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Abstract
In cancer research, high-throughput genomic studies have been extensively conducted, searching for markers asso-
ciated with cancer diagnosis, prognosis and variation in response to treatment. In this article, we analyze cancer
prognosis studies and investigate ranking markers based on their marginal prognosis power. To avoid ambiguity, we
focus on microarray gene expression studies where genes are the markers, but note that the methodology and re-
sults are applicable to other high-throughput studies. The objectives of this study are 2-fold. First, we investigate
ranking markers under three commonly adopted semiparametric models, namely the Cox, accelerated failure time
and additive risk models. Data analysis shows that the ranking may vary significantly under different models.
Second, we describe a nonparametric concordance measure, which has roots in the time-dependent ROC (receiver
operating characteristic) framework and relies on much weaker assumptions than the semiparametric models. In
simulation, it is shown that ranking using the concordance measure is not sensitive to model specification whereas
ranking under the semiparametric models is. In data analysis, the concordance measure generates rankings signifi-
cantly different from those under the semiparametric models.
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INTRODUCTION
Cancer research has entered the -omics era.

High-throughput profiling studies have been exten-

sively conducted, searching for markers associated

with cancer diagnosis, prognosis and variation in

response to treatment [1]. In this article, we analyze

cancer prognosis studies with survival outcomes. To

avoid ambiguity, we focus on microarray gene ex-

pression studies, where genes are the markers, but

note that the methods and results are applicable to

other high-throughput -omics studies.

Denote T as the survival time, which can be

progression-free, overall, or other types of survival.

Denote Z ¼ (Z1, . . . ,Zd ) as the length d microarray

gene expression measurements. Denote Cas the cen-

soring time. Under right censoring, one observation

consists of ðY ¼ minðT,CÞ,� ¼ IðT � CÞ,ZÞ
where I is the indicator function. In a typical micro-

array study, d is of the order 103-4. In other genomic

(for example, genome wide association) studies, d can

be even larger. In practice, it is not feasible to inves-

tigate all d genes in detail. More importantly, among

the d genes, only a subset is cancer associated, where-

as the rest are noises. Thus, it is of great interest to

rank the d genes, and only the top-ranked genes are

investigated in downstream analysis.

Ranking the marginal prognosis power of markers

consists of the following steps.

(i) For j ¼ 1, . . . , d,

(a) describe the relationship between marker j
and event time T using the model

T � �ð�jZjÞ, where �j is the regression co-

efficient, and � is the link function;
(b) a statistic measuring the prognosis power of

marker j is computed. Examples of the stat-

istic include the magnitude of the estimate of
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�j, significance level (P-value) of the esti-

mate, likelihood of the model and others.

In this study, we use the P-value of the es-

timate as the ranking statistic, and refer to

studies such as [2] for other ranking statistics;

(ii) All d markers are ranked based on the magni-

tudes of ranking statistics. When the P-values

are used for ranking, the FDR (false discovery

rate) approach can be used to determine a cutoff

[3]. Only top-ranked markers with ranking stat-

istics below the cutoff are studied in down-

stream analysis.

In published studies, the most extensively adopted

prognosis model is the Cox proportional hazards

model [4, 5]. Alternatives, including the accelerated

failure time model, additive risk model and others

have also been used. Our literature review suggests

that quite often only a single prognosis model is used

to rank markers, and there is insufficient model jus-

tification or diagnostics. As the first goal of this study,

we show that rankings under different prognosis

models can be significantly different. We note that,

most cancer genomic studies are still at the marker

identification stage, and the identified markers will

not be used in clinical practice before they are vali-

dated in independent studies. However, failing to

acknowledge the difference of rankings (under dif-

ferent prognosis models) and adopting inappropriate

ranking methods can lead to the wrong sets of mark-

ers for downstream validation studies. With multiple

candidate models, the ideal approach is to select the

most appropriate model using data-adaptive

approaches. However, available approaches (for ex-

ample those in [4, 6]) are developed for data with a

small number of markers. To the best of our know-

ledge, there is still no approach that can select the

appropriate survival model for high dimensional

cancer genomic data. ‘As an alternative and the

second goal of this study, we introduce a nonpara-

metric concordance measure for ranking markers’.

This measure depends on weaker assumptions and

hence can provide a more robust ranking.

In a recent study, Ma et al. [7] also investigated

multiple prognosis models. Unlike in this study,

in [7], a joint mode T � �ð�1Z1 þ . . .þ �dZdÞ

is assumed. Denote Rn(�
1, . . . , �d) as the log-

likelihood function constructed using n iid ob-

servations. Ma et al. [7] investigated marker

selection based on the Lasso penalized estimate

ð�̂1, . . . ,�̂dÞ ¼ argmax Rnð�
1, . . . ,�dÞ � �n

P
j j�

jj,
and showed that under different prognosis models,

the Lasso approach selected significantly different sets

of markers. Although this study and [7] both inves-

tigate multiple prognosis models, they differ signifi-

cantly from each other. More specifically, Ma et al.
[7] investigated the joint effects of multiple markers,

whereas this study focuses on the marginal prognosis

power of markers. Both analyses of marginal and

joint effects have been extensively conducted in

the literature. They describe markers from different

prospective and complement each other. In Ma et al.
[7], marker selection is achieved using a penalization

approach, whereas in this study, ranking statistics are

computed for individual markers and marker selec-

tion is achieved using the FDR approach. In addition

in this study, beyond the semiparametric prognosis

models, we also introduce a nonparametric concord-

ance measure, which can provide a more robust

ranking of markers. Thus this study is warranted

beyond [7].

RANKING PROGNOSISMARKERS
When computing the ranking statistics, the first ap-

proach assumes a semiparametric model with an un-

known regression coefficient for each marker. An

estimate of the regression coefficient is then com-

puted based on the likelihood or estimating equa-

tions, and its significance level is taken as the ranking

statistic. An alternative approach assumes a nonpara-

metric model. A nonparametric concordance meas-

ure can be computed, and its significance level is

taken as the ranking statistic.

Ranking markers under semiparametric
survival models
As parametric models are usually too restricted, we

focus on semiparametric prognosis models. Among

the many available models, the following have at-

tracted the most attention.

Cox proportional hazards model
For marker j ð¼ 1, . . . , dÞ under the Cox model, the

conditional hazard function is

�ðtjZjÞ ¼ �0ðtÞ expð�jZjÞ:

Here �0(t) is the unknown baseline hazard function,

and �j is the regression coefficient. The Cox model

has been extensively employed in gene expression

studies [5, 8–10].
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Assume n iid observations f(Yi, di,Zi), i ¼ 1. . .n}.

For marker j, the log-partial likelihood function is

Rnð�
jÞ ¼

Pn
i¼1 �if�

jZj
i � logð

P
k2ri expð�jZj

kÞÞg,

where ri ¼ fk : Yk � Yig is the at-risk set at time Yi.

Consider the maximum (partial) likelihood estimate

�̂j ¼ argmax Rnð�jÞ. Its significance level can be com-

puted using the martingale-based approach in [6].

Many software packages (for example the coxph func-

tion in R) can be used to compute the P-value.

AFTmodel
The AFT (accelerated failure time) model shares a

similar spirit with the linear regression model [11].

For marker j under the AFT model,

logðTjZjÞ ¼ �j þ �jZj þ "j ¼ ð1,ZjÞð�j,�jÞ0 þ "j

¼ ~Zj ~�j þ "j,

where, �j is the intercept and ej is the random error

with an unknown distribution. Here the logarithm

transformation can be replaced by other known

monotone transformations. Examples of the AFT

model in gene expression studies include [12–15].

For subject i, define

�̂ið ~�
jÞ ¼ �i�i þ ð1� �iÞ

R1
eið ~�jÞ

u dF̂ ~�jðuÞ

1� F̂ ~�j ðeið ~�
jÞÞ
þ ~Z

j 0
i �

j:

Here �i ¼ logðYiÞ and eið ~�jÞ ¼ �i � ~Zj 0
i

~�j: F̂ ~�j is the

KM (Kaplan–Meier) estimate of F, the distribution

function of ej, based on the transformed data

fðeið ~�jÞ, �iÞ,a i ¼ 1 . . . ng: That is

F̂ ~�j ðtÞ ¼ 1�
Y

i:eið ~�jÞ<t
1�

�iPn
k¼1 Iðekð ~�

jÞ > eið ~�jÞÞ

 !
:

Define Uð ~�j,bjÞ ¼
Pn

i¼1 ð
~Zj
i �

~Z
j
Þð�̂ið~bjÞ � ~Zj 0

i
~�jÞ:

The Buckley-James estimator of ~�j is defined as

Uð ~�j, ~�jÞ ¼ 0. Calculation of the significance level

of �̂j is described in [16].

Additive risk model
For marker j, the additive risk model assumes that

the conditional hazard function is

�ðtjZjÞ ¼ �0ðtÞ þ �
jZj,

where notations have similar interpretations as under

the Cox model [11]. The additive risk model has

also been used extensively in gene expression studies

[16, 17–19].

Define �0ðtÞ ¼
R t

0
�0ðuÞdu: For the ith subject,

denote fNiðtÞ ¼ IðYi � t,�i ¼ 1Þ; t � 0g and

fAiðtÞ ¼ IðYi � tÞ; t � 0g as the observed event pro-

cess and the at-risk process, respectively. �j can be

estimated by solving Uð�jÞ ¼
Pn

i¼1

R1
0

Zj
ifdNiðtÞ�

AiðtÞd�̂ð�j, tÞ � AiðtÞ�jZ
j
idtg ¼ 0: Here �̂ð�j, tÞ is

the estimate of �0 satisfying �̂ð�̂j, tÞ ¼P
i

R t
0

dNiðuÞ�AiðuÞ�̂jZ
j
iduPn

i¼1
AiðuÞ

. The resulting estimate of �j

satisfies the estimating equation

Xn

i¼1

Z 1
0

AiðtÞfZ
j
iðtÞ � �ZjðtÞg�2dt

� �
�̂j

¼
Xn

i¼1

Z 1
0

fZj
iðtÞ � �ZjðtÞgdNiðtÞ

� �
:

Inference for �̂j is described in [20].

Remarks
There are other semiparametric prognosis models,

including for example the proportional odds

model, the accelerated hazard model and others.

They are less extensively used and will not be dis-

cussed. Among the above three models, the Cox and

AFT models belong to the family of transformation

models. The Cox and additive risk models describe

the conditional hazard function, whereas the AFT

model describes the event time directly. A

common advantage of the three models is that, al-

though they are semiparametric, the regression coef-

ficients can be estimated without estimating the

nonparametric parameters, which significantly re-

duces the computational complexity. There are sev-

eral software packages that can be used to compute

the estimates and their significance level.

Under mild conditions, each �j can be consistently

estimated. When logðdÞ=n! 0 as n!1, the esti-

mates of �js are uniformly consistent. Similar results

hold for the P-values. Thus, ranking the genes based

on the P-values and the FDR approach is asymptot-

ically valid [21].

Ranking markers using a nonparametric
concordance measure
A drawback of ranking markers using semiparametric

models is that the validity of ranking depends on the

validity of model assumptions. With cancer genomic

data, it is difficult to determine whether the model

assumptions are appropriate. Below we describe a

concordance measure, which was proposed in

[X. Song et al., submitted for publication]. It relies

on much weaker assumptions and hence provides a

more robust way of ranking markers.

For marker j, assume that E(T|Zj) ¼ Zj(Zj), where

Zj is an unknown monotone function. Note that this

model is generic and includes many existing
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parametric and semiparametric models as special

cases. Without loss of generality, assume that Zj is

an increasing function (a recoding Zj! �Zj can

be conducted if necessary). Intuitively, if marker j
has prognosis power, the order of fT1, . . . ,Tn}

should be similar to that of fZj
1, . . . ,Zj

ng. Thus,

the prognosis power of a marker can be evaluated

using the concordance between the ranking of

event times and the ranking of marker values.

Particularly, the nonparametric concordance meas-

ure is defined as

	j ¼ PfZj
i < Zj

kjTi < Tk, i 6¼ kg:

This measure has roots in the time-dependent re-

ceiver operating characteristic (ROC) techniques

[X. Song et al., submitted for publication, 22]. The

ROC approaches have been extensively used in

evaluating the diagnosis and prognosis power of

markers. With ROC, the diagnosis/prognosis

power can be summarized with the area under

curve (AUC). For marker j at time t, the AUC for

the incident ROC curve is

AUCjðtÞ ¼ PðZj
i < Zj

kjTi ¼ t,Tk > t, i 6¼ kÞ: The

concordance measure 	j is related to the AUC

through the formula 	j ¼
R1

0
wðtÞ � AUCjðtÞdt,

where w(t) ¼ 2f(t)S(t), and f(t) and S(t) are the density

and survival functions of the survival time T [23].

Thus the concordance measure can be viewed as a

weighted average of the AUC over time. Unlike

AUCj(t) which is a function of time, 	j is

time-independent. It thus can better summarize the

prognosis performance of a marker and facilitate the

comparison of markers.

Estimation and inference
Note that 	j can be rewritten as

	j ¼
PfZj

i < Zj
k,Ti < Tkg

PfTi < Tkg
, i 6¼ k:

If PðC � TÞ > 0, Ef �i
S2
CðTiÞ

IðYi < YkÞg ¼

PðTi < TkÞ: Here SC is the survival function

of the censoring time C. In addition, if C is inde-

pendent of Z, Ef �i
S2
CðTiÞ

IðZj
i < Zj

k,Yi < YkÞg ¼

PðZj
i < Zj

kÞ: Thus, 	j can be estimated with

	̂j ¼

Pn
i¼1

Pn
k¼1

�i
Ŝ2
C ðTiÞ

IðZj
i < Zj

k,Yi < YkÞPn
i¼1

Pn
k¼1

�i
Ŝ2
C ðTiÞ

IðYi < YkÞ
:

Here ŜC is the KM estimate of SC. In [X. Song et al.,
submitted for publication], it is shown that

n1=2ð	̂j � 	jÞ ¼ n�1=2
X

i
’
j
i þ oPð1Þ:

Hence 	̂j is n1/2 consistent and asymptotically

normal. Inference can be based on the asymptotic

normality result. For integrity of this article, we pro-

vide the definition of ’
j
i and outline of the proof of

asymptotic properties in Supplementary Appendix I

and refer to [X. Song etal., submitted for publication]

for more details. Calculation of 	̂j and its significance

level can be realized using existing software. Sample

R code is available from the authors.

SIMULATION
We conduct simulation study to better understand

properties of different ranking approaches. We simu-

late expressions of 1000 genes for 100 subjects. Gene

expressions have marginally standard normal distri-

butions, and expressions of genes j and k have cor-

relation coefficient 0.3|j-k|. We intentionally set the

distributions of gene expressions simpler than those

observed in practice. Usually performance of marker

identification methods decreases as the correlation

structure and distributions of gene expressions

become more complicated. Simpler distributions

may better reveal the difference caused by ranking

approaches. Among the 1000 genes, 30 have small,

moderate and large prognosis power and the rest 970

are noises. The true underlying models are set as the

Cox, AFT and additive risk models, respectively. We

simulate and analyze 500 replicates and present the

summary results in Supplementary Appendix II.

Simulation suggests that when the ranking ap-

proach matches the true data generating model, it

can rank the genes properly. For example, when

the Cox model is the true data generating model,

ranking under the Cox model puts 23 true positives

in the top 30. However, ranking under other semi-

parametric models is less satisfactory. Ranking under

the AFT and additive risk models puts 13 and 15 true

positives in the top 30, respectively. Under all three

different data generating models, performance of the

nonparametric concordance measure is satisfactory. It

ranks 21, 22 and 20 true positives in the top 30,

respectively. We also compute the Kendall tau

rank correlation coefficient [24] between the follow-

ing two rankings. The first is the ranking of the 30

true positives under the approach that matches the

data generating model (i.e. ranking under the opti-

mal ranking approach). The second is the ranking of

the true positives under an alternative approach. The

Kendall tau correlation is adopted as the ranks are
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discrete. Supplementary Appendix II suggests that

ranking using the nonparametric concordance has a

high correlation with ranking under the optimal

approach.

Simulation shows that ranking using semipara-

metric models may be subject to model misspecifica-

tion. In contrast, ranking using the nonparametric

concordance measure is more robust. Even though

it is asymptotically consistent, ranking using the con-

cordance measure still differs from ranking under the

optimal approach. This finding is not surprising. The

concordance measure is nonparametric, which makes

it less efficient particularly under small to moderate

sample sizes. This explains why the nonparametric

approach ranks slightly fewer true positives in the

top 30.

DATA ANALYSIS
Data collection and processing
MCL study
Rosenwald et al. [25] reported a study using micro-

array gene expression analysis in mantle cell lymph-

oma (MCL). Among 101 untreated patients with no

history of previous lymphoma, 92 were classified as

having MCL based on established morphologic

and immunophenotypic criteria. Survival times

of 64 patients were available and 28 patients were

censored. The median survival time was 2.8 years

(range 0.02–14.05 years). Lymphochip DNA micro-

arrays were used to quantify mRNA expressions in

the lymphoma samples from the 92 patients. Data

that contains expression values of 8810 cDNA elem-

ents is available at http://llmpp.nih.gov/MCL.

DLBCL study
Rosenwald et al. [26] reported a diffuse large B-cell

lymphoma (DLBCL) prognosis study. This study

retrospectively collected tumor biopsy specimens

and clinical data for 240 patients with untreated

DLBCL. The median follow up is 2.8 years, with

138 observed deaths. Lymphochip cDNA microarray

is used to measure the expressions of 7399 genes.

Raw data and detailed experiment protocol are

available at http://llmpp.nih.gov/DLBCL/.

Follicular lymphoma study
A study was conducted to determine whether the

survival risks of patients with follicular lymphoma

(FL) can be predicted by gene expression profiles

of the tumors [27]. Fresh-frozen tumor-biopsy spe-

cimens from 191 untreated patients who had

received a diagnosis of FL were obtained. The

median age at diagnosis was 51 years, and the

median follow-up time was 6.6 years. Affymetrix

U133A and U133B microarray genechips were

used to measure expressions of 44928 probes.

Detailed experimental setup and the raw data can

be accessed at http://llmpp.nih.gov/FL/.

Breast cancer study by van’tVeer et al.
Breast cancer is the second leading cause of death

from cancer among women in the United States.

Despite major progress in breast cancer treatment,

the ability to predict metastasis of the tumor remains

limited. van’t Veer et al. [28] reported a breast cancer

prognosis study investigating the time to distant me-

tastasis. About 97 lymph node-negative breast cancer

patients, 55-years old or younger, participated in this

study. Among them, 46 developed distant metastases

within 5 years. Expression levels for 24 481 gene

probes were collected. Data is available at http://

www.rii.com/publications/2002/vantveer.html.

Breast cancer study by Sorlie et al.
The original goal of the breast cancer study con-

ducted by Sorlie et al. [29] was to classify breast

tumors based on the gene expression patterns derived

from cDNA microarrays. A total of 85 cDNA micro-

array experiments representing 78 cancers were

conducted. Survival data is available for 76 patients.

Four of these patients were excluded, because the

microarray data was from samples obtained after

treatment.

Breast cancer study by Huang et al.
The goal of the study reported in Huang et al. [30]

was to predict metastasis of breast tumor using gene

expressions. Affymetrix genechips were used for the

profiling of 71 samples. Expression measurements on

12 625 probes are available.

Breast cancer study in Sotiriou et al.
Sotiriou et al. [31] reported a study correlating gene

expression measurements generated using cDNA

with clinico-pathological characteristics and clinical

outcomes in an unselected group of 99 breast cancer

patients. In the original analysis, the Cox model was

used to identify genes that were marginally signifi-

cantly associated with relapse-free survival. In this

study, we analyze the 98 patients with complete

survival information.
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For each data set, we fill in missing expressions

using medians across samples. Since usually research-

ers are more interested in genes with a higher level of

variations of expressions, we conduct an unsuper-

vised screening and select the 2000 genes with the

largest variances of expressions. We normalize the

gene expressions to have median zero and variance

one.

RESULTS
We rank markers under the three specific semipara-

metric models and using the nonparametric concord-

ance measure. Analysis results are presented in

Supplementary Appendix III.

In the first set of analysis, we construct the com-

plete ranking of all the 2000 markers. We evaluate

the (dis)similarity among the rankings using the

Kendall tau rank correlation coefficient [24]. Our

data analysis suggests that different rankings are mod-

erately to strongly correlate. Consider for example

the MCL data, the rank correlation coefficient ranges

from 0.546 to 0.902. With the seven data sets, the

smallest rank correlation coefficient is only 0.293

(DLBCL data, the rankings under the AFT model

and using the concordance measure). We conclude

that the ranking of markers highly depends on the

ranking methods and underlying prognosis model.

As the P-value is adopted as the ranking statistic, it

is possible to apply the FDR approach and identify

markers with significant prognosis power. We adopt

the approach in [3] and set the target FDR¼ 0.1.

Results on the numbers of markers identified are

provided in Supplementary Appendix III. We find

that the numbers of markers identified also highly

depend on the ranking methods and prognosis

models. For example, with the breast cancer data

in [26], the four ranking methods identify 18 (non-

parametric concordance), 3 (Cox), 51 (AFT) and 1

(additive) markers. The sets of significant markers

identified using different approaches can be signifi-

cantly different. For example with the breast cancer

data in [29], using the nonparametric concordance

measure, 20 genes are identified. Under the AFT

model, 5 genes are identified. However, the two

sets only have 1 gene in common.

We examine the top 100 markers ranked using

different methods and find that they have overlaps

but can be significantly different. For example, with

the DLBCL data, the set of top 100 markers ranked

using the nonparametric concordance measure has

56 (Cox), 26 (AFT), 47 (additive) overlapped mark-

ers with those ranked under semiparametric models.

DISCUSSION
In cancer genomic studies, it is of interest to rank

markers based on their marginal prognosis power.

Top ranked markers will be investigated in detail

in downstream analysis. When ranking markers, the

most commonly adopted approach assumes a specific

(semi-, non-)parametric model, computes a statistic

from the model, and uses that statistic for ranking. In

this article, we review the three most commonly

adopted semiparametric prognosis models. Analysis

of multiple cancer microarray data sets shows that

the ranking may vary significantly under different

prognosis models. Under a very weak conditional

expectation assumption, we propose using a non-

parametric concordance measure to rank markers.

As much weaker assumptions are made, the con-

cordance measure provides a more robust way of

ranking markers. Another advantage of ranking

based on 	j is that the ranking is invariant under

monotone increasing transformations of Zj. Thus it

is capable of accommodating nonlinear effects of

markers. Because of the nonparametric nature, a

drawback of the concordance measure is its lack of

efficiency. Simulation suggests the satisfactory per-

formance of the concordance measure. Data analysis

suggests that ranking using the concordance measure

can be significantly different from those under spe-

cific semiparametric models. Considering the robust-

ness and slight lack of efficiency of the concordance

measure, we suggest the following approach in prac-

tical data analysis. Ranking using the concordance

measure is first conducted. Then multiple parametric

and semiparametric models can be used to rank the

genes. The Kendall tau rank correlations between

the concordance measure ranking and the parametric

or semiparametric model rankings are computed. If

there is a parametric or semiparametric model rank-

ings close enough to the concordance measure rank-

ing, the corresponding model can be used in

downstream analysis. If there is no such parametric

or semiparametric model ranking, then the nonpara-

metric concordance measure ranking should be used.

In this study, our conclusions are drawn from both

simulation and analysis of real data. The seven data

sets focus on lymphoma and breast cancer. We

expect similar results to hold with other types of

cancers. All four breast cancer studies investigate
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prognosis free survival. However, we note that all

four studies are retrospective, with considerable dif-

ferences among the demographic characteristics of

patients and experimental settings. Thus, it is unclear

whether it is appropriate to compare results of the

four data sets. It is nontrivial to conduct meta-

analysis that can accommodate multiple data sets or

extend the nonparametric concordance measure to

multi-data sets cases.

In this article, our presentation is in the context of

cancer microarray studies. We expect similar conclu-

sions to hold for other profiling platforms and other

diseases. We adopt the significance level as the rank-

ing statistic, which can be naturally coupled with the

FDR approach to identify significant markers. We

have experimented with other ranking statistics (for

example the magnitude of the estimated regression

coefficients) and reached similar conclusions.

Ranking markers is also of great importance in diag-

nosis and treatment selection studies. In other types

of studies and with other types of outcomes/pheno-

types, similar ranking problems are also worth inves-

tigation. However, it is beyond the scope of this

article and hence will not be pursued.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� In cancer genomic studies, it is of interest to rank the marginal
prognosis power of genomic markers.

� There are multiple ways of ranking markers. Numerical studies
suggest that differentmethodsmay lead to significantly different
rankings.

� Ranking can also be based on a nonparametric concordance
measure, which depends onweaker data andmodel assumptions
and hence can bemore robust.

� In practical data analysis, more attention needs to be paid to the
rankingmethods and underlying prognosismodels.
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