
The Genetics of Sex Differences in Brain and Behavior

Tuck C Ngun*, Negar Ghahramani*, Francisco J. Sánchez, Sven Bocklandt, and Eric Vilain
David Geffen School of Medicine at UCLA Gonda Center, Room 5506 695 Charles Young Drive
South Los Angeles, CA 90095-7088

Abstract
Biological differences between men and women contribute to many sex-specific illnesses and
disorders. Historically, it was argued that such differences were largely, if not exclusively, due to
gonadal hormone secretions. However, emerging research has shown that some differences are
mediated by mechanisms other than the action of these hormone secretions and in particular by
products of genes located on the X and Y chromosomes, which we refer to as direct genetic
effects. This paper reviews the evidence for direct genetic effects in behavioral and brain sex
differences. We highlight the `four core genotypes' model and sex differences in the midbrain
dopaminergic system, specifically focusing on the role of Sry. We also discuss novel research
being done on unique populations including people attracted to the same sex and people with a
cross-gender identity. As science continues to advance our understanding of biological sex
differences, a new field is emerging that is aimed at better addressing the needs of both sexes:
gender-based biology and medicine. Ultimately, the study of the biological basis for sex
differences will improve healthcare for both men and women.
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1 INTRODUCTION
Men and women are different in many ways. These differences include both biological
phenotypes [e.g. 1] and psychological traits [e.g. 2]. Some of these differences are
influenced by environmental factors [3; 4]. Yet, there are fundamental differences between
the sexes that are rooted in biology.

Of particular interest are sex differences that have been identified in the brain. Although the
brains of men and women are highly similar, they show consistent differences that have
important implications for each sex. That is, brain sex differences uniquely affect
biochemical processes, may contribute to the susceptibility to specific diseases, and may
influence specific behaviors. Such biological differences should never be used to justify
discrimination or sexism. However, we believe that a thorough understanding of these
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differences can inform researchers and clinicians so that they can better address important
issues. Two examples include how genetic sex can lead to differences between the sexes in
the etiology and the progression of disease and how differences in neural development may
result in differences in cognition and behavior.

In this paper, we will review sex differences in brain and behavior that are not due to the
action of hormones secreted by the gonads—which has been the dominant mechanism
associated with such differences—but from what we term `direct genetic effects.' These are
effects that arise from the expression of X and Y genes within non-gonadal cells and result
in sex differences in the functions of those cells. First, we will highlight some sex
differences at the biological level and at the psychological level. Then, we will review the
`classic' view that dominated the field of sex differences—that most sex differences,
especially those concerned with reproductive physiology and behavior, were due to the
action of hormones produced by the gonads. Next, we will present the emerging view that
`direct genetic effects' play an important role as well. Finally, we will discuss novel
approaches to studying sex differences by focusing on unique groups of individuals: people
with sex-chromosome variations (e.g., Klinefelter's Syndrome and Turner Syndrome),
people with genetic mutations in the sexual development pathway, people with an atypical
sexual-orientation, and people who experience a cross-gender identity.

2 BIOLOGICAL SEX DIFFERENCES
There are many biological differences between males and females that are beyond the
obvious differences at a gross, macro level (e.g., height, weight, and external genitalia).
Specifically, there are several important physiological differences that have critical
implications including the susceptibility to different diseases and the ability to metabolize
different medications. In this section we will highlight some sex differences in
neuroanatomy and neurochemistry.

2.1 Neuroanatomy
The two sexes have similar but not identical brains. Most brain studies have focused on
gross manifestations of these differences—namely the size of specific regions or nuclei. Yet,
there is mounting evidence of sex differences at a finer level including differences in
synaptic patterns [5; 6] and neuronal density [7; 8; 9]. It is beyond the scope of this article to
provide a comprehensive review of all known neuoranatomical differences. We have
provided notable sex differences in the rat brain in Table 1. There are also excellent
resources for those who are interested in delving deeper into this topic [10; 11; 12].

We have chosen to focus on neuroanatomical differences in the rat because the biological
significance and origins of these differences are much clearer than in humans.
Neuroanatomical differences in humans are also well-studied although ethical reasons
preclude the experimental manipulations that have led to the findings detailed in Table 1.
This significantly limits the conclusions that can be drawn from any observations made in
humans.

Although these neuroanatomical differences are intriguing, most are limited because the
practical or functional significance of these findings are unknown. Discovering the
significance of these differences is often difficult, even in rodents. de Vries and Sodersten
have eloquently outlined the challenges facing researchers who want to understand the link
between sex differences in structure and behavior [13]. A highly relevant case study
highlighted in their review concerns the sexually dimorphic nucleus of the preoptic area
(SDN-POA). The preoptic area (POA) has been implicated in the regulation of male
copulatory behavior [14], but the link (if any) between the sex difference in SDN-POA size
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and behavior remains elusive. Masculinizing the size of the SDN-POA in female rats does
not result in a corresponding masculinization and defeminization of behavior [15]. Instead,
the SDN-POA may be related to inhibition of female sexual behaviors [16; 17], which might
not have been an obvious hypothesis given what was known about the POA previously. As
science and technology continue to advance, we will eventually know how to make sense of
the mounting evidence of sex differences in the brain. For now, it is reasonable to suspect
that such differences may help account for observed sex differences in behavior,
neurological diseases, and cognitive abilities. SDN-POA) exist, and the interpretation of the
data is often more complicated than this summary implies.

2.2 Neurochemistry
Males and females exhibit different patterns of transmitting, regulating, and processing
biomolecules. Table 2 presents some of the neurochemical sex differences that have been
identified. As a specific example, we focus below on the monoaminergic system, which has
been implicated in several neurological diseases and mental disorders that differentially
affect men and women.

Monoamines are a class of small-molecule neurotransmitters that are involved in the control
of a variety of processes including reproduction and sexual behavior [51; 52], respiration
[53], and stress responses [54]. Monoamines have also been implicated in numerous mental
disorders, including ones that differentially affect men and women [55; 56]. Likewise, sex
differences in the monoaminergic systems in the rat are well-documented. Reisert and
Pilgrim provided a comprehensive review of arguments for the genetic bases of these
differences [57].

Monoamines are subdivided into two groups—catecholamines and indolamines—based on
their molecular structure. The main catecholamines are dopamine (DA), norepinephrine
(NE) and epinephrine, which are synthesized from the amino acid tyrosine. Figure 1
highlights some of the known sex differences of the dopaminergic system. Regulation of
dopamine can potentially control the levels of the other two catecholamines as they are
derived from dopamine.

Catecholamines are released by the adrenal glands usually in response to stress, which
affects males and females differently. For instance, chronic physical stress impairs memory
in male rats only [58]. The sexes also show differing neurochemical responses: Dopamine
activity is upregulated in males only whereas norepinephrine is upregulated in females only
(Figure 1A). Sex differences have also been found in the regulation and modification of
dopamine (see Figures 1B and 1C). Specifically, the enzyme tyrosine hydroxylase (TH),
which is involved in dopamine synthesis [59], is regulated by Sry—the male sex
determination gene—which is not present in females. Additionally, levels of norepinehrine
in the amygdala differ between the sexes as a result of age. Thus, it is likely that brain
catecholaminergic responses to stress might also differ between the sexes.

Another monoamine is serotonin, which is an indolamine. Unlike catecholamines, serotonin
is derived from the amino acid tryptophan. The serotonergic system shows sex differences
(Figure 2), though many of these differences remain unlinked to behavioral differences
between men and women. Nevertheless, differences in this system likely have consequences
given the link between serotonin and numerous mental disorders [60; 61].

3 PSYCHOLOGICAL AND BEHAVIORAL SEX DIFFERENCES
In addition to biological differences, men and women differ in many psychological and
behavioral aspects. For instance, men perform better on specific visuospatial aspects (e.g.,
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mental rotation) compared to women; and women perform better on specific verbal tasks
(e.g., verbal fluency) compared to men [88]. Furthermore, there is a large sex difference in
sexual interests and behaviors, such as interest in casual sex, interest in multiple sex
partners, and interest in visual-sexual stimuli (e.g., pornography) [89; 90]. Other examples
are summarized in Table 3.

Some contend that these differences are due to social systems and gender socialization [cf.
91; 92; 93] . Nevertheless, biological traits likely contribute to many sex differences. Thus, a
thorough understanding of the main determinants involved in expression of such sex
differences can help us better explain the relationship between brain, behavior, and
environment. In addition, it allows us to determine how one's sex potentially influences the
risk of developing disorders that manifest and progress differently in men and women. Such
knowledge can better inform the treatment of these diseases. Tables 3 and 4 illustrate several
factors (e.g. hormones and genes) that may be causally linked to expression of sex
differences in behavior and disease, respectively.

4 THE CLASSICAL VIEW ON SEX DIFFERENCES
Researchers have examined what contributes to the differences we see between males and
females. Certainly for humans, social environments influence some of these differences. For
instance, social stratifications (e.g., social class and the distribution of social power) and
social rules (e.g., customs and traditions) may affect the ability for people to access
educational resources or to engage in certain behaviors [205; 206]. However, social factors
alone do not contribute to all differences seen between males and females—especially
regarding biological differences [207].

The life sciences have elucidated many factors that contribute to sex differences. In this
section, we briefly review the classical view that gonadal hormones contribute to most, if
not all, sex differences after gonadal differentiation. We will then present some findings that
have challenged this view.

4.1 The Role of Gonadal Hormones
Sexual development in mammals can be divided into two main components: sex
determination and sex differentiation [208]. `Sex determination' is the process by which the
bipotential gonad develops into either a testis or an ovary, which depends exclusively on
genetics. `Sex differentiation' is the development of other internal reproductive structures,
the external genitalia, and non-gonadal sex differences. Unlike sex determination, sex
differentiation is driven by gonadal hormones. It was widely believed that sex differences
that emerged after sex determination were largely due to the actions of gonadal hormones.
Examples of this pervasive view include writings from Lillie in 1939 (“[T]he mechanism of
sex differentiation is taken over by extracellular agents, the male and female hormones.”
[209]), Jost in 1970 (“The developmental analysis of the body sex characteristics reveals a
hormonal control.” [210], Morris et al. in 2004 (“[A] single factor—the steroid hormone
testosterone— accounts for most, and perhaps all, of the known sex differences…”[14]) and
Zhao et al. in 2010 (“[T]he sexual phenotype of individuals is dependent on the gonad…”
[211]). We will use the term `classical view' to refer to this hypothesis.

The classical view was based on decades of compelling research demonstrating the
organizational and activation effects of gonadal hormones in vertebrates [212; 213].
`Organizational effects' refer to the permanent, irreversible changes during development that
organize the body in either a male- or female-typical pattern. For instance, the neonatal
surge of testosterone in male rodents leads to life-long changes in the synaptic pattern of the
ventrolateral ventromedial hypothalamic nucleus [47]. `Activational effects' refer to the
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short-term changes that occur in the body depending on the presence or absence of specific
hormones. An example of this is the requirement for the presence of both estrogen and
progesterone to induce or “activate” lordosis in female rats [214].

Recently, it was found that gonadal hormones might not be the sole contributor to male- and
female-typical development. Genes encoded on the sex chromosomes that directly act on the
brain to influence neural developmental and sex-specific behaviors have been identified—an
example of what we describe as direct genetic effects [215; 216]. When we use this term, we
refer to effects arising from the expression of X and Y genes within non-gonadal cells that
result in sex differences in the functions of those cells or target cells. Such direct genetic
actions are wide-ranging and can include effects of locally produced hormones or other non-
hormonal messenger molecules. For example, sex differences arising in the brain from
differential paracrine secretion of neurosteroids would be considered a direct genetic effect.
The commonality among these actions is that they are not dependent on mediation by
hormones secreted by the gonads. In many cases, the identity of the messenger molecules
have yet to be identified. This review will now focus on examples in which sex differences
in behaviors are unlikely to be influenced by only the action of gonadal hormonal secretions
and may in fact be due to direct genetic effects.

4.2 Exceptions to the Classical View
The idea that factors other than the gonadal hormone milieu could account for sex
differences first gained credence from research performed on the zebra finch. In zebra
finches, males exhibit courtship behaviors that are unique to their sex. Specifically, they
possess the ability to sing a distinct courtship song. This male-specific ability has been
attributed to several brain regions that are larger in males compared to females [217; 218].
Given the hypothesis that such differences must have been the result of sex-specific
hormones, several researchers unsuccessfully attempted to alter the courtship behavior of
finches by manipulating hormone levels [219]. For example, it was shown that castrated
male zebra finches were not significantly different from intact male zebra finches in terms of
song development [220]. Furthermore, female zebra finches that developed testes continued
to develop feminine song circuitry and did not exhibit masculine song behavior [221; 222].

Several other experimental manipulations led researchers to question the role of hormones.
For instance, Jacobs et al. treated female zebra finches with estrogen at the beginning of
hatching given that estrogen induces male sexual differentiation in the zebra finch neural
song system [223]. Interestingly, estrogen treatment was not able to cause full
masculinization of the neural circuitry of the zebra finch song system (the song circuitry was
still smaller compared to control males) [224; 225] and supraphysiological doses of estrogen
were required for full masculinization [226]. Similarly, it was shown that inhibiting the
action of estrogen by using aromatase blockers in males did not completely prevent the male
differentiation pathway [217; 227; 228; 229; 230].

The discovery of a rare type of zebra finch provided further support for a new hypothesis
regarding sexual differentiation: The bilateral gynandromorphic finch has male-typical
phenotypes on one half of the body (e.g., plumage, testis, and song circuitry) and female-
typical phenotypes on the other half of the body. Each half of such finches is either entirely
genetically male or genetically female. Thus, each side contains the sex-specific genes
necessary for the development of the corresponding sex-specific traits. In this model, while
the gonadal hormonal actions in producing sex differences in the brain cannot be completely
ruled out (both sides of the neural song system were larger than that of normal females),
their influences cannot fully explain the differences observed between the left and right sides
of the brain. Given this explanation, the most reasonable theory is that endogenous genetic
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differences in the brain cells themselves can also contribute to the unequal differentiation of
the two sides producing sex differences through their local action within the brain [231].

Recent work on gynandromorphic chickens strengthens the case that the classical view
largely does not apply to sexual differentiation in birds. Zhao et al. showed that the `sex
identity' (or the expression of sex-specific phenotypes) of somatic cells in birds is
determined by the sex chromosome complement of those cells and not the gonadal hormonal
environment [211; 231]. In mammals, transplantation of somatic cells from one sex into the
gonad of the other sex reverses the sex identity of the donor somatic cells. For example, XX
cells can develop into functioning Sertoli cells while XY cells can become functioning
granulosa cells [232; 233]. However, this is not the case in the chicken as male donor cells
introduced into the developing ovary continued to express a male-specific marker and were
excluded from `functional' structures of the host gonad. The host and donor somatic cells
were exposed to the same hormones, but they responded differently based on their
respective sex chromosome complement.

A second exception to the classical view that we highlight below concerns the development
of the tammar wallaby. As with brain development, gonadal hormones drive the sex-specific
development of the external genitalia in most mammals. Specifically, androgens promote the
development of male genitalia. However, the formation of reproductive structures in the
tammar wallaby appears to be independent of gonadal hormone control and is solely due to
the effect of sex chromosome complement.

The tammar wallaby is a marsupial that is much smaller than the kangaroo. During fetal
development, the production of testosterone, which would typically masculinize mammalian
fetuses, does not occur in these marsupials until about the fourth or fifth day after birth [234;
235; 236; 237]. Yet, signs of sex-specific reproductive structures (e.g., scrotum, mammary
gland, and pouch formation) can be observed as early as several days before birth. In
mammals, the development of male-specific structures, is thought to be completely
dependent on the action of androgens [208]. Experiments that increased or decreased the
action of testosterone or estrogen in the tammar wallaby had no significant effect on the
development of the external genitalia [238; 239]. This suggested that such differences were
not under gonadal hormone control.

A case similar to the gynandromorphic zebra finch has also been reported in tammar
wallabies: This consists of wallabies that are XX on one side of the body and XY on the
other side of the body. Such wallabies develop a hemipouch on the XX side and a
hemiscrotum on the XY side even after exposure to circulating gonadal hormones [226; 240;
241]. As with the zebra finch, such cases challenged the view that all sex differences were
due to hormones produced by the gonads.

5 AN EXPANDED VIEW ON SEX DIFFERENCES
In light of scientific findings, such as with the zebra finch and the tammar wallaby presented
above, the field of sex differences has now come to encompass studies that examine gonadal
hormone as well as genetic origins of these differences. One of the most significant
challenges in studying the establishment of sex differences in animal models has been the
difficulty in separating gonadal sex from chromosomal sex. These two parameters almost
always correlate in an animal.

In the following section, we highlight the `four core genotypes' model, which has proven to
be a powerful tool in teasing out the effects of gonadal versus chromosomal sex and
enabling researchers to overcome this confound. We then discuss in-depth sexual
differentiation and sex differences in the midbrain dopaminergic system, focusing
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specifically on the role of Sry. We discuss the implications that these differences may have
on the development of this system as well as neurological health implications.

5.1 The `Four Core Genotypes' Model
A 2×2 mouse-model was developed to separate the effects of gonadal sex from
chromosomal sex. This model, known as the `four core genotypes' (FCG), allows
researchers to establish the relative contribution of sex chromosomes and hormones in
sexual differentiation as well as the interaction between the two. Arnold and Chen recently
reviewed this model [242]. Here we highlight some of the model's basic concepts.

Figure 3 depicts the effect of the presence or absence of Sry—a 12kb region on the Y
chromosome that is responsible for testis determination—using the FCG model. An XY
mouse should develop testes; however, if Sry is deleted from the Y chromosome
(symbolized by Y−) then the mouse will develop ovaries [243]. If the Sry gene is inserted
into any chromosome of an XX mouse (symbolized by XXSry), then the mouse will develop
testes. Finally, if Sry is deleted from the Y chromosome of an XY mouse and then inserted
into one of its autosomes (symbolized by XY−Sry), then it will develop testes.

XY−Sry mice are fully fertile because the presence of Sry promotes testes development.
XXSry mice lack some of the genes required for sperm production, which are found on the Y
chromosome [244], and therefore do not appear to be fertile. However, they have small
testes and are fully masculinized in terms of measures of male copulatory behavior, social
exploration behavior, and sexually dimorphic neuroanatomical structures in the septum, and
lumbar spinal cord.

XY−Sry mice can be mated with XX females to produce the four types of offspring (XX,
XY−, XXSry, and XY−Sry) that can then be used to assess the impact of a mouse's
chromosomal and gonadal sex on different phenotypes. That is, if there is a difference
between mice that carry the Sry gene (i.e., XXSry and XY−Sry) versus those that do not (i.e.,
XX and XY−), then the observed difference can be attributed to the gonadal type and/or
presence of Sry. On the other hand, if there is a difference between mice that have the Y
chromosome (i.e., XY− and XY−Sry) versus those that do not (i.e., XX and XXSry), then the
observed difference can be attributed to complement of sex chromosomes (XX versus XY).

5.1.1 Limitations of the FCG model—Some possible limits to the FCG model have
been suggested. One possible limit is that the size, morphology, and function of the gonads
are not exactly the same in XX and XY mice of the same gonadal type (e.g. XXsry vs.
XY−sry). Consequently, the level of gonadal hormone secretions in FCG mice may differ
during critical periods of development—a confound that has yet to be investigated. Yet,
numerous phenotypes that are responsive to the organizational effects of gonadal hormones
(including sexually dimorphic brain structures) do not differ in XX and XY mice of same
gonadal type [37,57,80,42], indicating that XX and XY mice of the same sex are likely
experiencing similar levels of gonadal secretions. For example, measurements of circulating
testosterone in XX and XY males found no difference in testosterone levels between the
groups [245].

A second limit relates to the biochemical and molecular environment. That is, one cannot
rule out the effect of prenatal hormonal secretions, the influence of adult circulating
hormones produced by the gonads or other tissues, acute fluctuations in hormonal levels,
and the influence of the Sry transgene (i.e., the potentially higher expression-level of the Sry
transgene in XY−Sry animals versus XY mice). For example, the Sry transgene could hasten
the early stages of testis organogenesis in XY−Sry males. Furthermore, several phenotypes
have been found to differ between XY and XY−Sry males. However, it is not known whether
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these differences are caused by the effect of Sry on androgen production or by some other
mechanisms that are not mediated through the action of gonadal hormones.

To address these limits, it is best to rule out the effect of circulating gonadal hormones. An
effective approach would be to first gonadectomize the mice followed by an administration
of equivalent doses of gonadal steroid hormones. This is particularly important in the case of
XY− females since their level of ovarian steroid hormones differ from that in the XX wild
type females [245]. Nevertheless, a major limitation still remains: It will not be obvious
whether the sex difference attributed to the complement of sex chromosomes within cells is
caused by (a) gene or genes encoded on the Y chromosome; (b) higher dosage of X genes
particularly the ones that escape X inactivation in XX animals [246]; or (c) the paternal
imprint of the genes encoded on the X chromosome in XX animals, which changes the
expression of these genes to exhibit a female-specific pattern [219; 247]. If one determines
that the sex difference in phenotype is due to the sex chromosome complement, then the
next step would be to discover the nature of the gene or genes involved and identify whether
those genes are encoded on the X or Y chromosome and how and where they mediate their
role [216].

Notwithstanding these potential limitations, a variety of sex differences have been examined
using the FCG model. We review three of these.

5.1.2 Lateral septum—One clear example of the role of sex-chromosome genes in brain
phenotypes can be found in the lateral septum. The lateral septum is part of the limbic
system and is involved in stress-related behaviors. This nucleus is denser in male brains
compared to female brains. However, it was found that the vasopressin fiber density was
greater in the lateral septum of XY−Sry and XY− mice compared to XX and XXSry mice
[215]. In addition, an examination of vasopressin fiber densities in animals with the same
sex chromosome complement indicated a role for the action of gonadal steroid hormones.
No interaction was observed between gonadal sex and sex chromosomes [216].

5.1.3 Addiction—On average, women use addictive drugs at lower levels than men, but
women become addicted to drugs more rapidly than men [248]. Based on the FCG model,
Quinn et al. showed that this difference could be attributed to the differences in the
complement of the sex chromosomes and not to the gonadal secretions and/or the expression
of the Sry gene. XX mice developed habitual behavior more rapidly than the XY animals
independent of their gonadal phenotype and even after gonadectomy. This implies that
neither gonadal sex nor circulating steroid hormones exert major effects on the development
of habit-driven behavior in mice [182].

5.1.4 Aggression—Males typically exhibit more aggressive behaviors compared to
females [249; 250; 251]. Recent reports have shown that aggression latencies are strongly
influenced by the simultaneous action of gonadal hormones and sex chromosomes. Using
the four core genotypes model, it was found that a significant interaction exists between the
two variables. In this model, the XX females appeared to be slower at displaying aggressive
behavior on their first encounter with an intruder compared to animals in all other groups
[215].

5.2 Direct Role of Sry in Brain Sex Differences
Sex differences in the brain may contribute to some of the psychological and behavioral
differences we observe between the sexes. Furthermore, they may influence the
susceptibility to different diseases. For instance, Parkinson's disease—a neurodegenerative
disease that impairs motor function and speech—affects more men than women. Research
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has established a link between Parkinson's disease and a loss of dopaminergic neurons in the
substantia nigra [252]. Such losses disrupt dopamine pathways, which leads to many of the
symptoms associated with Parkinson's disease.

Robust sex differences have been observed in the development, activity, and number of
dopaminergic neurons. The data described below represents a clear example of a sex
difference in the brain that has a strong genetic component.

5.2.1 Dopaminergic neurons in rodents—Sex differences in dopaminergic neurons
have been found prior to exposure to gonadal steroid hormones. During in utero
development, rat embryos are exposed to a plasma surge of hormones around embryonic day
17 or 18 (E17 or E18). Yet, as early as E14, dissociated cell cultures of dopaminergic
neurons obtained from male and female rat brainstems were found to be fundamentally
different in their morphology and function prior to exposure to gonadal steroid hormones
[57]. Furthermore, females had higher numbers of dopaminergic, tyrosine hydroxylase-
immunoreactive (TH-ir) cells in the midbrain; and their mesencepahlic and diencepahlic
neurons produced more dopamine when compared to males. On the other hand, soma
measurements of diencephalic neurons from male cultures contained larger dopaminergic
neurons. Although it is difficult to make accurate measurements of hormonal levels in the
embryonic brain, it is unlikely that there is a huge sex difference due to gonadal hormone
exposure at this stage as the rat gonad only begins to differentiate at this point. Therefore,
this suggests a contribution of sex chromosome complement and/or sex-specific gene
expression.

These differences are not altered even when gonadal hormone levels are manipulated.
Specifically, treatment with estradiol and testosterone does not eliminate the observed sex
differences in number, size, or function of the dopaminergic cells. Similar findings were
later replicated in a study using mesencephalic cultures from the NMRI strain of mice [253].
Collectively, these observations strongly support the idea that some of the sex-specific
properties of the dopaminergic neurons appear to be under the control of non-hormonal
mechanisms.

5.2.2 The Y chromosome's role in dopaminergic neuron development—A study
utilizing the four core genotype model further strengthened the case that a genetic
component largely accounts for these sex differences. Carruth et al. cultured mesencephalic
neurons from E14 animals representing each of the groups from the four core genotypes
[50]. Cultures from XY− and XY−Sry animals developed significantly more TH-ir neurons
compared to the XX and XXSry animals. However, gonadal sex did have a small effect:
Animals that had Sry (and hence testes) were associated with a higher number TH-ir cells
compared to those without Sry. Due to the design of the four core genotypes model, it is
difficult to separate the direct effects of Sry from its indirect effects on dopaminergic
neurons or their precursors (e.g., through testis determination and the subsequent hormonal
secretions).

The data pertaining to sex differences in dopaminergic neuron development show sex
differences in distinct directions and so are difficult to interpret. In cultures from E14 rats
and NMRI mice, the sex difference is the reverse of what was seen with the four core
genotypes. However, rather than invalidating the findings, the conflicting information
highlights the complex interactions between genetics and gonadal hormones in leading to
the sex differences that are observed. First, the differences between data from NMRI mice
and the four core genotypes may be attributable to strain differences. Data from the former
study indicate that genetic background can significantly affect whether a sex difference is
observed [253]. Carruth et al. had outbred their mice onto the MF1 background [50]. In
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regards to the differences seen between cultures from rats and the four core genotypes, one
possible explanation is that both androgens and the Y chromosome are needed to lead to the
number of dopaminergic neurons being higher in males. Support for this hypothesis comes
from our own studies where we see that the number of dopaminergic neurons in the rat
substantia nigra is higher in adult males [49]. Additionally, the finding that the presence of
testis was associated with a higher number of these neurons fits with our hypothesis. There
are also important distinctions in the timing of the cultures in relation to gonadal
development: while both studies cultured E14 neurons, the bipotential gonad has already
differentiated into a testis to a larger extent in the mice [254; 255] than in the rat at this
gestational stage [256]. As such, the hormonal environment from which these cultures were
derived may not be the same, which could account for some of the disparity in the direction
of the sex difference. An elaboration of the hypothesis presented above is that it is not just
the testes and androgens that are essential but also Sry, the gene that initiates testicular
development. Using a rat model, our laboratory has found evidence that this may be the case
and showed that Sry has a direct effect on the expression of TH in the substantia nigra [49].

5.2.3 Sry is a direct effector of TH expression—Sry is the gene on the Y
chromosome that directs the bipotential mammalian gonad to develop as testes—hence, its
name: Sex determining region on Y. Sry is the founding member of the Sox family of
proteins, which play a major role in a wide range of biological processes such as
neurogenesis, hematopoiesis, and neural crest development [257]. Sry contains a high
mobility group (HMG) box domain and shows little conservation from mouse to human
outside this stretch of about 80 amino acids [258].

The HMG box forms a domain that induces a sharp bend in the DNA [259]. It is proposed
that this bending of the DNA enhances recruitment of specific transcriptional factors. In line
with this hypothesis, Sry has two nuclear localization signals within the HMG domain [260]
and its ability to activate transcription in vitro has been demonstrated [261].

Recently, researchers have used genome-wide surveys to identify targets of Sry in the
gonad. The most widely known target of Sry is Sox9 [262]. Two other notable targets of Sry
are Cbln4 [263], which codes for the cerebellin precursor; and MAO A, which codes for
monoamine oxidase A [264]. Wu and colleagues also found that MAO A was upregulated
by Sry in the BE(2)C neuroblastoma cell line suggesting that MAO A may be a neural Sry
target [264].

Most studies on Sry expression have focused on the gonad and Sry's subsequent effects on
sex determination and differentiation [265]. In the developing mouse embryo, Sry is
expressed between E 10.5 and E 12.5 in the developing genital ridge, prior to overt testis
differentiation [266]. Until recently, it was thought that Sry had no role other than sex
determination. However, Sry expression has been found in numerous tissues outside of the
testis (see below) and this expression in the adult male rat is now known to have biologically
significant effects. Sry's crucial role in the regulation of the catecholaminergic system is one
of the best examples of a direct genetic regulator of a trait that differs between the sexes.

5.2.4 SRY in the brain—Clépet et al. were the first to perform a survey of SRY
expression in human tissue outside of the gonads [267]. In fetal tissue, SRY was seen in the
brain, adrenal, heart, and pancreas. In adults, transcription was detected in the kidney, heart,
and liver. This study also showed that SRY was expressed in the teratocarcinoma cell line
NT2/D1, which was derived from adult male tissue and which can be used as a model for
dopaminergic neurons. When NT2/D1 was induced to differentiate into neurons by retinoic
acid, SRY expression remained.
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SRY expression in the human adult brain was not surveyed until 1998. Mayer, Lahr et al.
showed that SRY mRNA was present in the hypothalamus, frontal, and temporal cortex of
only the adult male [268]. Sry mRNA is also found in the adult male mouse brain where it
can be detected in the midbrain (including the substantia nigra) and hypothalamus in all
developmental stages [269].

5.2.5 SRY and the regulation of TH expression—Sry has a biologically significant
role in the brain in at least one instance—the regulation of tyrosine hydroxylase (TH) [49;
270]. In a 2004 study, Milsted, Serova et al. found that Sry is a regulator of TH gene
transcription [270]. The study looked at Sry's role in relation to TH in both the brain and the
adrenal medulla. They demonstrated that Sry and TH mRNA were co-localized in the locus
coeruleus, substantia nigra, and ventral tegmental area of the male rat (Figure 4A). They
then used a luciferase reporter assay to show that Sry's ability to upregulate TH expression is
dependent on the AP1 binding sites in the promoter of TH.

The in vivo significance of those findings was shown and expanded upon by a study from
our laboratory. By in situ hybridization, we were able to determine the spatial distribution of
Sry mRNA within the rodent brain [49]. Specific labeling of Sry was observed in the
substantia nigra, medial mammillary bodies of the hypothalamus, and the cortex of male rats
only. These transcripts were translated and co-localized with the TH protein—all neurons in
the substania nigra positive for Sry were also positive for TH. Knocking down Sry
expression in the male rat substania nigra led to 38% fewer TH-immunoreactive neurons and
introduced a significant asymmetry in limb use where the animals strongly favored the usage
of their ipsilateral limbs (Figures 4B and 4C). The reduction in TH-ir neurons was not due to
neural degeneration and is most likely due to a reduction in TH expression. There was also a
26% decrease in TH-ir cells in the striatum when Sry expression was knocked down in that
region. TH-ir neuron number was not affected in females infused with the Sry antisense
cocktail.

The nature of Sry's modulation on TH remains unclear. The results of the study by Milsted,
Serova et al. argue that the TH response to Sry is likely an indirect one [270]. Our data
indicate that there may be both direct and indirect mechanisms [49].

The identification of a specific function for Sry in the dopaminergic system, specifically,
and the brain, generally, is still absent. Additionally, comprehensive temporal and spatial
expression studies need to be performed on brain Sry expression. Another largely
unanswered question concerns the identity of a female-specific `compensatory' factor for
Sry.

We have shown that the attenuation of Sry expression in males results in detrimental motor
effects and that females have lower levels of TH neurons [49]. However, female rats do not
go through life exhibiting motor dysfunction. The higher susceptibility of men to
Parkinson's disease also implies that this factor exists and might have protective effects
against the nigrostriatal degeneration that is the hallmark of Parkinson's [252]. Estrogens are
a viable candidate for this factor – short-term injections of estradiol benzoate lead to an
increase in TH mRNA [271] and ovariectomy results in loss of TH-positive neurons [272].

6 NOVEL APPROACHES TO STUDYING SEX DIFFERENCES
Traditional animal models have played an invaluable role in advancing our understanding of
sex differences. In particular, scientists are able to conduct experimental manipulations that
would be unethical on human subjects. However, research on specific groups of people has
addressed some complex questions. In this section, we focus on research conducted on four
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such groups: people with sex-chromosome variations, people with genetic mutations of the
sexual development pathway, people attracted to the same sex, and those with cross-sex
gender identity. For readers interested in learning more about disorders of sex development,
several comprehensive resources exist [208; 273].

6.1 Genetic Disorders of the Sex Chromosomes
The most obvious genetic difference between females and males is their sex chromosome
complement (i.e., XX and XY). Various human sex chromosome disorders exist, which
might be considered a human model for sex chromosome effects similar to the four core
genotypes. The most common variants in men involve additional X or Y chromosomes:
Klinefelter's Syndrome (47,XXY); and 47,XYY Syndrome. In women, the most common
variants entail the addition or absence of X chromosomes including 47,XXX; 48,XXXX;
and Turner Syndrome (45,X).

Chromosomal abnormalities can highlight the role that sex chromosomes play in the
phenotypic differences typically seen between 46,XY men and 46,XX women. For instance,
adolescent girls with Turner Syndrome are more likely to have social difficulties compared
to 46,XX girls [274], which may be partly related to facial and emotional-processing
impairments [275]. Furthermore, 46,XX girls score better than boys on tests of social
cognitive skills [276]. The fact that both 46,XY boys and 45,X girls experience more social
adjustment problems compared to 46,XX girls suggests the presence of a genetic locus
involved in social cognitive skills on the X chromosome. Data from Skuse et al. [277],
suggest that this locus may be subject to imprinting. Significant differences between 45,XpO
Turner-syndrome girls (in which the X was of paternal origin) and 45,XmO girls (in which
the X was maternally derived) in terms of social skills have been reported. 45,XpO had
superior social competence and better social skills than 45,XmO girls suggesting that the
genes in this locus are expressed only from the paternal X. This could potentially be one of
the reasons why boys are more susceptible to disorders such as autism that affect social
adjustment and social skills such as language. In boys the X is only of maternal origin and
therefore this locus would be silenced.

In other cases, however, the characteristics of individuals with sex chromosome
abnormalities may augment the expected sex difference. On average, men in the general
population have better visuospatial skills than women, and women have better verbal skills
than men—which suggests that increased dosage of X chromosome genes may contribute to
these skills. However, women with Turner Syndrome have impaired visuospatial abilities
yet greater language skill compared to control women [278; 279].

The role of the Y chromosome in psychosexual differentiation is still unclear. Work by
McCarty et al. indicates that genes on the Y chromosome outside of SRY and the
pseudoautosomal region have “no obvious role…on psychosexual differentiation in genetic
males [244].” This is difficult to ascertain because (a) the incidence of XY gonadal
dysgenesis is extremely rare, estimated to be 1 in 20,000 [280]; and (b) these individuals
have been poorly studied in regards to sexual differentiation of the brain.

6.2 Androgen Insensitivity Syndrome
The role of the Androgen Receptor (AR) in brain sexual differentiation has been discussed
in patients with Androgen Insensitivity Syndrome (AIS). AIS is an X-linked recessive
disorder that is seen in 1 out of 20,400 live male births [281]. There are two forms of AIS:
Complete (cAIS) and Partial (pAIS). People with Complete AIS are genetically male (46,
XY with undescended testes) but phenotypically female. However, individuals with Partial
AIS typically have ambiguous genitalia.
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AIS is caused by mutations in the androgen receptor (AR) gene [282]. There is an important
difference in the behavioral phenotype between humans and rats with Complete AIS.
Humans with Complete AIS are female-typical in their play behavior and sexual orientation
[283]. In contrast, XY rats with AR mutations behave sexually like wild-type males and
have a male-typical partner preference [283]. The reasons behind this difference remain
unclear although the implication is that androgens play an important role in masculinizing
the human brain. However, we cannot completely discount the role of estradiol as the
expression of aromatase (which converts testosterone to estradiol) is dependent on androgen
signaling via AR [284].

Sexual Orientation
Of all behavioral differences between males and females, partner choice is one of the most
pronounced. With very few exceptions in the Animal Kingdom, males typically choose
females to mate with, and females typically choose males to mate with. Although sexual
selection is a driving force of evolution, little is known about the molecular basis of partner
preference.

Human sexual orientation is a complex phenotype to study. Part of this difficulty comes
from the accurate assessment of sexual orientation [285; 286], especially when researchers
depend on self-identification, which may be mediated by numerous social and psychological
factors [287; 288; 289]. Nevertheless, most people report primarily opposite-sex or
heterosexual attractions. Yet, a significant number of people (approximately 2–6%) report
predominantly homosexual attractions [290].

The distribution of sexual behavior differs between men and women. In men, the
distribution is largely bimodal [291]. That is, men are either attracted to one sex or the other.
Although there is disagreement regarding bisexuality among men [292], physiological
research has found that very few men (even those who openly identify as bisexual) show
comparable physical attraction to both men and women [293]. The distribution is more
complex in women, in which the fraction of women that show exclusive same-sex attraction
is lower than men (1–3%), but many more women than men report erotic fantasies towards
both sexes [294].

In this section we will highlight some of the biological research that has focused on same-
sex attraction. A more thorough review is available for interested readers [295].

6.2.1 Neuroanatomy differences in sexual orientation—Neuroanatomical
differences have been reported for three brain regions based on sexual orientation in human
males: the arginine vasopressin neuronal population of the suprachiasmatic nucleus, which
was larger in gay men than in male and female controls [296]; the third interstitial nucleus of
the anterior hypothalamus (INAH-3), which is smaller in gay men and more similar in size
to female controls [297]; and the anterior commissure, which is larger in gay men than in
control males and females [298]. The most discussed anatomical finding was in INAH-3
[297]. Although subsequent researchers reported inconsistent findings [299], a comparable
difference was found in sheep [300].

Approximately 8–10% of the domestic ram population has been found to sexually prefer
other males. Unlike other animal models showing atypical sexual behavior, these male-
oriented rams mount and ejaculate on other males versus simply exhibiting a passive stance
(i.e., lordosis). Consequently, they are an ideal animal model of male homosexuality because
their coital behavior is masculine but their sexual partner preference is feminine.
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An analogue of the sexually dimorphic nucleus (ovine SDN or oSDN)—a hypothalamic
nucleus thought to be involved in mate selection—was identified in the sheep brain [300].
The oSDN was found to be larger in female-oriented rams compared to male-oriented rams
(MORs), and ewes; the latter two groups had oSDN's comparable in size. It was
hypothesized that the oSDN corresponds with human INAH-3, which suggests that the
relevant neuroanatomical pathways are conserved between mammalian species.

6.2.2 The role of prenatal androgens—One of the main hypotheses on the
determinants of sexual orientation was that same-sex attraction was the result of atypical
sex-hormone levels during gestation. Studies in rodents and ferrets showed that pre- or
perinatal hormonal manipulation could lead to changes in partner preference, sexual
behavior, and coital performance largely controlled by the hypothalamus [301; 302]. Yet,
extending this hypothesis from animal research to humans is difficult in our opinion.
Atypical sexual behavior in rodents is hard to equate to human sexuality. For example, the
induction of lordosis in male rats does not change their partner preference. Instead, what
changes is the rat's entire sexual behavior, which is different from sexual orientation. Rather,
an animal that consistently chooses same-sex partners—such as the abovementioned ram
whose adult hormone levels are within the male-typical range [303]—would be a better
model. Furthermore, the treatment necessary to change the sexual behavior of rodents goes
far beyond any naturally occurring variation in androgen levels [304], and as such is
unlikely to reflect natural causes of human variation in sexual orientation. Additionally,
hormonal manipulations have failed to make male animals mount other males.

Case studies on humans with various genetic defects in the androgen pathway show only
limited support for the hypothesis. There are no reports showing an increase in attraction to
men in hypovirilized XY individuals relative to the general population. This implies that
disruption of the androgen pathway does not have a strong effect on male sexual orientation.
The role of androgens in female sexual orientation appears more complex. Women with
congenital adrenal hyperplasia (CAH) experience abnormal activity of the embryonic
adrenal glands. This leads to a much higher exposure of female fetuses to androgens, greatly
exceeding female-typical levels. The exposure is often high enough to cause some degree of
genital masculinization. Several studies have found that CAH women reported more same-
sex sexual activity and that more self-identified as homosexual compared to the general
population, which suggests that typical female sexual development is disrupted by extreme
prenatal androgen exposure [305]. It is important to note that while women with CAH
reported more gender atypical attitudes, interests, and behavior, the majority still identified
as heterosexual. The role of androgens in the sexual orientation of lesbian women who have
no genital masculinization is still unclear.

Two studies looked at genetic variation in genes related to the steroid pathway. A candidate
gene study on the human androgen receptor gene [306] and one on the aromatase gene
(CYP19) [307] found no evidence that variations in these genes play a role in variations in
human sexual orientation. A variety of anthropomorphic measures have been used as
indirect measures of prenatal androgen exposure, but results have been inconsistent. A
recent prospective study showed no correlation between maternal circulating androgen
concentration at 18 and 34 weeks of gestation and digit ratio in girls [308]. An in depth
discussion of these studies and a speculation on their widely varying results falls outside of
the scope of this manuscript. For a review on the often cited 2D:4D finger-length ratio in
sexual orientation, see McFadden et al. [309]. Finally, studies retrospectively examining the
influence of stressful events during pregnancy have been inconclusive [310; 311]. Therefore
we believe that there is little evidence that naturally occurring variations of prenatal
circulating gonadal hormones within one sex play a role in determining variants of sexual
orientation although diverging views have been expressed on this topic.
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6.2.3 The genetics of sexual orientation—Evidence is mounting that there is a strong
genetic component influencing sexual orientation. Family studies [312; 313; 314; 315] have
found an increased rate of homosexuality among siblings and in the maternal uncles of gay
men (a median rate of 9% for brothers of gay men) [316]. Although the concordance rates of
homosexuality in monozygotic twins vary depending on ascertainment methods [313; 317;
318; 319], twin studies have found that there is a substantial genetic component in the
development of sexual orientation.

There has been limited molecular genetics research. In 1993, Hamer et al. reported that male
homosexuality was more often on the mother's side of the family versus the father's side
[291]. A linkage scan showed significant linkage of male homosexuality to the X-
chromosome region Xq28 [291]. This finding was subsequently replicated by two studies
[294; 320] but not by an independent group [321]. However, a meta-analysis of the results
across all four studies yielded an estimated level of Xq28 allele sharing between gay
brothers of 64% instead of the expected 50% [322]. Nevertheless, the exact gene(s) involved
has (have) yet to be identified.

A different method also implicated the role of the X-chromosome. Unlike male cells, female
cells contain two X-chromosomes. Consequently, each female cell randomly inactivates one
X-chromosome during embryogenesis to create dosage compensation: The inactive
chromosome remains inactive in all resulting daughter cells [323]. If inactivation is
completely random, this means that in a population of female cells the maternal X will be
inactivated in 50% of the cells whereas the paternal X is inactive in the remaining half. If a
particular X chromosome, whether maternal or paternal, is inactivated in more than 90% of
cells, that individual is considered to be extremely skewed in regards to X-inactivation.
Mothers with gay sons were found to have extreme skewing of X-inactivation when
compared to mothers with no gay sons: Skewing in mothers with one gay son = 13/97 or
13%; skewing in mothers with two or more gay sons = 10/44 or 23% [324]. This suggested
an involvement of the X chromosome in the molecular mechanisms of sexual orientation.
Arguably, the effect of the X-chromosome gene(s) or mechanisms that influence sexual
orientation in the sons is visible in the blood of their mothers.

A genome-wide linkage scan on gay-brother pairs showed suggestive linkage to loci on
chromosome 7 and 8 [325]. A maternal origin effect was found near marker D10S217,
located at 10q26, with significant linkage for maternal meioses but no paternal contribution.
This result suggested the presence of a maternally-expressed, paternally-silenced imprinted
gene for sexual orientation in 10q26. The relatively small sample size (N = 456) likely
underpowered this study. However, a larger linkage scan on 1000 homosexual male sibling
pairs is currently underway (A.R. Sanders, personal communication).

The presence of a possible imprinted gene on chromosome 10 is particularly interesting.
Previously reported evidence of maternal loading of sexual orientation transmission was
initially used to implicate the X-chromosome in human sexual orientation, but it could just
as well indicate epigenetic factors acting on autosomal genes. A role for imprinted genes in
human sexual orientation was hypothesized earlier [326].

One of the most replicated findings in sexual orientation research is known as the `fraternal
birth order effect': Each older brother increases the odds of male homosexuality by
approximately 33% [327; 328]. This is relative to the baseline frequency of homosexuality,
and the odds of being homosexual are about twice as high for the fourth-born son relative to
the first-born son. Yet, this finding is not so simple: The effect is only influenced by older
brothers born via the same mother, it is not influenced by the number of older sisters, and it
only seems to be true for right-handed homosexual men [329]. The dominant hypothesis for
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this effect, which lacks empirical support, is that each successive male pregnancies increases
the mother's immunity against male-specific antigens expressed by the fetus [330; 331], and
this immune response affects any subsequent male fetuses. Although this phenomenon does
not directly implicate genetics, at the very least it demonstrates a biological basis for human
male sexual orientation and suggests the immune system as an alternative, gonadal
hormone-independent mechanism through which sex differences can be mediated.

Altogether, there is mounting evidence for a genetic role of human sexual orientation. The
overwhelming dominance of heterosexual behavior in the animal kingdom points at a tight
molecular regulation of this trait.

6.3 Gender Identity
Gender identity, or our sense of maleness or femaleness, plays an important role throughout
our development affecting both our sense of self and our relationships [295; 332; 333]. Our
gender identity and the roles ascribed to that gender are heavily influenced by social factors
[e.g. 334]. Most people adopt a gender identity congruent with the sex assigned at birth,
which remains constant throughout life [206]. The best approach to study the biological
basis of gender identity is to study individuals who develop a cross-gender identity—in
particular transsexuals.

Zhou et al. were the first to describe a sex difference in the central subdivision bed nucleus
of the stria terminalis (BSTc) in humans and a potential biological marker for gender
identity [335]. The type and direction of the sex difference mirrored that of the rat: the
volume of the BSTc is larger in men than in women. The study also found that the BSTc of
male-to-female (MtF) transsexuals is female-sized but the interpretation of this finding is
complicated. The MtF subjects used in the study had all received estrogen therapy so it
remains unclear if the sex difference is related to gender identity or hormonal exposure since
estrogens can modify the structure of the brain. A second confound is the relatively small
size of the sample pool as the authors were only able to gain access to tissue from six MtF
transsexuals.

The literature on the genetic basis of transsexualism is extremely limited. Although there are
reports of families where several members identify as transsexuals [336], such reports are
rare. There are few twin case studies, and they have reported differing concordance rates for
transsexualism [337; 338; 339; 340]. Since no systematic twin study has been reported, it is
impossible to separate genetic from environmental influences. Consequently, there is no
clear support for a genetic basis of transsexualism at this point.

A number of chromosomal abnormalities have been reported in transsexuals [341; 342; 343;
344]. In all cases, sex chromosomes were involved. The most common association was with
disomy-Y (47,XYY). However, because of the relatively high frequency of sex chromosome
aneuploidy (1 in 900 males for XYY; [345]) a statistically significant association with
transsexualism has not been shown.

A small number of candidate genes have been studied for transsexualism. A recent study
looked at a polymorphism in the gene coding for 5-alpha reductase and found no assocation
in a sample of MtF and female-to-male (FtM) transsexuals [346]. The same group found a
significant association between a single nucleotide polymorphism in the CYP17 gene (which
encodes the 17α-hydroxylase enzyme) in FtM transsexuals but not MtF transsexuals [347].
However, their sample size was small and they reported a significant difference in allele
distribution between male and female controls as well, shedding doubts on these results.
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A small study of MtF transsexuals in a Swedish population studied repeat sequences in or
near the androgen receptor gene, the estrogen receptor beta gene, and the aromatase gene.
They found an association between MtF transsexualism and a dinucleotide CA
polymorphism in the estrogen receptor beta (ERb) gene [348]. However, a larger study of
MtF transsexuals failed to replicate the ERb results and instead found a significant
association with the androgen receptor repeat[349]. This, too, was not replicated by a
subsequent research team [350]. Overall, the significance of these genetics studies remains
unclear.

7 CONCLUSION
There are many differences between men and women. In this review, we have focused on
brain sex differences because of the role that they play in people's health and behavior.
Historically, it was believed that such differences were solely due to gonadal hormone
secretions. Yet, emerging research is also implicating direct genetic effects.

The next challenge will be to first elucidate the molecular mechanisms by which these direct
genetic effects on sex differences arise. One way to address this question will be to
manipulate gene dosage in specific tissues and at specific times of development by using
targeted approaches in genetically modified animals. Another critical issue will be to
understand how compensation mechanisms between the sexes operate. de Vries proposed
that observed molecular sex differences may compensate for other sex differences rather
than generating differences between males and females themselves [351]. It will be crucial
to tease out whether small imbalances influence specific differences in neuropsychological
function. Finally, it will be essential to translate our knowledge of sex differences to
improve the quality of medical and psychological care.

As science continues to advance our understanding of sex differences, a new field is
emerging focused on better addressing the needs of men and women: gender-based biology
and medicine. The ultimate aim of this field is to translate scientific data into practical
applications that are effective for each sex [352]. From tailoring preventive screenings to
treating sex-specific illnesses, this field recognizes that “one-size-fits-all” healthcare has its
limits. Rather, our biological sex is an important variable that must be considered in our
mental and physical health.
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Figure 1.
The catecholaminergic pathway is sexually differentiated TH: Tyrosine hydroxylase, L-
DOPA: L-dihydroxyphenylalanine, NE: norepinephrine. (A) Chronic physical stress results
in sexually dimorphic responses. Dopamine (DA) activity is upregulated exclusively in
males flight blue arrow) while norepinephrine activity is upregulated exclusively in females
(yellow arrow) [58]. Only males experience impaired memory. (B) Control of TH
expression differs between the sexes. SRY, the testis determining gene, which is not found
in females, directly regulates TH expression in males [49; 270]. 17β-estradiol increases TH
expression only in males flight blue arrows) [353]. Aromatase activity is more responsive to
dihydrotestosterone (DHT) in males than in females (dark blue arrow) [354]. (C) Male rats
have higher NE levels than female ones in the amygdala (A) and hypothalamus (HT) early
in life [62]. When the rats reach day 300, the direction of this difference is reversed.
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Figure 2.
Serotonin (5-HT) is sexually differentiated on multiple levels. In addition to the differences
illustrated above, some of the loci that influence 5-HT levels in the blood are also sexually
dimorphic [66]. References: 1 - [67], 2 - [68], 3 - [65], 4 - [69].
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Figure 3.
2×2 comparison in the four core genotypes model. In this comparison, the factors are
gonadal sex and sex chromosome complement.
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Figure 4.
Sry regulates tyrosine hydroxylase (TH) levels and motor behavior. (A) Sry and TH
colocalize in the locus coeruleus (LC), ventral tegmental area (VTA) and substantia nigra
pars compacta (SNc) [49; 270]. (B) Knockdown of Sry expression in the SNc leads to a
reduction in the number of TH-immunoreactive (TH-ir) neurons. Unilateral infusion of
antisense oligodeoxynucleotides (ODN) against Sry decreased the number of TH-if neurons
by 38% compared to the contralateral side infused with sense ODN [49]. (C) Unilateral
downregulation of TH expression by Sry leads to asymmetric limb use. Animals
preferentially used the forelimb ipsilateral to the side of the antisense ODN infusion
(preferred limb highlighted in yellow) [49].
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Table 1

Selected neuroanatomical sex differences in the rat.

Structure/Region Known roles Sex difference Basis of difference

Sexually dimorphic nucleus
of the Preoptic Area (SDN-
POA)

The POA is implicated in the
regulation of male copulatory
behavior [14]. Lesions of the SDN
alone slow acquisition of this
behavior. Potential human
equivalent is INAH-3 [18].

2.6 times larger in males
[19].

Perinatal aromatized androgen
decreases neuronal apoptotic rates in
males [20].

Anteroventral
Periventricular Nucleus
(AVPV)

Involved in regulating the luteinizing
hormone surge in females [20] and
male copulatory behavior [21].

2.2 times larger in females
with a higher cell density
[22].

Degeneration of cells in this region is
greater in males [23] due to prenatal
action of androgen

Bed Nucleus of Stria
Terminalis (BNST)

Plays a role in the control of male
sexual behavior [24], release of
gonadotropin [25], and modulation
of stress [26; 27].

The principal nucleus
(BNSTp) is larger in volume
in males [28].

The larger volume in males is due to
sexually different apoptotic rates
caused by testosterone [29].

Corpus Callosum Conducts information between the
two halves of the cortex [30].

Larger in neonatal males
[31].

Organizational effects of testosterone
lead to masculinization while
feminization appears to be dependent
on estrogens [32; 33].

Arcuate Nucleus (ARC) Helps regulate the estrus cycle [34],
appetite and body weight [35].

Neurokin-B neurons
innervate capillary vessels in
the ventromedial ARC in
post-pubertal males only [6].

Dihydrotestosterone is responsible for
the masculine projection pattern [36].

Amygdala Strongly associated with emotion,
decision-making and Pavlovian
conditioning [37].

Adult males have a larger
medial nucleus than adult
females [38].

Treatment of females with estradiol
masculinizes this nucleus [38].

The posterodorsal aspect of
the medial amydala is 65%
larger in males [39].

Activational effects of circulating
androgens accounts for the larger
region in males [40].

Cerebral cortex Connected to a wide range of
processes from memory [41] to
language [42] to emotional
processing [43].

Right posterior cortex is
thicker than left but only in
males [44].

Gonadal hormones play a role in
maintaining the sex difference
(ovariectomy masculinizes the cortex
of females) [44].

Ventromedial Hypothalamic
Nucleus (VMN)

Involved in the control of lordosis,
mounting, and norepinephrine
release [45].
High concentrations of steroid
receptor mRNA have been observed
in the ventrolateral VMN [46].

Females have less synapses
in the ventrolateral VMN
compared to males [8].

Organizational effects of aromatized
testosterone appear to be crucial in
establishing the masculine trait [47].

Substantia nigra pars
compacta

Made up almost entirely of
dopaminergic neurons.
Dopamine is involved in control of
motor activity [48].

Females have 20% fewer
dopaminergic neurons [49].

A genetic component has been
demonstrated in mice [50].

*Note: This table highlights some prominent sex differences in the rat brain but it is by no means exhaustive. Conflicting evidence concerning the
examples reported here (particularly in the SDN-POA) exist, and the interpretation of the data is often more complicated than this summary
implies.
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Table 2

Selected neurochemical sex differences in the brain.

Neurochemical system/pathway Known roles Species Selected sex differences

Cathecolamines (also see Figure 1) Involved in the control of a variety of
processes including reproduction and
sexual behavior [51; 52], respiration
[53], and stress responses [54].

Rat Male have higher norepinephrine (NE)
levels in the amygdala and hypothalamus
at day 25. Direction of this sex difference
is reversed at day 300 [62].

In response to chronic physical stress,
dopamine (DA) activity is upregulated
only in males whereas NE activity is
increased only in females [58].

Human Women appear to be more dependent than
men on NE for long-term emotional
memory formation [63].

Serotonin Modulates a wide variety of processes
including mood, aggression,
perception, reward, and attention [64].

Rat and human Sex differences in the serotonergic system
are found at multiple levels [65; 66; 67;
68; 69]. See Figure 2 for an illustration of
some of these differences.

Aromatase Plays a key role in sexual
differentiation of the brain by
converting testosterone to 17β-
estradiol[70].

Rat Aromatase activity is higher in males than
females in many regions including the
anterior hypothalamus, BNST and POA
[71].

Only males experience spikes in the
expression of brain-specific and total
aromatase during embryonic development
and shortly after [72].

Vasopressin (VP) VP in the central nervous system
(CNS) has been linked to learning,
memory and motor behavior [73]. It
has also been connected to the control
of social behaviors such as pair-
bonding, parenting and aggression
[74].

Rat The number of vasopressin-positive cells
is 2 to 3 times higher in males than in
females [75].

Vasopressin-positive projections are also 2
to 3 times denser in males [75].

Intrahypothalamic release of VP due to an
increase of plasma osmolality is higher in
females. [76]

Human Some studies have found that plasma VP
concentrations are higher in men than in
women [73].

Cholinergic system The cholinergic system helps regulate
the sleep-wake cycle and modulates
synaptic plasticity implicated in
memory, learning, and development
[77; 78]. Sex differences are found at
many points in the cholinergic system
[reviewed in 73].

Rat Levels of acetylcholine (ACh) are higher
in females, regardless of estrous cycle,
than in males [79]. The maximal level of
Ach in females was found at proestrus.

The binding affinity of muscarinic Ach
receptors is lower in females than in males
[80]. Estrogens appear to modulate the
binding activity of these receptors [81].

Human Men are more sensitive to cholinergic
stimulation than women [82].

Opioid system Opioids are a class of chemical for
which receptors are found throughout
the CNS [83; 84].

Rat and mouse Generally, μ and κ class opioids seem
more effective in males than females
although in some cases the effectiveness is
equal [86]. In a minority of cases, they are
more effective in females.

Human μ-opioids appear more effective in women
than in men [86].

μ-opioids show significantly higher
binding potential in women in the
amygdala, thalamus and the cerebellum
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Neurochemical system/pathway Known roles Species Selected sex differences

Opioids exert an analgesic effect and
also play a role in stress response and
reproduction [85].

[87]. The sex difference in the first two
regions is reversed after menopause.
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Table 3

Sex differences in behavioral traits in humans.

Trait Sex Bias Evidence for the role
of hormones

Evidence for the role of
genetic factors

Other factors affecting sex
differences in behavior

Cognition Men do better at
spatial tasks [94] and
mathematical problem
solving [95]. Women
do better on verbal
fluency, articulation,
and verbal memory
tests [12].

Prenatal hormone
effects shown from
studies of CAH,
Turner's and androgen
insensitivity syndromes
[96]

No reliable evidence for
the effect of sex
chromosome genes proven
from studies of Turner's
and XX males [97]

Greater brain asymmetry in
men for both verbal and non-
verbal tasks [98; 99]

Play behavior-movement There are sex
differences in choice of
toys, gender of the play
partner, social play
[100] and movement
[101; 102; 103]

Testosterone influences
juvenile play [104]
Prenatal androgen
levels affect play
behavior and
movement [105; 106]

Genetics sex seems to
affect play behavior more
than prenatal hormone
exposure [104]

Parents and other socializing
agents (i.e. peers,
community, and child's own
cognitive processes) [107]
Developmental experience
[108], visual information
[109] affect movement
organization

Language Women perform better
on episodic memory
[110] and verbal
fluency tasks, men are
better at visuospatial
processing [111; 112;
113]
Greater dependence of
females on declarative
memory and males on
procedural memory
[114; 115]

Estrogen influences
word and declarative
memory abilities in
women [116; 117; 118;
119; 120; 121; 122;
123; 124]
Testosterone influences
word memory in men
[125]
Prenatal testosterone
levels relate to
language processing in
girls [126]

Single nucleotide
polymorphisms in the
gene, brain derived
neurotrophic factor
(BDNF) affecting BDNF
secretion rates, partly
accounting for greater
dependence of females on
declarative memory and
the sex differences
observed in language-
related tasks [127]

Greater degrees of left
hemispheric lateralization of
brain for language in males
and the bilateral language
processing in females [128]
Faster development of
hippocampal brain regions in
girls, activation of certain
brain regions such as
hippocampus and
parahippocampal gyrus [129;
130]

Aggression Foul language,
imitation of aggressive
models, violence and
physical aggression
more common in males
[131]

Estradiol and
progesterone
influencing the
serotonergic system
[132; 133]
Weak association
between testosterone
and aggression in both
sexes [134; 135]
High testosterone
levels leading to
increased verbal
aggression and
impulsivity in women
[136; 137]

Association between
serotonin transporter gene
polymorphisms and
greater impulsivity in
males but not females
[138]
Polymorphisms in
monoamine oxidase-A
(MAOA) gene associated
with antisocial personality
disorder and aggression in
males [139]

Low self-control, high
impulsivity and negative
emotionality [140]
Sex-specific disparities in the
neural circuitry of impulse
control and emotion
regulation, as well as
serotonergic systems [141]
Larger orbitofrontal cortexes
in women [142]
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Table 4

Sex differences in neurological disease.

Disease Sex Bias Evidence for the role
of hormones

Evidence for the role of
genetics

Other factors affecting
sex differences in
disease

Alzheimer's Disease (AD) Women demonstrate
higher AD prevalence
at older ages [143;
144].

Gonadal hormones
implicated in gender-
related cognitive
deficits of AD but the
interaction is complex
[145]

APOE allele type [146; 147]
(i.e. Less and slower rate of
amyloid plaque formation in
men due to APOE ε2 [148])

Greater degeneration in
areas of orbitofrontal
cortex, middle and
posterior cingulate
cortex, hypothalamus,
and mammilary bodies
in men, and anterior
thalamic in women
[149].

Parkinson's disease (PD) Overrepresented in
males [150; 151]
Age at onset is later in
women [152].
Pathological symptoms
of PD differ among
males and females
[153; 154; 155]

Most women manifest
PD after menopause
[156]
Estrogen affecting
BDNF secretion [157]
Early life estrogen
decline seems to be
more important [158;
159; 160]

Linkage to X chromosome
markers in 362 families, and
to Xq28 in 443 discordant
sibling pairs [161; 162]
Val66met polymorphism in
BDNF in women [163]

Environmental factors
[164]
Anatomical and
structural differences in
dopaminergic systems
among males and
females [107]

Autism There is a high male to
female ratio in the
prevalence of autism
[165]

Gonadal hormones
affecting oxytocin (OT)
and arginine
vasopressin (AVP)
receptors [166; 167]

Single nucleotide
polymorphisms in the OT
receptor in the Chinese Han
[168] and American
Caucasian population [169],
SNPs in the vasopressin
receptor (V1aR) gene [170;
171]
X-chromosome has effects
on cognition and social
aspects [172; 173]

Alterations in oxytocin
or arginine vasopressin
activity, and differential
processing of the
oxytocin precursor [174;
175; 176]

Addiction Drug addiction more
frequent in men [12]
Higher relapse rates,
faster progression of
compulsive drug abuse
and dependence have in
women [177; 178])

Estradiol levels
correlate with drug
induced reinforcing
behavior whereas
progesterone levels are
negatively associated
with addiction [179;
180; 181]

Genes encoded on sex
chromosomes can affect sex-
related differences in
addiction (the four core
genotype mice) [182]

Neuroanatomical
differences in motivation
systems among males
and females [107]
Sex-related alterations in
the cortico-limbic-
striatal system that
mediates reward
processing [183]

Depression Women are twice as
likely as men to
develop depression
during reproductive
years [184]

Low estrogen levels in
female rats mediated
by influences on
neurotransmitter levels
[185]
Low testosterone levels
associate with risk for
depression in young
and middle aged-men
[186; 187]

Heritability rates estimated to
be 70% [188]
Polymorphisms in serotonin
gene, estrogen receptor 1
(ESR1) polymorphism in the
presence of Val/Val genotype
of the Val158Met
polymorphism in the
Catechol-O-methyl
transferase (COMT) gene,
longer CA repeats of human
estrogen receptor 2 (ESR2),
short CAG repeats in
androgen receptor gene [189]

Maladaptive coping,
pessimism, dependency,
low self- esteem,
victimization, sexual
abuse, comorbid anxiety
disorder more common
in depressed women
[190]
Early life events increase
depression rates in adult
women [191]

Anxiety disorders The rate of anxiety
disorders is higher in
females [55]. The high
comorbidity of these
disorders with major
depression helps
account for the sex
difference in depression
[192].

States of anxiety and
panic have been
reported to be affected
by the menstrual cycle
and pregnancy,
implicating a role for
estrogen and
progesterone [55].
Pregnancy and
lactation seem to alter

TheVal158alleleof COMT is
associated with panic
disorder in Caucasian women
but not men [194]. In Asians,
Met158 is associated with
panic disorder in women but
not men [194].
5HTTLPR is a
polymorphism associated
with anxiety in humans. The

Animal studies indicate
females undergo less
neurobiological changes
in response to stress
compared to males
[193]. It is speculated
that this indicates
increased adaptability in
males and hence lower
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Disease Sex Bias Evidence for the role
of hormones

Evidence for the role of
genetics

Other factors affecting
sex differences in
disease

brain neurochemical
system that affect
anxiety and fear [193].

orthologous polymorphism in
rhesus macaques interacts
with early adversity in a
sexually dimorphic manner
[195].

prevalence of affective
illness [193].

Schizophrenia more common in men
than in women [196]
Age at onset is later in
women, another smaller
peak of onset during
peri- and post-
menopause [196; 197]
Pathological symptoms
of schizophrenia differ
among males and
females (males
experience more
negative symptoms,
greater decrease in
emotion expression and
recognition,, greater
paranoid delusions in
women) [198]
Lower chances of full
recovery, and a poorer
prognosis in men [196;
197]
Anatomical brain
differences between
male and female
patients

This disease is not
common before
adolescence and
puberty [199]
Male schizophrenics
have higher levels of
Luteinizing Hormone
(LH) and testosterone
than healthy subjects,
and female
schizophrenics higher
levels of LH and lower
levels of estrogen [200]

Eight ultra-rare variants in
eight distinct miRNA genes
in 4% of analyzed males with
schizophrenia [201]
Relatives of females with
schizophrenia demonstrate
higher levels of the psychotic
forms whereas relatives of
schizophrenic men express
lower rates of psychosis
suggesting the presence of
genetic heterogeneity [202]
Higher rate of CAG repeat
expansions among families
of female patients and not
male patients [203]

Anatomical and
structural brain
differences among males
and females [198]
Higher cortical levels in
males as compared to
females according to
some studies [198]
Higher sensitivity of the
dopamine system in men
as compared to women
(Normal males produce
more striatal dopamine
in response to an
amphetamine challenge
as compared to females)
[204]
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