1 and MCT4 expression in tanycyte cultures. A–D, Tanycyte cultures showed high expression of vimentin, DARPP-32, and Kir
6.1 and a small number of GFAP-positive cells. E, MCT1 RT-PCR (upper panel) and immunoblot (lower panel) analyses. RNA isolated from renal cortex
(lane 1) and tanycyte cultures (lane 2). RT(-) of tanycyte culture (lane 3). Total protein extracted from renal cortex (lane 1) and tanycyte cultures (lane
2). F–G, Immunohistochemical studies using anti-MCT1 antibodies (green) and TOPRO nuclear stain (blue). H, Average MCT1-positive cells. I, MCT4
RT-PCR (upper panel) and immunoblot (lower panel) analyses. RNA isolated from skeletal muscle (lane 1) and tanycyte cultures (lane 2). Total protein
extracted from skeletal muscle (lane 1) and tanycyte cultures (lane 2). J–K, MCT4 immunohistochemical studies using anti-MCT4 antibodies (green)
and TOPRO nuclear stain (blue). L, Average of MCT4-positive cells. Scale bar: 25 mm.
doi:10.1371/journal.pone.0016411.g005
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Figure 6. Functional characterization of cultured tanycytes. A, 25 mM L-lactate (open circles) and 250 mM L-lactate (closed circles) transport at
4uC and pH 7.0 over time. B, Kinetic parameters of L-lactate transport in tanycyte cultures at 1 min, 4uC, and pH 7.0. C, Double-reciprocal plot of MCT1:
(Km, 6 mM; Vmax, 13 nmol6106 cells/min) and MCT4: (Km, 48 mM; Vmax, 100 nmol6106 cells/min). D, Dependence of lactate uptake on pH (0.1 mM L-
lactate, 4uC). E, Hill plot to analyze the dependence of lactate uptake on pH. F, Analysis of lactate transport in the presence of various inhibitors co-
incubated for 1 min (0.1 mM lactate, 4uC, pH 7.0). Results represent the mean 6 SD of three independent experiments. **p,0.001, one tailed t-test.
doi:10.1371/journal.pone.0016411.g006

Figure 7. Cultured tanycytes release lactate. A, Lactate efflux at 5 mM glucose. Lactate efflux increased throughout the incubation time.
B, Analysis of lactate efflux in the presence of several inhibitors pre-incubated for 15 min at 37uC. Lactate efflux decreased significantly with 4-CIN
and pCMBS. **p,0.001, one tailed t-test. Results represent the average 6 SD of three independent experiments.
doi:10.1371/journal.pone.0016411.g007
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confirming MCT4 participation since MCT1 is completely

inhibited by DIDS [15]. Taken together, these findings demon-

strated the capacity of tanycyte cultures to release lactate through

MCT.

Participation of lactate in glucosensing and feeding behaviour is

supported by several studies [9,34,46]. Central inhibition of lactate

dehydrogenase by administration of oxamate abolishes the effects of

ICV-glucose on blood glucose-lowering. Thus, blocking lactate

metabolism in the hypothalamus results in a 40% reduction in the

inhibitory action of glucose on circulating glucose levels [34], and

ICV injection of lactate reduces food intake, resulting in body

weight loss in eight-week-old rats [41]. Furthermore, local lactate

perfusion of the VMH suppresses the hypoglycaemic counter-

regulatory response, with a strong diminution in glucagon and

epinephrine release [46]. Ainscow et al. [9] performed dynamic

bioluminescence imaging to record [ATP]c in real-time during

glucose or lactate challenge of neurons and glial cells. Using

adenovirus-based vectors to express luciferase with high efficiency in

neurons and associated glia, [ATP]c changes in hypothalamic

neurons in response to elevations in glucose concentration are below

the level of detection for this assay (<2%); however, neurons

respond to lactate with a significant increase in [ATP]c [9]. These

findings provide evidence for both a direct intracellular mechanism

of KATP channel regulation, which does not involve increases in

[ATP]c [8], as well as a separate intercellular signalling mechanism

mediated by lactate released from neighbouring glial cells.

The specific localization of tanycytes in direct contact with CSF

and GLUT2/GK expression strongly support the idea that these

cells have a high capacity to uptake glucose. Therefore, tanycytes

could uptake glucose, metabolize it to lactate through the

glycolytic pathway, and subsequently release it through MCT1

and/or MCT4, thus providing neighbouring neurons with

information regarding glucose levels and regulating glucosensing

activities.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with the Animal

Welfare Assurance (permit number 2010101A) and all animal

work was approved by the appropriate Ethics and Animal Care

and Use Committee of the University of Concepcion, Chile. Male

adult Sprague-Dawley rats were used for the experiments. Animals

were kept in a 12-h light/dark cycle with food and water ad libitum.

Immunocytochemistry
Rats were fixed in Bouin solution (750 mL of saturated picric

acid, 250 mL of formaldehyde 37%, and 50 mL of glacial acetic

acid) or 4% paraformaldehyde (PFA) using vascular perfusion, and

the samples were dissected and post-fixed by immersion (12 h).

After post-fixation, the samples were dehydrated in graded alcohol

solutions and embedded in paraffin. Sections of the kidney and

skeletal muscle (7 mm) were obtained and mounted on poly-L-

lysine-coated glass slides. Alternatively, thick frontal sections of the

hypothalamus ( mm, fixed in PFA) were cut with a cryostat, and

subsequently processed free-floating. Before immunostaining, the

sections undergoing peroxidase immunohistochemistry were

treated with 3% hydrogen peroxide in absolute methanol to

inactivate endogenous peroxidase activity.

For immunohistochemical analyses, the following antibodies and

dilutions were used: rabbit anti-GLUT1 (1:100, Alpha Diagnostic

International, INC., San Antonio, TX, USA), rabbit anti-glial

fibrillary acidic protein (GFAP; 1:200, DAKO, Campintene, CA,

USA), mouse anti-vimentin (1:200, DAKO), chicken anti-MCT1

(1:100, Millipore, Temecula, CA, USA), rabbit anti-MCT4 (1:20,

Millipore). The antibodies were diluted in a Tris-HCl buffer

(pH 7.8) containing 8.4 mM sodium phosphate, 3.5 mM potassium

phosphate, 120 mM sodium chloride, and 1% bovine serum

albumin. Sections were incubated with the antibodies overnight at

room temperature in a humid chamber. After extensive washing,

the sections were incubated for 2 h at room temperature with

peroxidase-labeled anti-chicken IgY (1:500; Jackson ImmunoRe-

search Laboratories, INC., Pennsylvania, USA). The peroxidase

activity was developed using a DAB substrate kit (ImmunoPure;

PIERCE Biotechnology, Rockford, IL, USA). For immunofluores-

cence and colocalization analyses, the tissues were incubated with

the primary antibodies overnight and subsequently with Cy2-, Cy3-

or Cy5-labeled secondary antibodies (1:200; Jackson ImmunoR-

esearch Laboratories). These samples were counter-stained with the

DNA stain, TOPRO-3 (1:1000; Invitrogen, Rockville, MD, USA).

The slides were analyzed using confocal laser microscopy (D-Eclipse

C1 Nikon, Tokyo, Japan).

Image analysis
To analyze the colocalization levels for MCT1/vimentin,

MCT1/GLUT1, vimentin/GLUT1, and MCT4/GFAP immuno-

staining within various regions of interest in the periventricular AN

(b1v-tanycytes) or hypothalamic lateral region (b1d-tanycytes),

Pearson’s coefficient (Rr) values were calculated using the NIS-

Elements software (Nikon, Nikon Instruments INC). This coefficient

measures the overlapping level between the pixels of two fluorescent

channels, ranging from 21 to +1 (0–100% colocalization) [47]. The

statistical analysis was performed compared to interest region with a

control region using Student’s t-test.

Reverse transcription-polymerase chain reaction
The brain of each rat was removed, and the hypothalamic area

was isolated and further dissected to obtain a region close to the

ependymal layer. Total RNA from hypothalamus, control tissues,

or cell cultures were isolated using Trizol (Invitrogen). For RT-

PCR, 2 mg RNA was incubated in a 20 mL reaction volume

containing 5X buffer for M-MulV reverse transcriptase, 20 U

RNAse inhibitor, 1 mM dNTPs, 2.5 mM oligo(dt)18 primer, and

10 U revertAidTM H minus M-MuLV reverse transcriptase

(Fermentas International INC., Burlington, Ontario, Canada) for

5 min at 37uC followed by 60 min at 42uC and 10 min at 70uC.

Parallel reactions were performed in the absence of reverse

transcriptase to control for the presence of contaminant DNA. For

amplification, 1 mL cDNA aliquot in a total volume of 12.5 mL

containing 10X PCR buffer without MgCl2, 10 mM dNTPs,

25 mM MgCl2, 0.3125 U Taq DNA pol (Fermentas International),

and 10 mM of each primer was incubated at 95uC for 5 min

followed by 35 cycles of 30 s at 95uC, 30 s at 55uC, and 30 s at

72uC and a final extension of 7 min at 72uC. PCR products were

separated by 1.2% agarose gel electrophoresis and visualized by

staining with ethidium bromide. The following sets of primers

were used: MCT1, sense 5-9GGG AAG GTG GAA AAA CTC

AA-39 and antisense 59-ACA CTC CAT TCG CAA CAA CA-39

(expected product of 400 bp); MCT4, sense 59-TGC GGC CCT

ACT CTG TCT AC-39and antisense 59-TCT TCC GAT GCA

GAA GAA G-39 (expected product of 369 bp); and b-actin, sense

59-GCT GCT CGT CGA CAA CGG CTC-39 and antisense 59-

CAA ACA TGA TCT GGG TCA TCT TCT C-39 (expected

product of 353 bp).

Real time PCR
Total RNA samples were treated with DNase I before reverse

transcription processing to remove genomic DNA contamination.

MCT Function in Hypothalamic Tanycytes

PLoS ONE | www.plosone.org 10 January 2011 | Volume 6 | Issue 1 | e16411



A total of 2 mg RNA from each sample was reverse transcribed

into cDNA using the protocol described above. Q-RT-PCR

reactions were prepared with a Brilliant II SYBR Green QPCR

Master Mix kit (Agilent Technologies, Inc., Santa Clara, CA,

USA) in a final volume of 12.5 mL containing 1 mL cDNA,

500 nM primers, and 30 nM ROX dye. PCR reactions were

carried out in an Mx3000P QPCR System (Agilent Technologies).

The following sets of primers were used: cyclophilin (the

housekeeping gene), sense 59-ATA ATG GCA CTG GTG GCA

AGT C-39and antisense 59-ATT CCT GGA CCC AAA ACG

CTC C-39 (expected product of 239 bp); MCT1, sense 59-TGG

AAT GTT GTC CTG TCC TCC TGG-39 and antisense 59-

TCC TCC GCT TTC TGT TCT TTG GC-39 (expected

product of 178 bp); and MCT4, sense 59-TTC TCC AGT GCC

ATT GGT CTC GTG-39 and antisense 59-CCC GCC AGG

ATG AAC ACA TAC TTG-39 (expected product of 122 bp). The

thermal cycling conditions consisted of a 10 min denaturation

period at 95uC, followed by 40 cycles of denaturation for 30 s at

95uC, annealing for 30 s at 55uC, and extension for 1 min at

72uC. The relative expression of MCT to cyclophilin mRNA was

calculated on the basis of the PCR efficiency. The statistical

analysis was performed using GraphPad Prism 4.0 Software

(GraphPad Software Inc., San Diego CA). MCT expression was

compared using the Student’s t-test.

Immunoblotting
Total protein extracts were obtained from rat hypothalamus,

kidney, and skeletal muscle as well as primary cultures of

tanycytes. Tissues and cells were homogenized in buffer A

(0.3 mM sucrose, 3 mM DTT, 1 mM EDTA, 100 mg/mL PMSF,

2 mg/mL pepstatin A, 2 mg/mL leucopeptin, and 2 mg/mL

aprotinin), sonicated three times on ice at 300 W (Sonics &

Material INC, VCF1, Connecticut, USA) for 10 s, and separated

by centrifugation at 40006g for 10 min. Proteins were resolved by

SDS-PAGE (50 mg/lane) in a 5–15% (w/v) polyacrylamide gel,

transferred to PVDF membranes (0.45 mm pore, Amersham

Pharmacia Biotech., Piscataway, NJ, USA), and probed for 2 h

at 4uC with chicken anti-MCT1 (1:1000) or rabbit anti-MCT4

(1:500) antibodies. After extensive washing, the PVDF membranes

were incubated for 1 h at 4uC with peroxidase-labeled anti-

chicken IgY (1:1000; Jackson Immuno Research) or peroxidase-

labeled anti-rabbit IgG (1:5000; Jackson Immuno Research). The

reaction was developed using the enhanced chemiluminescence

(ECL) Western blot analysis system (Amersham Biosciences,

Pittsburgh, PA, USA). Negative controls consisted of incubating

the membrane with a pre-absorbed antibody (anti-MCT1 1:100 or

MCT4 1:500 with 100 mg/mL inductor peptide incubated at 4uC
overnight).

Cell culture
Hypothalamic glial cell cultures from 1-day postnatal brain were

isolated following the method described previously [29,48]. Briefly,

the brain and specifically the hypothalamic area was removed and

further dissected to obtain a region close to the ependymal layer.

The dissection was carried out with the samples submerged in

dissection buffer containing 10 mM HEPES (pH 7.4, 340 mOsm/

L). Samples were incubated with 0.25% trypsin-0.2% EDTA (w/v)

for 20 min at 37uC. Trypsinized tissue was transferred to planting

medium containing MEM, (Invitrogen) with 10% (v/v) fetal

bovine serum (FBS) (Thermo Fisher Scientific Inc., Waltham, MA,

USA), and 2 mg/mL DNAse I (Sigma-Aldrich, St. Louis, MO,

USA). Cells were seeded at 1.26105 cells/cm2 in culture dishes

treated with 0.2 mg/mL poly-L-lysine (Sigma-Aldrich). After 2 h,

the culture medium was changed to MEM supplemented with

10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 mg/mL

streptomycin, and 2.5 mg/mL fungizone (Thermo Fisher Scientific

Inc). Cells were cultured in the same dish for 3 weeks, and the

medium was changed every 2 days. The dishes with the highest

density of confluent epithelial cells were expanded and used for

immunocytochemistry, lactate uptake, and efflux experiments.

For immunocytochemistry, cells were grown on poly-L-lysine-

coated glass cover slides in 24-well plates, fixed with 4%

paraformaldehyde in PBS for 30 min, washed with Tris-HCl

buffer (pH 7.8), and incubated in the same buffer containing 1%

bovine serum albumin (BSA) and 0.2% Triton X-100 for 5 min at

room temperature. Samples were then incubated with the

following primary antibodies overnight at room temperature:

chicken anti-MCT1 (1:100), rabbit anti-MCT4 (1:20), goat anti-

dopamine- and cyclic AMP-regulated phosphoprotein-32

(DARPP-32; 1:100, Santa Cruz Biotechnology, Santa Cruz, CA,

USA), goat anti-Kir6.1 (1:50, Santa Cruz Biotechnology), rabbit

anti-GFAP (1:200), mouse anti-vimentin (1:200). Cells were then

incubated with Cy2- or Cy3-labeled secondary antibodies and

counter-stained with the DNA stain, TOPRO-3 (1:1000, Invitro-

gen). The slides were analyzed using confocal laser microscopy (D-

Eclipse C1 Nikon, Tokyo, Japan).

Uptake analysis
For lactate uptake assays, cells were seeded in 12-well plates

(26105 cells/well) and grown for 15 days to confluence. Cultures

were carefully selected under the microscope to ensure that only

plates showing uniformly growing cells were used. For each

experiment, six wells were used to quantify the number present in

each well. No significant variations in the number of cells were

observed after incubation with incubation buffer [48,49]. Cells

were washed and placed in incubation buffer (15 mM HEPES

[pH 7.0], 135 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 0.8 mM

MgCl2, 320 mOsm) for 10 min at room temperature. Uptake

assays were performed in 0.2 mL of incubation buffer at 4uC with

various L-lactate (Sigma-Aldrich) concentrations (0.1 to 250 mM)

and 1-4 mCi of L-[14C(U)]lactic acid sodium salt (.100 mCi

[3.70GBq]/mmol; Perkinelmer-NEN, Boston, MA, USA). Uptake

was stopped by washing the cells with ice-cold stop buffer

(incubation buffer plus 1 mM HgCl2). Cells were lysed in 0.5 mL

of lysis buffer (10 mM Tris-HCl [pH 8.0], 0.2% SDS), and the

incorporated radioactivity was quantified by liquid scintillation

counting. When appropriate, lactate uptake was assessed at several

pH levels, and inhibitors were used. In L-lactate inhibition

experiments, cells were pre-incubated with alpha-cyano-4-hydro-

xycinnamate (4-CIN, Sigma-Aldrich), p-chloromercuribenzene

sulfonate (pCMBS, Sigma-Aldrich), floretin (Sigma-Aldrich), or

di-isothiocyanostilbene disulfonate (DIDS, Sigma-Aldrich) for

15 min at 37uC (incubation buffer). For competitive analyses,

cells were co-incubated with L-pyruvate at 4uC. All inhibition

experiments were carried out under or at initial velocity conditions

to discriminate between L-lactate transport and metabolism. In all

assays, the incubation buffer was adjusted to 320 mOsm; when

osmolarity could not be adjusted at this value; controls with the

same osmolarity were used. In inhibition experiments, statistical

comparison between two groups of data was carried out using

Student’s t-test.

Efflux analysis
For lactate release assays, cells were seeded in 12-well plates

(26105 cells/well) and grown for 15 days to confluence in 2 mM

glucose. Cells were washed with 0.1 M PBS (10.6 mM Na2HPO4,

3.2 mM KH2PO4, 123.5 mM NaCl, pH 7.4 and 320 mOsm) and

incubated for several times in efflux buffer (44 mM sucrose,
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10 mM HEPES [pH 7.4], 135 mM NaCl, 5 mM KCl, 0.15 mM

Na2HPO4, 0.2 mM KH2PO4 and 5 mM glucose). Supernatant

was removed and frozen in liquid nitrogen until quantification.

Cells were lysed in buffer A and sonicated three times on ice at

300 W for 10, and total protein concentration was determined

using the Bradford assay (Bio-Rad Laboratories, Hercules, CA,

USA). 4-CIN, pCMBS, and DIDS inhibitors were pre-incubated

with the cells for 15 min at 37uC. Data represent means 6 SD of

three experiments performed in duplicate. The statistical analysis

was performed using Student’s t-test.

Supernatant was assayed for lactate using a high performance

liquid chromatography (HPLC) system from Merck Hitachi

(Merck, Darmstadt, Germany), consisting in an L-6200 pump

and a Hitachi L-4200 UV-VIS (225 nm) detector. Samples were

separated by chromatography on a Aminex HPX-87H column

(Bio-Rad Laboratories, Hercules, CA, USA) of 30067.8 mm I.D.,

connected with a standard cartridge holder 3064.6 mm I.D. to

protect the analytical column. The mobile phase consisted of an

isocratic solution of 20 mM H2SO4. The solvent flow rate was

0.5 mL/min, and the backpressure was lower than 1000 psi. The

L-lactate peak was identified by comparison of its retention time

with that of a reference standard, and its concentration was

quantified using the area under the peak (Merck Hitachi D-2500

chromato integrator).

Supporting Information

Figure S1 MCT1 and MCT4 immunolocalization. A,

MCT1 localization in kidney slices. A positive reaction was

observed in the cortical S1 proximal convoluted tubule (PCT,

arrows). B–G, MCT1 localization in the nervous system. MCT1

was detected in capillaries of the hippocampus (B, arrowhead),

ependymal cells (C, arrow); satellite cells (D, arrows) and astrocytes

(E-G, arrows). Additionally, MCT1 colocalized with GLUT1 in

some endothelial cells of the cerebral cortex (F, arrowhead).

H, MCT4 localization in skeletal muscle fibers. I–N, MCT4

localization in the nervous system. MCT4 was detected in

astrocytes of the entorhinal cortex (I, arrows) and in blood vessels

(J, arrow). To confirm the presence of MCT4 in astrocytes,

double-labeling with GFAP was performed. MCT4-GFAP

colocalization was seen in astrocytes end-feet of the corpus callosum

(K, arrow), hypothalamus (L, arrows), hippocampus (M, arrows),

and cerebral cortex (N, arrows). PCT, proximal convoluted tubule;

G, glomeruli; S1, Segment 1. Scale bar 50 mm.

(TIF)
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