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Abstract
Excessive oxidative stress and low-grade chronic inflam-
mation are major pathophysiological factors contributing 
to the development of cardiovascular diseases (CVD) 
such as hypertension, diabetes and atherosclerosis. Ac-
cumulating evidence suggests that a compromised anti-
oxidant system can lead to excessive oxidative stress in 
cardiovascular related organs, resulting in cell damage 
and death. In addition, increased circulating levels of 
pro-inflammatory cytokines, such as tumor necrosis fac-
tor α, interleukin-6 and C-reactive protein, are closely 
related to morbidity and mortality of cardiovascular 
complications. Emerging evidence suggests that inter-
ventions including nutrition, pharmacology and exercise 
may activate expression of cellular anti-oxidant systems 
via  the nuclear factor erythroid 2-related factor 2-Kelch-
like ECH-associated protein 1 signaling pathway and 
play a role in preventing inflammatory processes in 

CVD. The focus of the present review is to summarize 
recent evidence showing the role of these anti-oxidant 
and anti-inflammatory interventions in cardiovascular 
disease. We believe that these findings may prompt new 
effective pathogenesis-oriented interventions, based 
on the exercise-induced protection from disease in the 
cardiovascular system, aimed at targeting oxidant stress 
and inflammation.
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INTRODUCTION
Cell damage that occurs by insults such as oxidative stress 
and toxicants may contribute to atherosclerosis, coronary 
artery disease, stroke, myocardial infarction, Alzheimer’
s disease, Parkinson’s disease and cancer[1-5]. Of  these 
diseases, excessive oxidative stress and chronic inflamma-
tion are both major characteristics of  the pathology seen 
in type 2 diabetes (T2D), cardiovascular diseases (CVD) 
and the aging process[1,6]. Specifically, T2D and CVD are 
associated with increased production of  reactive oxygen 
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species (ROS) and compromised endogenous anti-oxidant 
defense. Oxidative stress is tightly regulated by a balance 
between production and removal of  ROS. ROS are natu-
ral by-products of  metabolism and these molecules play 
important roles in cell signaling. However, excessive levels 
of  ROS can be toxic to cells, i.e. whenever the expression 
of  anti-oxidant enzymes, including superoxide dismutases 
(SODs), heme oxygenase-1 (HO-1), NAD(P)H quinone 
oxidoreductase-1 (NQO-1), catalase and thioredoxin are 
not sufficient to control ROS and minimize ROS-induced 
damage[3]. A compromised anti-oxidant defense system 
can lead to excessive oxidative stress and ultimately result 
in cell damage[7-9]. 

Recent work has indicated that chronic inflammation 
is an important pathophysiological factor in the devel-
opment of  T2D and CVD, with increased circulating 
levels of  pro-inflammatory cytokines, such as circulating 
C-reactive protein (CRP), tumor necrosis factor (TNF)-α, 
interleukin (IL)-6 and IL-1β[10-14]. Opposing the pro-
inflammatory cytokines, anti-inflammatory cytokines, such 
as IL-10 and adiponectin, are inversely correlated with 
the incidence of  these diseases. These anti-inflammatory 
cytokines play a role in inhibiting the action of  TNF-α on 
endothelial cell adhesion, reducing nuclear factor (NF)-κB 
activation, and delaying macrophage foam-cell develop-
ment[15-18]. T2D and CVD are associated with aging and a 
sedentary lifestyle; however, emerging evidence suggests 
that the anti-inflammatory effects of  exercise and/or 
physical activity can reduce mortality and morbidity of  
these patients[19-22]. However, the mechanism(s) that confer 
anti-inflammatory effects following an exercise training 
regimen have not been clearly identified.

This review addresses the effects of  interventions, 
such as nutrition, pharmacology, genetics and exercise on 
anti-oxidant systems and on inflammation. 

ROLE OF INTERVENTIONS IN 
ENDOGENOUS ANTIOXIDANT 
SIGNALING
The anti-oxidant defense system is regulated, in large part, 
by a transcription factor termed nuclear factor erythroid 
2-related factor 2 (Nrf2), which is a member of  the cap ‘n’ 
collar subfamily of  the basic leucine zipper transcription 
factors[5]. Under normal physiological conditions, Nrf2 
is bound to a cytoplasmic repressor, termed Kelch-like 
ECH-associated protein 1 (Keap1)[23]. Keap1 functions 
as a substrate adaptor for a Cullin3-dependent ubiquitin 
ligase and targets Nrf2 for degradation by the protea-
some[24-26]. The substrate adaptor function of  Keap1 is 
inactivated in response to a range of  oxidative and elec-
trophilic stimuli such as ROS, diethyl malonate and certain 
disease processes, resulting in the accumulation of  Nrf2, 
which enters the nucleus and activates expression of  anti-
oxidant genes[5,9]. Although most investigators believe that 
Keap1-mediated repression occurs in the cytoplasm, sev-
eral studies have shown that Nrf2 and Keap1 can shuttle 

between the nucleus and the cytoplasm[27-29]. In the nucle-
us, Nrf2 forms a heterodimer with members of  the small 
musculo-aponeurotic fibrosarcoma (Maf) transcription 
factor family. These Nrf2/Maf  heterodimers bind to an-
tioxidant response elements present in the promoters of  
numerous anti-oxidant genes, including NQO-1, glutathi-
one S-transferase, glutathione peroxidase (GPx), catalase 
and HO-1[5,9,30-32] (Figure 1). Nrf2 is widely expressed and 
it has been studied in many different tissues[7,33,34]. In the 
cardiovascular system, it has been shown that ischemia/
reperfusion (I/R) down-regulates Nrf2 protein expression 
in rat heart and that aging decreases glutathione synthesis 
via diminished Nrf2 signaling in rat vascular endothelial 
and smooth muscle cells, suggesting that Nrf2 may play 
a critical role in the development of  CVD in the aged 
population[6,35]. He et al[30] have shown a functionally de-
creased contractility when Nrf2 is genetically deleted from 
cardiomyocytes due to a marked increase in high-glucose 
oxidative stress and apoptosis. 

Role of nutrition in antioxidant signaling
Numerous studies have indicated that increased oxida-
tive stress may be involved in the pathogenesis of  CVD. 
Several animal models suggest that when endogenous 
anti-oxidant systems are overwhelmed, exogenous anti-
oxidant supplementation can be used for preventive and/or 
therapeutic intervention of  oxidative cardiovascular disor-
ders[35,36]. Phenolic acids are a group of  compounds that are 
widely distributed in natural plant foods including fruits, 
vegetables and whole grains[36]. Yeh et al[36] have shown 
that 14 d of  oral gavage (100 mg/kg) of  phenolic acids in 
male rats increased anti-oxidant capacity via SOD-1, GPx 
and catalase, while HO-1 mRNA increased via Nrf2 sig-
naling in the heart. Other phytochemicals, such as those 
found in broccoli sprouts may confer protection against 
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Figure 1  The role of interventions in nuclear factor erythroid 2-related factor 
2-Kelch-like ECH-associated protein 1 signaling pathway. Nuclear factor ery-
throid 2-related factor 2 (Nrf2) can be activated by interventions such as nutrition 
(phytochemical, phenolic acids), pharmacology (MG132, H2S) and oxidative and 
electrophilic stimuli. Under basal conditions, Nrf2 is sequestered in the cytosol 
by binding with Kelch-like ECH-associated protein 1 (Keap1). On activation, Nrf2 
can be released from Keap1 and translocated into the nucleus. Nrf2 forms a het-
erodimer with musculo-aponeurotic fibrosarcoma (Maf) and antioxidant response 
element (ARE) and regulates phase II anti-oxidant enzymes. NQO-1: NAD(P)H 
quinone oxidoreductase-1; GST: Glutathione S-transferase; GPx: Glutathione 
peroxidase; HO-1: Heme oxygenase-1.



cancer, although little is known about these effects on the 
cardiovascular system[37,38]. Recently, Mukherjee et al[35] have 
tested if  daily consumption of  broccoli, which contains 
sulforaphane and selenium for 1 mo could be beneficial to 
the heart. They have found that broccoli induced cardio-
protection in I/R through the induction of  HO-1[35].

Role of pharmacology and genetics in antioxidant 
signaling
The proteasome system uses a ubiquitin tag to activate 
the major intracellular protein degradation in eukaryotic 
cells[39]. The ubiquitin-proteasome system is critical for 
degradation of  proteins related to the cell cycle and apop-
tosis[40,41]. In this sense, proteasome inhibition has been 
highlighted as a promising therapeutic target for treatment 
of  human diseases. For instance, proteasome inhibitors 
have been proposed as an anti-inflammatory treatment 
via inhibition of  NF-κB[42]. As steady-state levels of  Nrf2 
increase following proteasome inhibition, Dreger et al[39] 
have suggested that non-toxic inhibition of  the ubiquitin-
proteasome system by MG132 (0.5 μmol/L for 48 h) may 
contribute to protection of  rat cardiomyocytes against ox-
idative stress via Nrf2-mediated transcriptional activation 
of  anti-oxidants. Calvert et al[43] showed that hydrogen sul-
fide (H2S) may be an attractive pharmacological agent for 
the treatment of  CVD by up-regulating anti-oxidants and 
anti-apoptogens. They showed that 100 μg/kg precondi-
tion by H2S in the form of  sodium sulfide resulted in pro-
tection against myocardial I/R injury in a mouse model by 
increasing endogenous anti-oxidant defenses via an Nrf2-
dependent manner. In this study, Nrf2 deficient mice 
showed an exacerbated injury in response to I/R, suggest-
ing that Nrf2 may play an important cardio-protective role 
in heart disease[43]. On the other hand, Sussan et al[44] have 
shown that disruption of  Nrf2 in apolipoprotein E (ApoE) 
knockout mice significantly decreased atherosclerotic 
plaque after 20 wk of  high-fat diet. However, Nrf2 knock-
out mice showed increased susceptibility to pulmonary 
emphysema, asthma and sepsis due to increased oxida-
tive stress and inflammation[44]. This study suggested that 
Nrf2 might promote atherosclerotic plaque development 
through a mechanism separate from oxidative stress. More 
studies are required to fully understand the contribution 
of  Nrf2 signaling in regards to atherosclerosis. 

Role of exercise and physical activity in antioxidant 
processes
A sedentary lifestyle is a risk factor for T2D and CVD 
with several clinical studies illustrating a reduction of  mor-
tality and morbidity in physically active individuals com-
pared to sedentary individuals[45-47]. Exercise or physical ac-
tivity may contribute to improvement of  insulin resistance 
via improved insulin action, improved vascular function 
via increase of  nitric oxide (NO) bioavailability, and by 
increasing ROS-detoxification and decreasing ROS gen-
eration[48-53]. Since generation of  ROS is a normal result 
of  aerobic metabolism, it is efficiently removed by cellular 
anti-oxidant systems under physiological conditions. Sev-

eral studies have shown that chronic exercise training in-
creases SOD gene expression in vascular systems. Exercise 
training increased SOD-3 gene expression in mice aorta 
in NO-dependent manner and up-regulated SOD-1 in 
Yucatan miniature pig aortas[50,51]. Recently, Moien-Afshari  
et al[54] have suggested that low intensity exercise training 
increased SOD-1 protein expression, whereas moderate 
intensity increased SOD-2 gene expression in diabetic 
mice aorta with improved NO availability. Even though 
many studies have shown that exercise and physical activ-
ity up-regulated anti-oxidants such as SODs in cardiovas-
cular systems, little is known about how exercise and phys-
ical activity may increase phase Ⅱ anti-oxidant systems via 
the Nrf2-Keap1 signaling pathway[50,51,54,55]. Even though 
there are no clear studies to determine if  exercise training 
may alter Nrf2 signaling, Niess et al[56] have shown that 
leukocytes from endurance trained athletes down-regulate 
the baseline expression of  HO-1, presumably due to the 
adaptation mechanism of  exercise training. Since HO-1 
is an anti-oxidant protein that is mainly induced through 
the Nrf2-Keap1 signaling pathway, exercise training may 
down-regulate Nrf-2 signaling in humans. However, more 
studies are needed to further elucidate the effect of  exer-
cise on Nrf2 mechanisms in the cardiovascular system.

ROLE OF EXERCISE IN INFLAMMATION
Effect of acute exercise on inflammation
The effect of  acute exercise on pro-inflammatory cyto-
kines release has been a matter of  considerable debate, 
since although a majority of  studies have reported that 
acute exercise simulates release of  inflammatory cyto-
kine[57-61], some studies have also shown that acute exercise 
did not change levels of  the pro-inflammatory cytokines 
TNF-α and IL-1β[58,61-63]. These discrepant findings sug-
gest that the level of  pro-inflammatory cytokines during 
and following exercise is dependent on several factors 
including the pathological condition, intensity and dura-
tion of  exercise, and timing of  sampling[64]. For example, 
plasma concentration and muscle mRNA expression of  
TNF-α are elevated in chronic obstructive pulmonary 
disease patients during continuous moderate-intensity 
exercise (for 11 min at 40% VO2max) whereas no change 
occurs in normal individuals[64]. Although the circulating 
level of  TNF-α is not altered during low intensity and 
long duration of  two-leg knee extensor exercise, short 
duration and high intensity of  cycling exercise, approxi-
mately 80% VO2max, increases the circulating level of  pro-
inflammatory cytokines, IL-4, IL-6, TNF-α, interferon 
(IFN)-γ and anti-inflammatory cytokine such as IL-1β and 
IL-10[59,64]. Ostrowski et al[57] found that IL-6 and IL-1 re-
ceptor antagonist (IL-1ra) levels were enhanced during 2 h 
of  continuous exercise (measured at every 30 min for 2 h) 
and following exercise, despite no change in the TNF-α 
level. Of  these multiple pro-inflammatory cytokines, IL-6 
is the most responsive cytokine that is increased during 
and following exercise and it is related to exercise intensity, 
duration, and muscle mass recruited[65,66]. Contracting skel-
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etal muscle is one of  the major sources of  IL-6 produced 
during exercise. For example, during even moderate inten-
sity of  exercise (50% of  maximal power output), 3 h of  
dynamic two-legged knee-extensor, muscle IL-6 mRNA 
expression and plasma concentration of  IL-6 is increased 
16-fold and 20-fold, respectively[67]. An even greater 
amount of  IL-6 is produced in higher intensity and lon-
ger duration of  exercise[66]. More interestingly, Petersen  
et al[66] suggest that IL-6 produced from working muscle 
can play a hormone-like role that stimulates lipolysis and 
fat oxidation in adipose tissue and induces gluconeogen-
esis in liver that may enhance exercise capacity. Moreover, 
IL-6 has been suggested as an anti-inflammatory cytokine 
because some studies have shown that an infusion of  
IL-6 decreases TNF-α production in healthy humans and 
stimulates the release of  anti-inflammatory cytokines, IL-1ra 
and IL-10[68,69]. However, IL-6 is a well-established pro-
inflammatory cytokine that is closely linked to various 
CVD and morbidity and mortality of  several diseases. 
One possible explanation of  a paradoxical role of  IL-6 as 
an inflammatory cytokines and as a mediator of  beneficial 
adaptation to exercise is the location of  IL-6 production. 
Muscle contracting-induced local production of  IL-6 may 
play a positive role in lipid and carbohydrate metabolism 
during exercise whereas systemic IL-6 may result in a 
negative consequence of  tissue injury, chronic infection 
and diseases.

Effect of chronic exercise on inflammation
Exercise training and/or a high level of  physical activity 
has a beneficial effect on inflammation through a reduc-
tion of  pro-inflammatory cytokines and an increase in 
anti-inflammatory cytokines. Cross-sectional studies show 
lower plasma levels of  IL-6, TNF-α and CRP while high-
er plasma levels of  IL-10 and adiponectin occur in physi-
cally active individuals compared to physically inactive 
groups[16,70-72]. Exercise decreases pro-inflammatory cyto-
kines and indicators of  systemic inflammation. For exam-
ple, long-term exercise (for 6 mo) significantly attenuates 
the production of  pro-inflammatory cytokines, TNF-α 
and IFN-γ, and enhances the anti-inflammatory cytokine 
IL-10 in individuals at risk of  developing ischemic heart 
disease[73]. Participation in an exercise training program for 
6 mo in patients with stable chronic heart failure (CHF) 
significantly decreases the mRNA expression of  TNF-α, 
IL-6, IL-1β in skeletal muscle, compared to the healthy 
individuals[74]. On the other hand, some studies demon-
strate that the levels of  pro-inflammatory cytokines are 
not significantly altered after exercise training in the obese 
individuals and healthy elderly[75-77]. This discrepancy may 
be derived from differences in experimental design and 
disease status of  the subjects. The studies showing the 
effectiveness of  exercise training on pro-inflammatory 
cytokines investigated the patients with severe disease 
conditions such as CHF and ischemic heart disease where 
basal levels of  cytokines were already elevated compared 
to the healthy individuals before the exercise training[73,74]. 
In contrast, no apparent change in pro-inflammatory cy-

tokines is shown in relatively less severe conditions, such 
moderate obesity (approximately 40% of  % body fat) 
and aging (approximately 66 years old)[75-77]. Moreover, 
local change in inflammation after exercise training is an 
important factor to be considered. For example, mRNA 
expression of  pro-inflammatory cytokines, TNF-α, IL-6, 
IL-1β in skeletal muscle are reduced after exercise train-
ing although the circulating levels of  those cytokines are 
not changed[74]. This finding suggests that exercise training 
does not play a role in reducing systemic inflammation 
and is not effective enough to reduce the circulating levels 
of  cytokines. However, regional expression of  cytokines 
in skeletal muscle are affected. This regional reduction of  
pro-inflammatory cytokines in skeletal muscle may have 
a beneficial effect in skeletal muscles homeostasis despite 
the lack of  effect on systemic inflammation.

Mechanisms of anti-inflammatory effect of exercise
As previously described, acute exercise stimulates produc-
tion of  pro-inflammatory cytokines and superoxide (O2

-•) 
that can cause the tissue injury. Interestingly, exercise 
induced pro-inflammatory cytokines are triggers to gener-
ate the anti-inflammatory cytokines such as IL-10, IL-1ra 
and transforming growth factor β and the anti-oxidant, 
SOD-2 that have protective functions[58,60,63]. The major 
role of  these cytokines is to recruit neutrophils and mono-
cytes into injured tissue for repair[78]. During this process, 
anti-inflammatory cytokines and anti-oxidant mechanisms 
can be initiated and limit the inflammatory reaction in 
response to exercise. It is suggested that this stimulated 
anti-inflammatory mechanism, in turn, may down-regulate 
production of  pro-inflammatory cytokines during and fol-
lowing exercise. 

CONCLUSION
Oxidative stress plays a critical role in the pathology of  
CVD. Exogenous anti-oxidant supplementations such as 
broccoli, curcumin and phenolic acids as well as stimula-
tors of  endogenous pathways such as MG132, H2S and 
exercise seemed to be effective in providing cellular pro-
tection. However, large discrepancies are noted among 
several studies. For example, Sussan et al[44] have shown 
that double deletions of  ApoE and Nrf2 genes in mice 
aortas showed a decrease in plaque area compared with 
ApoE knock-out mice in spite of  the anti-oxidant effect 
of  Nrf2. This suggests that upregulation of  Nrf2 may 
play a detrimental role in generation of  atherosclerosis. 
On the other hand, several studies have suggested ben-
eficial roles of  Nrf2 in the cardiovascular systems. These 
contradictory findings based on narrowly focused studies 
indicate that a broader understanding of  Nrf2 is needed 
to understand the role of  the oxidant/anti-oxidant system 
in cardiovascular disease. Physical activity and/or exer-
cise training provides an ideal experimental context for 
further study of  Nrf2 and other cytokines because acute 
exercise induces an increase in pro-inflammatory cytokine 
production that eventually stimulates anti-inflammatory 
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responses to achieve an overall beneficial anti-inflamma-
tory effect. The elucidation of  the mechanisms governing 
exercise-induced protection from disease in the cardiovas-
cular system is needed to devise more effective therapies. 
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