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Abstract
Classification of mitochondrial DNA (mtDNA) into their respective haplogroups allows the addressing of various
anthropologic and forensic issues. Unique to mtDNA is its abundance and non-recombining uni-parental mode of
inheritance; consequently, mutations are the only changes observed in the genetic material. These individual muta-
tions are classified into their cladistic haplogroups allowing the tracing of different genetic branch points in human
(and other organisms) evolution. Due to the large number of samples, it becomes necessary to automate the classi-
fication process. Using 5-fold cross-validation, we investigated two classification techniques on the consented
database of 21141 samples published by the Genographic project. The support vector machines (SVM) algorithm
achieved a macro-accuracy of 88.06% and micro-accuracy of 96.59%, while the random forest (RF) algorithm
achieved a macro-accuracy of 87.35% and micro-accuracy of 96.19%. In addition to being faster and more
memory-economic in making predictions, SVM and RF are better than or comparable to the nearest-neighbor
method employed by the Genographic project in terms of prediction accuracy.
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INTRODUCTION
Mitochondrial DNA (mtDNA) is the DNA located

inside cell organelles called mitochondria. Whereas,

regular nuclear DNA is present as a single copy per

cell residing in the cell nucleus, mtDNA exists in

multiple (2–10) copies within every mitochondrion

present in the cell [10]. This means anywhere from

hundreds of copies of mtDNA in regular cells to over

10 000 in liver cells, giving scientists easy access to

vast numbers of samples as well as the higher likeli-

hood of mtDNA surviving over time versus nuclear

DNA. Further, differentiating mtDNA from nuclear

DNA is its evolutionary origin. Due to its circular

nature reminiscent of bacterial DNA, it is believed

that the mtDNA is a component of ancestral bacte-

rial DNA that was consumed by early eukaryotic

cells: ancestors to modern cells. It is also believed

that the vast majority of nuclear DNA originated

from this bacterial origin before eventually transfer-

ring to the nucleus through evolution.

What makes the study of mtDNA intriguing

is its uni-parental and non-recombining mode of
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inheritance. Normal nuclear DNA is passed from

one generation to subsequent generation through

meiosis, where genetic material in the form of chro-

mosomes are halved from each parent, followed by

fertilization where the two gametes are fused to the

original number of chromosomes. During meiosis,

genetic recombination occurs as chromosomes

of each pair usually cross over. In this form of repro-

duction only half of the parental nuclear DNA makes

it into the genetic code of the offspring.

In contrast, mtDNA is inherited almost exclu-

sively from the mother. Mechanisms for this are

attributed to simple dilution as each egg contains

anywhere from 100 000 to 1 000 000 copies of

mtDNA whereas sperm cells carry only 100 to

1000 (the majority of which resides wrapped

around the tail that is oftentimes discarded as the

sperm mates with the egg). Additionally, it has

been shown that mammalian sperm cells are

marked with ubiquitin during fertilization for

destruction later on inside the embryo.

This mode of maternally exclusive inheritance

allows the tracing of human lineage far back in

time as the mtDNA remains constant from one gen-

eration to the next. This is further compounded by

mtDNAs’ susceptibility to reactive oxidative species

leading to a large number of mutations that allows

detailed cladistic (a form of biological systematics that

classifies living organisms based on shared ancestry)

ancestral studies [1].

Launched in 2005, the Genographic project [2]

under the direction of the National Geographic

Society began assembly of a large database of

mtDNA samples to address anthropological issues

on a global level. A total of 78 590 typed mtDNA

samples are collected with 21 141 samples released to

the public at the participants’ consent.

To make use of mtDNA in anthropologic studies,

the DNA is sequenced and classified into designated

haplogroups (Hgs) which contain similar haplotypes

that share a common ancestor based on single

nucleotide polymorphism (SNP) mutations. Most

recent sequencing technology sequence the first

hypervariable region (HVR-I) of the circular

DNA. Although many different definitions exist for

the location of HVR-I, the nucleotides used in this

project consists of those in the range from 16 024 to

16 569.

Due to mtDNAs’ susceptibility to mutation,

that allows the possibility of numerous back muta-

tions (a mutation that reverts to its original

phenotype) as well as the occurrence of homoplasy

(acquisition of identical traits in unrelated lineage),

the Genographic project also conducted the typing

of 22 coding region biallelic sites in addition to

the standard extended sequencing of HVR-I; the

Hgs utilized in the database are defined by

the combined use of the 22-SNP panel results and

the HVR-I haplotypes. A subset of 16 609 samples,

known as the reference database, are used to train a

function to automate the labeling and categorization

process of the genetic information found in HVR-I.

The Genographic Project currently utilizes two

1-nearest neighbor (1-NN) based classification algo-

rithms [3] for the task of categorizing HVR-I

mtDNA sequences into their 23 basal Hgs. The

1-NN approach is a classification method in pattern

recognition and instance-based learning (the algo-

rithm constructs hypotheses from training instances

that allows increasingly complex hypotheses in larger

training sets) often considered one of the simplest

machine learning algorithms.

The leave-one-out cross-validation accuracy

on the reference database is determined to be

96.72–96.73%. This was compared to a rule based

approach algorithm which only attained an accuracy

of 85.3%. This can be mostly attributed to the

sensitivity of rule based algorithms to the homoplasy

and back mutations often associated with mtDNA

HVR-I [2]. Since such parallel evolution is ram-

pant in mtDNA, the ability of rule-based algo-

rithms to classify HVR-I Hgs is expected to be

unreliable [1].

In this study, we investigate two state-of-the-art

classification algorithms. Namely, the random forest

(RF) and support vector machines (SVM) algo-

rithms. These two algorithms are promising because

they often yield comparable accuracy to the 1-NN

algorithm. Moreover, these two algorithms are more

efficient in terms of time spent on predicting new

samples. Experiments conducted on the consented

database show that SVM is the most accurate one,

correctly classifying 70 more samples than 1-NN.

RF is slightly less accurate but still comparable to

1-NN. We further analyze the results on Hgs with

low accuracy rates by examining the confusion

matrices and discuss the possible causes.

This article is organized as follows. We introduce

the classification algorithms in the next section. The

results are presented and discussed in section ‘Results

and Discussion’. We then give the concluding

remarks in the last section.
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MATERIALSANDMETHODS
We first introduce the 1-NN algorithm employed by

Behar et al. [2]. We then briefly describe two addi-

tional classification algorithms: RF and SVM. These

classification algorithms are evaluated using the con-

sented database, Database S1 [4], compiled by the

Genographic project. This database consists of

21 141 mtDNA samples, each of which is genotyped,

and whose HVR-I haplotype is provided. Each

sample is transformed into a vector of 545 binary

variables, each of which indicates the presence

or absence of a SNP. The samples have been

Hg-labeled into coarse Hgs and further sub-Hgs,

with classification achieved through the use of a

panel of 22 coding-region SNPs and hypervariable

region I (HVR-I) motifs. These Hg-labels are recog-

nized as the ‘gold-standard’, to which all other

classifications will be compared. To facilitate com-

parison, the dataset is split into five subsets and 5-fold

cross-validation of the algorithms is conducted using

the same partition.

K-Nearest neighbor
Being an instance-based classification algorithm, the

k-NN algorithm relies on a reference dataset, each

sample in which is tagged with an Hg label. A new

sample is classified by a majority vote of its k-NN.

The distance between two samples is gauged by the

Hamming distance, the number of letters that differ

between the two. The best choice of k generally

depends on the data; a larger k value will eliminate

noise and errors found in the dataset but also blur the

boundaries between distinct classes. An optimal

k value can be obtained using a heuristic approach

such as cross-validation. Due to the large amount of

samples available to the project, the Genographic

project utilizes the 1-NN method (where k¼ 1) [2].

The NN algorithm has the advantages of being

easy to implement and interpret. It is in theory, the

optimal classifier minimizing the expected squared

prediction error [5] when there are a substantial

number of reference samples uniformly distributed

in space. The algorithm, however, becomes compu-

tationally intensive, especially as the sample size

grows (as in the case of the Genographic project

with over 70 000 samples).

Random forest
Leo Breiman and Adele Cutler’s RF algorithm [6] is

a class of supervised, ensemble learning algorithms.

RF grows ntree single decision trees, each tree

submitting a ‘vote’ of classification. A given sample,

in this case, a mtDNA HVR-1 haplotype, is input

through all ntree trees. The Hg that receives majority

vote is attached to the sample. Given a training data-

set consisting of n samples and m features, a decision

tree in RF is grown and propagated by (i) creating a

bootstrap sample of equivalent size n by random

sampling with replacement from the pool of n sam-

ples, (ii) selecting a designated mtry (<<m) features,

sampling without replacement from the available

pool of m for each tree, with one variable deciding

the split at each node of a decision tree and (iii)

growing the tree to full potential, without any prun-

ing. Across a forest, bootstrap samples and composi-

tion of mtry nodal variables or features vary.

The random sampling inherent in RF accommo-

dates several advantages. Each decision tree in the

forest is built from a different bootstrap sample.

Bootstrap samples typically represent approximately

two-thirds of the available and full sample pool [7].

The training set for any particular classification tree

leaves out a significant portion of the samples, thus

called ‘out-of-bag’ (OOB) data. These excluded

samples, because they were not used to construct a

given tree, serve to provide an unbiased estimate of

classification error. All OOB data is input through

their respective trees and a classification for each

OOB case is voted on. The collective OOB data

serve as a formative test set, and each OOB case or

sample assigned a series of test set classifications, the

number equivalent to how many times that particu-

lar case was left out of the training set for a tree.

OOB error is calculated by taking the proportion

of classifications for a OOB case that do not agree

with the true, ‘gold-standard’ classification over the

total number of cases.

Though OOB error is stand-alone and sufficient

indication of accuracy rates for a RF model, not all

samples become OOB data when constructing the

forest. Furthermore, predictions for cases are difficult

to extract. In order to accommodate fine-tuned ana-

lysis of predicted versus observed Hg labels for every

sample, using cross-validation ensures that all samples

are eventually input into the model, and a classifica-

tion provided for each sample.

The mtry and ntree parameters for our RF models

have been carefully selected so as to minimize the

OOB error. The tuneRF function of the RF pack-

age locates the optimal mtry value for each ntree value

considered. The best pair of ntree and mtry is then

selected to be the one with the lowest OOB error.

Learning algorithms for classification of mtDNA 3



In this study, the ntree values 300, 400 and 500 are

considered.

Principal component analysis and RF
Especially with such a large dataset at hand, with 545

variables (SNPs), RF demands lots of memory and

running time. With so many variables to consider,

creating a straightforward and reliable model often

becomes excruciatingly difficult. Training a model in

RF becomes unwieldy and highly time consuming,

also compromising accuracy and model efficacy due

to the presence of so many variables, some of which

may not even hold any relevance to the classification

scheme. Principal component analysis (PCA) [5, 8] is

a factor analysis technique that identifies the most

meaningful basis in which to express a given dataset.

PCA preserves the dynamics of the original dataset,

but expresses it in another basis that may or may not

be of reduced dimension. The new basis vectors

represent the principal components (PCs) of the

new subspace.

We achieve PCA through eigendecomposition

[8]: (i) Let X be an n by m matrix, where n is the

number of mtDNA samples and m is the number of

variables in consideration. (ii) Find the sample covar-

iance matrix CX of the original m variables in X.

(iii) Perform eigendecomposition on CX such that

PTCXP¼CY, where P is an orthogonal matrix,

whose columns are the PCs, and CY, a diagonal

matrix containing the eigenvalues, is the sample cov-

ariance matrix of the new m variables defined by the

PCs. (iv) Let Y¼XP be the transformed dataset, X
projected onto the new subspace defined by the PCs.

Construction of RF models can then be based on the

transformed dataset Y.

A further dimensional reduction step of PCA is to

select k PCs out of the total m new variables or PCs.

Oftentimes, k is varied by ordering PCs (eigenvec-

tors) by their respective variances (eigenvalues). In

this study, k¼ 64 when 90% of total variance is

accounted for in the 64 PCs with the highest eigen-

values. Likewise, k is varied such that k PCs with the

highest eigenvalues are selected.

Feature selection is a by-product of RF. A

built-in function of the RF package, importance,

ranks variables according to their respective Gini

index, a numeric indicator of decrease in node impu-

rity when a particular variable is purposely consid-

ered in the construction of an RF classification

model [7]. After a RF model is trained on the trans-

formed dataset, we obtain the importance value for

each PC. The agreement between the eigenvalues

and the importance values can then be accessed by

computing the correlation between the two scores.

Support vector machines
Support vector machine classification is a binary clas-

sification algorithm, where only two classes are pre-

sent in a training dataset [5, 9]. That is, a training

dataset takes the following form:

D ¼ fðxi,ciÞjxi 2 Rm,ci 2 f�1,1g,i ¼ 1,2, . . . ,ng, ð1Þ

where xi is a m-dimensional real vector and ci is the

class to which the point xi belongs. Given a training

dataset, SVM maps the samples to a high-dimen-

sional space and seeks a maximal-margin separating

hyperplane between the two classes of samples while

mis-classification is allowed with penalty. Mapping

the original space to a high-dimensional space, often

called the feature space, is achieved by the use of a

kernel function which implicitly maps two samples

to the feature space and computes the inner product

between them. Mapping samples to the feature space

has the benefit of making those samples inseparable

in the original space separable. The radial basis func-

tion (RBF) kðxi,xjÞ ¼ expð��jjxi � xjjj
2Þ is the

kernel of choice, where g is a parameter.

Despite being a binary classification algorithm,

SVM is capable of handling multi-class data. The

implementation we use, LIBSVM [11], takes the

one-against-one approach, where a classifier is built

for each pair of classes. Therefore, for a k-class clas-

sification problem, k(k-1)/2 classifiers are trained.

This approach is more computation-intensive than

others such the one-against-the-rest method, but it

was shown empirically to be more effective in terms

of prediction accuracy. In order to optimize the

performance of SVM, 5-fold cross-validation is

conducted on the consented database to tune the

parameter C, the penalty constant, and g on a grid

[12]. Following the determination of the optimal

parameters, the algorithm is trained again using the

optimal parameters and the 5-fold cross-validation

accuracy on the consented database is obtained.

RESULTSANDDISCUSSION
The RF package for R was used in this study [13].

RF was run through a 4 GB RAM Windows server

and loaded through the RGUI programming envi-

ronment. We performed seven runs of RF, with and

without sub-selection of variables and with k¼ 64,
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100, 200, 300, 400 and 545 variables considered for

each model, as shown in Table 1. The performance

is compared in terms of micro-accuracy and

macro-accuracy. The former is the weighted average

of all Hg-wise accuracy rates, whereas the latter

represents the non-weighted, raw average.

We ran importance on RF with the first 100 of

545 eigenvectors or PCs in descending order of the

corresponding eigenvalues. A correlation coefficient

of 0.64 was calculated between importance values

and the eigenvalues, indicating strong correlation

between the two scores.

We expected PCA to increase RF accuracy rates.

Because multiple trials were not performed for each

parameter set listed in Table 1, a difference in the

accuracy rates cannot be statistically declared nor

inferred. Since RF functions on random sampling

of training samples and variables, given the same

parameter set, a different RF model will be trained

and accuracy rates will differ. Variability in RF accu-

racy rates might as well be due to inherent variability

present in RF, not due to the application of PCA

techniques or variations in number of variables con-

sidered in the model. Future work must involve

multiple trials for each parameter set in order to

generate a range of error and thus deduce statistically

significant results.

The SVM trials were run with the LIBSVM-2.89

build on a Windows machine. By searching the set

{(g, C ) | g, C 2 {2�2, 2�1.5, . . . , 22}}, the optimal

values of g and C were determined to be 0.25 and 4,

respectively. 5-fold cross-validation using the

Figure 1: Comparison of SVM, RF, RF-PCA and 1-NN inTerms of Hg-wise Accuracy Rates. SVM, RF, RF-PCA and
1-NN denote SVM, RF, RF in conjunction with principal component analysis with the best parameter set and
1-nearest neighbor, respectively. The numbers of samples in individual Hgs are presented with bars.

Table 1: Micro-accuracy rates for the original and
transformed datasets run through RF classifiers

Classifier Feature
selection

Number of
features

ntree mtry Micro-
accuracy
rate (%)

RF Raw 545 500 160 96.19
RF PCA 64 400 20 95.98
RF PCA 100 500 40 96.14
RF PCA 200 300 160 96.00
RF PCA 300 400 40 96.24
RF PCA 400 500 80 96.18
RF PCA 545 400 40 96.01
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optimal parameters indicated the prediction accuracy

of SVM to be 88.06% (macro-accuracy) and 96.57%

(micro-accuracy).

Figure 1 summarizes the comparison of the

Hg-wise accuracy rates by SVM, RF, RF-PCA

and 1-NN algorithms, where RF-PCA denotes RF

in conjunction with PCA with the best parameter

set. The macro- and micro-accuracy rates of the

classifiers are reported in Table 2. The individual

Hg prediction accuracy rates by SVM, RF,

RF-PCA and 1-NN are collected in Table 3.

Training an RF model involves bootstrap sam-

pling, which excludes certain samples or cases in

construction of the forest. Whereas in training an

SVM model, all cases in the training set are consid-

ered in building the model. This may account for

some differences in predictive accuracy. However,

because different bootstrap samples serve as the train-

ing set for each tree in a forest, across the forest, it is

highly unlikely to find an OOB sample.

From Table 3, we can see that all four algorithms

performed poorly on Hgs N*, M*, R9, R* and

HV*. According to the confusion matrices in

Figure 2, some N* samples are mis-classified as I or

W, which is a relatively larger Hg than N*. Similarly,

some R9 samples are mis-classified as H, and some

R* samples are mis-classified as H or U*. Therefore,

the low performance on Hgs N*, R9 and R* is

likely due to sampling bias of the consented database.

Sampling bias, however, may not be the sole

reason why Hgs with smaller sample sizes have low

accuracy rates. Hg R0* has an accuracy rate of at

least 94.55% despite having only 55 samples.

Therefore, we suspected that some Hgs are intrinsi-

cally difficult to be distinguished from other Hgs. To

better understand Hg M*, we plotted the samples in

Hgs M*, D, W and L3* in the space spanned by the

first three PCs, since an M* sample is sometimes

mistaken for a D, W or L3*. The scatter plot in

Figure 3 confirms our hypothesis.

It is not surprising that some samples in Hg HV*

are mistaken for samples in Hg H or V as seen in

Figure 2. The three Hgs HV*, H and V are in the

same sub-tree in the phylogeny of mtDNA Hgs pre-

sented in [2], where the three Hgs are distinguished

by looking at three coding region SNPs. Their sim-

ilarity is also observed by a scatter plot (not shown)

with the first 3 PCs. Therefore, HV*, the smallest

one among the three Hgs, is sacrificed by all three

classification algorithms so as to maximize the

micro-accuracy.

CONCLUSION
Underrepresented Hgs are likely under-sampled or

even excluded all together, and overrepresented

Hg tend to be randomly selected at higher frequen-

cies, leading to an unbalanced dataset. Forming

coarser-Hg divisions, reducing or increasing weights

on relevant Hgs to compensate for the imbalance are

possibilities to pursue.

In addition to the issue of sampling bias, we

have demonstrated that some Hgs are intrinsically

Table 3: Unsorted individual Hg accuracy rate for
1-NN, RF and SVM

Hg Sample
size

1-NN
accuracy
rate (%)

RF
accuracy
rate (%)

RF-PCA
accuracy
rate (%)

SVM
accuracy
rate (%)

HV* 465 64.73 64.73 59.78 62.58
L0/1 279 98.57 98.92 99.64 99.64
N* 63 52.38 49.21 46.03 52.38
M* 336 69.64 75.60 77.98 82.44
U* 2809 96.05 95.83 96.33 96.55
A 373 99.46 98.66 99.73 100.00
C 230 99.57 98.70 99.57 99.13
B 297 96.97 95.62 97.64 97.64
D 193 85.49 89.64 84.97 88.60
I 475 97.47 98.11 97.68 97.89
H 7786 98.25 98.09 98.43 98.41
K 1759 99.55 99.37 99.37 99.37
J 1793 99.83 100.00 99.72 100.00
R9 68 60.29 64.71 52.94 67.65
L2 321 99.38 99.07 99.69 99.69
T 1880 99.84 99.84 99.89 99.84
W 407 98.03 97.54 95.58 96.31
V 610 89.67 88.85 89.34 89.18
X 338 99.41 97.34 97.63 98.22
R* 60 13.33 10.00 8.33 11.67
L3* 370 95.14 95.14 95.68 95.68
N1* 197 97.97 95.94 95.94 97.97
R0* 55 98.18 98.18 90.91 94.55

Table 2: Macro- and micro-accuracy rate of classifiers

Classifier Macro-accuracy
rate (%)

Micro-accuracy
rate (%)

1-NN (LOO CV) - 96.73
1-NN (5F-CV) 87.36 96.26
RF (5F-CV) 87.35 96.19
RF-PCA (5F-CV) 86.21 96.24
SVM (5F-CV) 88.06 96.59

NN¼Nearest Neighbor, RF¼Random Forest, RF-PCA¼Random
Forest with Principal Component Analysis, SVM¼Support Vector
Machines, LOO¼Leave-one-out cross-validation, 5F-CV¼ 5-fold
cross-validation
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inseparable from one another provided only the

HVR-I region is available. Ambiguous samples can

be identified by examining the posterior probabil-

ities, which are estimated by the SVM and RF

implementations utilized in this study. Typing the

coding region SNPs may be necessary to assist

the categorization of these samples because of their

important role in defining the Hgs.

We conclude that SVM outperforms 1-NN in

terms of predictive performance. RF is likely to be

the worst of the three. However, more experiments

should be conducted with each parameter set for the

conclusion to be statistically sound. We argue that

SVM and RF are faster and more memory-economic

than 1-NN in making inferences on new samples

because they don’t rely on the entire training dataset.

These are desirable features when Hg inference from

mtDNA is implemented as a web service.

The algorithms and work presented in this paper

involves categorization of mtDNA in the HVR-I

Figure 2: The Confusion Matrices of (A) 1-NN, (B) RF, (C) RF-PCA and (D) SVM. Each row in a matrix explains
how samples in a particular Hg are classified by an algorithm. For example, out of the 279 samples in Hg L0/1,
1-NN labels 275 of them as L0/1, one of them as L2, and three of them as X.The darkness of a cell indicates the per-
centage of samples assigned to the cell. Therefore, the darker the diagonal of a matrix, the more accurate the cor-
responding algorithm.
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region into their basal (coarse) Hgs. However, each

Hg also contains much finer sub-Hgs which can fur-

ther contribute to the addressing of anthropological

questions. Future work may include using algorithms

to categorize mtDNA samples into finer sub-Hgs

provided enough samples are available for each

sub-Hgs.

Key Point

� This article demonstrates that thepredictionresultsby SVMand
RF are better than or comparable to those achieved by the NN
method employed by the Genographic project. SVM and RF
afford a couple of desirable features when Hg inference from
mtDNA is implemented as a web service. That is, they are
faster and more memory-economic than 1-NN in labeling new
samples.
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