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The study of collective or group-level movement patterns can provide insight regarding the
socio-ecological interface, the evolution of self-organization and mechanisms of inter-individual
information exchange. The suite of drivers influencing coordinated movement trajectories
occur across scales, resulting from regular annual, seasonal and circadian stimuli and irregular
intra- or interspecific interactions and environmental encounters acting on individuals. Here,
we promote a conceptual framework with an associated statistical machinery to quantify the
type and degree of synchrony, spanning absence to complete, in pairwise movements. The
application of this framework offers a foundation for detailed understanding of collective
movement patterns and causes. We emphasize the use of Fourier and wavelet approaches
of measuring pairwise movement properties and illustrate them with simulations that contain
different types of complexity in individual movement, correlation in movement stochasticity,
and transience in movement relatedness. Application of this framework to movements of free-
ranging African elephants (Lozodonta africana) provides unique insight on the separate roles
of sociality and ecology in the fission—fusion society of these animals, quantitatively charac-
terizing the types of bonding that occur at different levels of social relatedness in a movement
context. We conclude with a discussion about expanding this framework to the context of
larger (greater than three) groups towards understanding broader population and
interspecific collective movement patterns and their mechanisms.

Keywords: circadian rhythm; coherence; elephant; movement ecology;
time-series analysis; wavelets

1. INTRODUCTION

Swarms of insects, flocks of birds and the long-distance
ungulate migrations provide stunning examples of self-
organizing collective movements, the study of which
has proved relevant for many branches of science.
Empirical studies of movement across multiple individ-
uals have provided important insight regarding the
influence of social interactions on the spatial structure
of populations [1], mechanisms of sexual segregation
[2], movement synchronization in relation to group pos-
ition and size [3] and connections between aggregate
level patterns and rules governing behavioural switch-
ing and interactions at the individual level [4,5].
Whether group-level patterns provide evolutionary or
ecological advantage or are merely the consequence of
individual-based decisions has also been discussed [4,6].
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In wildlife systems, combined analysis of multiple
trajectories has provided insight into population-level
movement parameters [7], yet the direct comparison
between two or more individual movement paths for
investigating social interactions and collective move-
ment has received comparatively little attention (but
see [8]). By contrast, individual-based simulation
models have provided considerable advances in deter-
mining how individual decision rules can affect group-
level collective patterns from relatively parsimonious
rules, e.g. movement depends only on other neighbour-
ing individuals, but not spatial heterogeneity in
relevant landscape features [6,9]. A recent work by
Getz & Saltz [10] that incorporates social and ecological
processes illustrates how rapidly complexity can emerge
in the design and study of collective movement models.
Directly testing collective movement models with
empirical data has remained challenging because exper-
imental manipulation is sometimes (e.g. see the
collection of papers based on experiments in Dyer
et al. [11]) but often not possible, and likelihood
functions for highly detailed models are very complex.
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Figure 1. Schematic of potential movement time-series data:
step length (net displacement between sequential locations)
S; absolute direction @; and turning angle 6, defined to lie
between (—r, 7—derived from time-indexed location data
(2, y;) typically collected from animal telemetry. In this
paper, step-length time series S” from multiple individuals
are analysed in the context of socio-ecological and spatial
information to understand properties of collective movement.
Alternatively, the persistence and turning velocities at time £,
defined as p; = Sicos(6;) and T; = Ssin(6;), respectively, could
be studied with the methods of this paper.

The approach emphasized here relies on the use of stat-
istical ‘probes’ as one essential component to robust
data analysis [12—14], and complements both exper-
imental work and fitting of phenomenological or
mechanistic models.

From data on an individual time series of geo-
graphical locations, several candidate univariate time
series can be obtained (figure 1) to which standard
time-series tools such as those used here can be applied
to characterize movement. A fully comprehensive
analysis of collective movement will simultaneously
include step length, turning angle, absolute heading
and relative position, but the descriptors of movement
data that are most informative or relevant to collective
patterns are potentially system specific. As elaborated
on by Gurarie et al. [15], persistence and turning angle
velocities often meld step length and turning angle
information into useful (i.e. approx. normally distribu-
ted random variables) movement descriptors from
which descriptive statistics with standard tools can
be obtained. Here, analyses based on either persistence
velocity or step length yielded practically identical
results, while correlation between turning velocity
data was consistently weak and uninformative about
coherence across all individuals. For groups in which
individuals do not maintain consistent position relative
to other members, correlations in turning velocity or
turning angle may not characterize subtle similarities
or differences in movement. Thus, we use step length
as an initial probe (although the simulation studies
below may be more generally interpreted as a study
on either step length or persistence velocity time
series) with subsequent analysis of the other descrip-
tors of collective movement conditioned on these
results.
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In a previous study, Polansky et al. [8] applied wave-
let coherence to characterize movement relatedness of a
wild African buffalo (Syncerus caffer) population whose
member groups form and separate over time, referred to
as fission—fusion societies [16]. In this system, individ-
uals typically showed step-length distributions similar
to a random walk, resulting in somewhat simple pres-
ence or absence of synchrony between individuals.
However, in many animal systems, strong circadian
rhythms in movement are also common in addition to
random movements [8,12,17,18]. Here, we build on the
baseline provided by the buffalo example by exploring
the occurrence of alternative classes of movement
synchrony based on coordination in both circadian
rhythms and stochastic processes.

In this paper, we develop a conceptual framework for
synchrony classification based on the degree to which
two individuals share random movement properties
and circadian activity patterns (referred to as determi-
nistic structure here). Conceptual descriptions of
different types of synchrony and examples are initially
presented without technical details. A stochastic move-
ment model that produces practically continuous
space—time trajectories based on circadian rhythms
(deterministic) and noise (stochastic) processes in the
step-length data that can be correlated across individ-
uals is then introduced. We present the methods used
to quantitatively define the degree of synchrony out-
lined in our framework, with a review of the statistical
and mathematical details provided in the electronic
supplementary material, appendix A. Simulation exper-
iments with the model indicate that these tools can
effectively differentiate the extent of synchrony between
two individuals with differing degrees of deterministic
and stochastic similarity. Applying the conceptual fra-
mework and related analytical approaches to empirical
movement data from African elephants (Lozodonta
africana), we illustrate the emergence of several types
of movement synchrony and show how the classification
is most likely to be both a function of social relatedness
and a shared environment that induces -circadian
activity cycles. Finally, we discuss some broader contri-
butions of this framework to collective movement
studies and movement ecology in general. We use the
freely available R programming environment [19] to
carry out all simulations and analyses, and thus coher-
ence tools for assessing synchrony classification are
readily available.

2. PAIRWISE MOVEMENT SYNCHRONY
AND A MOVEMENT COHERENCE
SPECTRUM

For many species, the behaviours and underlying mech-
anisms that give rise to collective movement are
variable and complex, being derived from internal
states and external cues in the context of organismal
biology [20,21]. That individual movement trajectories
represent an amalgamation of different behavioural
states is increasingly recognized [22]. A useful biological
characterization of a particular behavioural state is the
mean (determinism) and variance (stochasticity) of
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step lengths, which can serve to characterize foraging
strategies [23] or spatial location probability distri-
butions [24,25]. The consistency or variation of time
spent in each behavioural state provides a second
opportunity for both determinism and stochasticity to
influence patterns in data. Empirical data across
many different wildlife systems demonstrate this, i.e.
that the sequence of behavioural states and associated
time durations are often periodic at circadian scales
(see [7,8,12,17] and our own additional unpublished
analyses).

Motivated by the somewhat abstract yet intuitive
notion that movement consists of both cyclic determin-
ism and stochasticity, we can conceptualize movement
synchrony between individuals along a spectrum from
none to complete that is a function of both determinis-
tic and stochastic properties of movement trajectories.
The contribution of these features to the degree of
synchrony along this continuum can be measured by
squared coherence and delineated as follows.

— No synchrony. At one extreme, deterministic prop-
erties are unrelated and stochastic correlation is
absent between two movement trajectories.

— Intermediate synchrony. A variety of states varying
from strong deterministic similarity coupled with
weak stochastic similarity to strong stochastic simi-
larity coupled with weak deterministic similarity.
Activity oscillation waves may be in phase with
differences near 0 (e.g. elephants ‘close’ in space—
time but not completely pair bonded, wildebeest
and zebra migrating together) or out of phase with
absolute values of phase difference near 7 (e.g. tem-
poral niche partitioning around a shared resource
[26]). In the examples postulated, shared ecological
or environmental determinants of movement
between individuals may generate co-oscillations in
movement activity at similar frequencies even if
there is no inter-individual relationship, e.g. temp-
erature fluctuations can initiate coordination in
circadian rhythms (the deterministic component),
while sudden rain showers may drive stochastic
correlation.

— Strong synchrony. Characterized by identical deter-
ministic properties and high correlation in
stochasticity so that the movement path of one indi-
vidual strongly predicts the movement path of
another. This synchronous relationship reflects
tight coupling in the ecological/environmental
rules determining behaviour as well as a high
degree of inter-individual coordination. An interest-
ing special case includes strong correlation in a
random walk where the ‘deterministic’ contribution
is often 0 (e.g. buffalo herds [8]).

— Complete synchrony. The extreme case whereby
deterministic rules of movement are exactly coordi-
nated and stochastic correlation is 1, likely to
occur for relatively brief moments of time (e.g.
close-knit groups: schools of fish, flocks of birds,
family groups of ungulates).

To underpin this conceptual framework with analyti-
cal methods that allow the quantification of the degree
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of synchrony between movement trajectories, we apply
Fourier and wavelet transforms, standard statistical
tools from physical and statistical sciences, to assess
pairwise synchrony states in a movement ecology con-
text. The following analyses focus on step lengths, but
other movement properties integrating information on
turning angle such as movement persistence or turning
velocity (figure 1) [15] are equally applicable. We note
that the following approaches alone cannot strictly dis-
tinguish between synchrony induced by sociality or
synchrony induced by shared environment or ecology.
As we illustrate with our case studies, however, compar-
ing types of synchrony in the context of spatial
separation and other covariate data allows plausible
hypotheses to be made (and others to be rejected)
about the mechanisms underlying a particular
synchrony classification.

3. A MOVEMENT MODEL

Basic elements of movement data in isolation of any
knowledge about covariate data are step length, turning
angle between three successive locations and the absol-
ute direction (heading) between successive locations.
We denote the continuous position of an animal at
time ¢ in the plane R’ by r(t) = (2(t), y(t)). The data
are discretely sampled locations r(¢) = (2(¢;), v(%)),
j=0,1,...,N, at a constant sampling interval At¢t=
tiv1 — t; for all j, with absolute heading from r(¢,_;)
to r(t;)) denoted by ;. The time series S" =
{S1,..., Sy} of each individual is used to construct
N step lengths, where S;= |r(t;) — r(t;—1)|/At, j=1,
.., N, and the turning angle obtained from three
sequential positions r(t;—1), r(¢) and r(t,q) is 6;=
0,1 — 0; (figure 1). The methods applied here
to define categories of coherence rely on S%, while
comparison of 6, and @; are presented corroboratively.

To explore the utility of frequency-based coherence
analysis in distinguishing across the categories of move-
ment coherence outlined above, we created a model that
can accommodate the different conceptual categories.
The model starts by describing the continuous space—
time position r(¢) of an animal at time ¢ with the
stochastic differential equation

dr(t) = p(t) + o(t)dB(¢),

where p is the drift representing the deterministic com-
ponent of incremental movement, o is a scalar function
of time controlling the stochastic contribution to incre-
mental movement, B is a Wiener process and r(0) is the
initial location. A detailed explication on spatial move-
ment models such as equation (3.1) and their
simulation can be found in Brillinger [27]. To model
movement in the z—y plane R* m and B, and hence
r, are defined as 2 x 1 matrices representing the
abscissa (e.g. longitude) and ordinate (e.g. latitude)
dimensions. This model closely matches movement
models in Brillinger et al. [12], Preisler et al. [17] and
Polansky et al. [8]; however, when carrying out the
simulations, we included a correlation parameter p to
control the stochastic similarity in the incremental
move values between locations of two different individ-
uals. For p = 0, the two movement paths are unrelated

(3.1)
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with respect to their stochastic features (e.g. straight-
line path of a predator versus a tortuous path of
prey), and as p approaches 1, the two individuals
increasingly share a similar response to ‘environmental
noise’ (alternatively, p near 1 could be interpreted as
a mimicking between individuals). We could not think
of a biologically plausible reason to explore negative
values of p (conspecific avoidance would be better mod-
elled as negative correlation in the deterministic
component p of movement), so analyses of such
scenarios are not presented.

For simplicity, we modelled only two distinct canoni-
cal behavioural modes of activity (e.g. foraging and
taxis) by assuming that p and o switch among two
sets of values m; = (MJT, oy) for j=1 or 2, where u/T
is the transpose of w,. Parameter values for w;(¢) and
o;(t) were set to be different by an order of magnitude
with () = (1,1), pd(t) = (10,10), o1(f)=2 and
05(t) =5, for all . Other choices of parameter values
providing relatively distinct behavioural states with
respect to step-length values resulted in similar con-
clusions, reflecting the insensitivity of coherence
methods to changes in the amplitude of step length.
Let m; be the kth behavioural state in the sequence
Mg={mj m;, ..., m;}, where K — 1 is the total
number of state switches during a single day, and let
Ex= {7, m, ..., Tk} be the expected temporal duration
for each m j,. Assigning values to the 7, in units of hours
such that Zk}il 7, = 24 h, together with the state
sequence My, defines a behavioural sequence determin-
ing the circadian pattern of behaviour.

We considered three basic types of circadian patterns
that are relevant to a wide range of taxa whose move-
ments regularly cycle between distinct behavioural
modes: deterministic type 1—1 cycled” ! dominates,
reflecting one period of relative activity and one
period of relative inactivity such as might be found in
central-place foraging organisms, and modelled by
setting K=2 and M, ={m;, my} with 7, =4 and
T, = 20; deterministic type 2—2 cycles d”' dominates,
reflecting two periods of relative activity separated by
two periods of relative inactivity such as might be
found in crepuscular organisms, and modelled by set-
tlng K=4 and M4 = {ml, my, 1, m2} Wlth T :4,
79 =28, 73 =4 and 7, = 8; and, as a null model to inde-
pendently explore the influence of the correlation across
individuals in the absence of deterministic movement
components, we also generated movement labelled
here as deterministic type 0—0 cyclesd™ ', modelled
by setting K =1 and M, = {my} with 7, = 24; individ-
ual movement is modelled as a single type of random
walk. Additionally, implementation of the latter
allows comparison of movement patterns with determi-
nistic components against those without. For each
simulation day, the actual amount of time spent in
each behavioural state mj can be made stochastic by
selecting a uniform random variable distributed on
the interval [Ty — Tiins T+ Timax)s Where Toin, Tmax > 0.

Summarizing the movement model, its main deter-
ministic feature is the regularly oscillating changes
between distinct canonical behavioural modes, while
its main stochastic feature allows correlation in noise
across individuals by controlling the correlation p
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between two individuals, which may be interpreted as
representing shared responses to noise or a degree of
inter-individual attraction. Using the FEuler-based
method [28] to simulate trajectories from equation
(3.1) allows a practically continuous space—time trajec-
tory from which to sample locations at user-specified
sampling intervals in simulation experiments. To
match the empirical data analysed, we use At=1h
with simulation time steps set at 1 min (see electronic
supplementary material, appendix A, figure S1, for
the results of different sampling intervals).

4. TIME-SERIES COHERENCE

In general, analysis of S can be accomplished using
either time-domain (regression using difference
equations) or frequency-domain (regression on periodic
functions) statistics [29,30]. For movement, frequency-
domain approaches are often naturally suited for
studying collective movements whose members engage
in fairly regular oscillations between behavioural
states across a range of temporal scales (e.g. diurnal
to seasonal-based cycles). We note that for many
frequency-domain models, there exists an exact counter-
part in the time domain [29], but the approach taken
here is often more economical for quantifying pairwise
movement owing to the underlying oscillatory quality
of behavioural sequences and their subsequent reflec-
tion in the signal SY. The key tool of frequency-
domain statistics that we employ is the squared coher-
ence function, which measures the strength of
relatedness across two time series (though it is possible
to expand it to multiple series) based on computing
estimates of spectral densities of the component time
series and their cross-spectra (electronic supplementary
material, appendix A). This metric can quantitatively
place pairwise movement along a synchrony spectrum
ranging from absent to complete. Furthermore, the
use of wavelet analysis provides time-localized infor-
mation on the strength of coherence between the SY
of different individuals so that changes in synchronous
states can be identified with respect to temporal or
spatial covariate information. Wavelet analysis is a
valuable and increasingly standard tool for studying
ecological time series [31], and the capacity for time-
localized quantification of synchrony is essential given
the transient nature and spatio-temporal dependence
in behavioural states [7,8,15,18].

A descriptive summary of Fourier and wavelet analy-
sis as applied in this study is provided here, with a more
detailed review of the statistical machinery and direc-
tions to further literature of spectral coherence for both
approaches provided in the electronic supplementary
material, appendix A. Coherence captures the corre-
lation between two time series, indexed by frequency.
Squared coherence measures the strength of the linear
association between the S of two individuals with
values between 0 (absent) and 1 (complete) at different
frequencies. Shared activity is reflected by significant
coherence values, which can be used to place pairwise
movement coherence along the synchrony spectrum
described above. When movement stochasticity is
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Figure 2. Contours of averaged-squared coherence values of 100 pairs of simulated trajectories based on equation (3.1) sampled
at hourly intervals, presented for different combinations of circadian oscillations in activity and strengths in stochastic corre-
lation p. All panels have the same colour-value map, shown at the bottom right, with white corresponding to squared
coherency values of 0 and black to values of 1. Each panel represents the pair of circadian patterns used (§3): (a) deterministic
type 0,0; (b) deterministic type 0,1; (¢) deterministic type 1,1; (d) deterministic type 1,2; (e) deterministic type 2,2. For all
figure panels, the common range of p values is shown below (e); the y-axis shows the frequency of step-length co-oscillation.
The line is contoured at the level corresponding to the asymptotic 95th percentile for the null hypothesis that the squared
coherency is absent (i.e. is 0 for all w). To restrict the different types of stochasticity so that the value of p =1 corresponds
to identical time-series values in the S, we set Tym = Tumax = 0. Electronic supplementary material, appendix A, figure S1,

shows similar results for shorter sampling intervals.

highly correlated between individuals, squared coher-
ence will also be significant at frequencies not related
to larger scale patterns of movement; i.e. there will be
significance across all frequency values. Deviations in
the squared coherence value from 1 indicate uncorre-
lated noise, the presence of nonlinearity or
differentiation in determinants influencing the move-
ment of the two individuals. Thus, for individuals
that are unrelated, on average we will not expect
significant squared coherence at any frequency.

Figure 2 illustrates expected patterns of (Fourier)
cross-coherence for movement trajectories undergoing
similar or different deterministic circadian patterns
across a range of correlation p values driving the incre-
mental stochastic contributions to step lengths. For
movement trajectories in which both individuals do
not show any circadian pattern (i.e. there is no strong
deterministic component to their movement pattern),
coherence emerges only for the correlation parameter
p at values approximately >0.8 with the result of com-
plete synchrony between individuals (figure 2a) as p
tends towards 1. When individuals show a mismatch
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between their deterministic movement properties
(figure 2b,d), on average, individuals will show signifi-
cant coherence only with high step-length correlation
or at frequencies for which both movements oscillate.
Given that both movement trajectories are reflecting
non-trivial (i.e. not type 0) and identical circadian
activity patterns (figure 2c¢,e), two movement trajec-
tories typically show coherency at frequencies related
to their circadian nature of movement even when their
incremental step-length correlation p ~ 0 (intermediate
synchrony). As p approaches 1, coherency becomes sig-
nificant across the remaining frequencies, capturing the
stochastic properties of movement data and movement
becomes completely synchronous. The significant coher-
ence at frequencies unrelated to the circadian patterns
of movement appearing in figure 2c¢—e, and in general
how patterns of coherence relate to sampling interval, is
discussed in the electronic supplementary material,
appendix A, figure S1. However, we have found that
such spurious results are easily identified in practice by
direct examination of data (e.g. box plots of step length
arranged by time of day [8]). Rather, the transience in
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types identified in the column label; (¢,f,7) the corresponding phase differences. For each simulation, the correlation p across indi-
viduals in the stochastic component of incremental movement changed from 0.05 to 0.95 on day 15. Solid arched lines denote the
cone-of-influence, outside of which wavelet calculations are unreliable owing to the finiteness of the data. Dashed lines are drawn
at the 0.95 quantile values using a white noise null model and indicate significant co-oscillation according to the ‘pointwise’ test.
Solid lines within the dashed lines indicate values that are ‘areawise’ significant. Horizontal lines within the solid lines indicate
significant patches that are longer than 95% of the coherent regions defined as ‘areawise’ significant, obtained from 100
wavelet-based surrogate datasets.

the strength of coherence tends to limit the usefulness of =~ movement after day 15 cannot override the differences
Fourier-based coherence in practice, and to solve this between the presence versus absence of deterministic

problem, we turn to wavelet-based coherence analysis. circadian rhythms, resulting in a horizontal green
Figure 3 illustrates the time-localized information band during the second half of the simulation at 1
provided through wavelet coherence regarding the syn- cycle d”'. However, patches of coherence can emerge

chrony classification between two individuals. In all  with a range of phase differences (bottom two panels;
simulations, the stochastic correlation parameter p electronic supplementary material, appendix A,
changes from 0.05 to 0.95 on day 15, and we have set equation (A 4)) during times when the stochasticity is
Tmin = Tmax = 90 min to move towards a more realistic highly correlated with p near 1, indicating a form of
situation in which individuals do not change their intermediate synchrony. Column B shows when individ-
behavioural states at exactly the same time each day. uals share similar but not exact deterministic features of
Unreported exploration of varying this parameter in movement (in this example, both individuals cycle on a
the model confirms intuition: as the component signals circadian scale, but with differing dominant frequen-
increasingly differ owing to this additional component cies), no synchrony is the prevailing relationship when
of randomness, the profile of coherence strength  p is near 0. When the correlation p is high under
diminishes for both important and spuriously signifi- these circumstances, intermediate synchrony is exhib-
cant frequencies. The deterministic rules and results of  ited where coherence occurs across a limited number
figure 3 are as follows: column A shows when one of a of frequencies (top panel) related to the underlying
pair of individuals does not contain any deterministic deterministic frequencies of movement. Under these
movement, coherence is typically absent (top panel, conditions, co-oscillations may occur across a limited
based on values typically associated with coherence in  temporal range (middle panel) with phase differences
the lower panel rows) when p is near 0, indicating no possibly away from 0. Column C shows individuals
synchrony. Larger coherence values at noise frequencies  that share exactly the same deterministic rules show
related to stochastic correlation in incremental coherence at frequencies related to the circadian

J. R. Soc. Interface (2011)
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nature of movement throughout the entire time series
(top panel). When p is near 0 under these circum-
stances, coherence is not necessarily constant for any
one pair (middle panel, first 15 days) and phase differ-
ences can be away from 0, resulting in an intermediate
synchrony classification. When the stochastic element
of movement is also highly correlated, this is reflected
by a high proportion of significantly coherent frequencies
between the Nyquist frequency w = 1/2A¢ through o < 1
cycle d™!, with phase differences near 0. The temporal
accuracy of transitions between these types of coherence
is accurately delineated by the methods employed,
though the transition to larger coherence values at
lower frequencies lags in relation to the length of time
needed for coherence to manifest at these frequencies.
In summary and with consideration of the above cau-
tionary caveats, spectral coherence allows identification
of shared deterministic or stochastic properties of
circadian-based movement step-length trajectories and
indicates that synchrony classification may be reason-
ably based on coherence analysis. In practice, the
step-length time series S” of each individual may
require a separate analysis to facilitate interpretation
of the results of coherence analysis (e.g. to identify
active frequencies at which cycling occurs during com-
plete synchrony). Distinguishing the contribution of
deterministic and stochastic influences when stochastic
correlation is weak, p approximately <0.5, was not
possible at the sampling interval considered here.
Identification of periods of high correlation (p > 0.8)
in the presence or absence of deterministic cycling in
behavioural modes, however, was straightforward.

5. RESULTS

The socio-ecology of the free-ranging elephants of
Samburu, Kenya, has been extensively characterized
based on multiple years of study [1,32], revealing com-
plex intraspecific social structure that includes: (i)
tight affiliation at the familial level, (ii) fission—fusion
relationships demonstrating regular close affiliation
and successive complete separation at the extended
familial level, (iii) ephemeral bonding that is temporally
irregular or seasonal at the clan level, and (iv) non-affili-
ating or unrelated individuals. Previous analyses of
movement paths by Wittemyer et al. [18] of individuals
within this population show that their movement is
typified by both randomness and circadian cycling
between different behavioural states. Positions of
these individuals were recorded each hour.

We begin by examining coherence for elephant pairs
belonging to family and extended family categories of
relatedness (one adult female representing a family
totalling 9-13 individuals in size is collared). For a
closely associating familial pair, movement synchrony
remains consistently strong (electronic supplementary
material, appendix B, figure S2a), providing an illustra-
tive example that consistently strong movement
synchrony reflects the strongest level of pair bonding
in this system. Figure 4 shows the results for an
extended family pair (two adult females from different
family units that regularly associate) over a time span
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Figure 4. The extended family elephant pair of Monsoon and
Stratus demonstrates classic fission—fusion behaviour over
time, shown in (a) by the inter-individual distances calculated
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indicate the proportion of frequencies >1 cycled™! at each
time step that are significant compared with random walk-
type movement, where light grey =0 and black = 1. Wavelet
analysis squared coherence (b) and phase difference (c) values
with associated colour maps and the inset lines outlining signifi-
cant regions as defined in figure 3. (d) A bar plot of the
proportion of movement synchrony classifications for different
separation distance bins: black denotes strong synchrony,
defined by times where >80% of wavelet coherence values for
frequencies >1 cycle d™! are significant and phase differences
are <7/8; grey denotes intermediate synchrony, defined by
times with significant wavelet coherence at any of the frequency
values 1, 2 or 3 cycles d ™' (corresponding to detectable circadian
movement patterns of individuals), regardless of the phase differ-
ence but without strong synchrony also being present; and white
denotes no synchrony, defined by times with no significant co-
oscillations at 1, 2 or 3 cyclesd™'. Strong synchrony occurs
during times of extended pair bonding and relatively close
spatial proximity and is associated with high correlation between
values of the additional movement data (step lengths, turning
angles and absolute direction heading—figure 5). Intermediate
synchrony occurs across the range of close to intermediate spatial
separation values, with less correlation in the additional move-
ment data. No synchrony is present for maximal separation
values but can occur even for very close separation values, and
is associated with no correlation in movement data. Fission—
fusion transitions in the bonding between the two elephants
are clearly delineated by the wavelet analysis.
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Figure 5. Based on the wavelet coherence analysis of Monsoon and Stratus (figure 4), data were partitioned into times of
strong synchrony (a—-c), intermediate synchrony (d—f) and no synchrony (g—i), as defined in figure 4. Plotting step
length (a,d,g), turning angle (b,e,h) and absolute direction (c,f;i) values given these partitions confirms that wavelet-
based step-length analyses isolate different types of group cohesion. For step length, the squared sample correlation
coefficient (R?) and significance ( p) between the two variables, and for angle plots the circular version of Pearson’s product
moment correlation (r) and significance values ( p), are as follows: (a) R*=0.91, p=0; (b) r=0.46, p=0; (c) r=0.74, p=
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that covers multiple fission—fusion events (figure 4a).
Strong synchrony, characterized by significant squared
coherence values near one with phase difference values
near 0 (figure 4b,c), was demonstrated during periods
of close spatial bonding while intermediate or no
synchrony was manifested during periods of spatial
dissociation (figure 4d).

As noted above, our coherence analysis focuses on
measures of step length. Additional analysis of turning
velocity indicated an absence of any within-individual
temporal autocorrelation and no significant across-
individual coherence and therefore was disregarded as
a starting point for this analysis. However, turning
angle is of obvious importance in understanding cohe-
sions, therefore further analyses were conducted
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regarding synchrony in directional changes. Figure 5
shows the relationship between step length, turning
angle and absolute direction conditioned on their syn-
chronous state, indicating that the wavelet coherence
analysis is sorting out times of increasing similarity
across all elemental movement properties in this system.

Between Friday, 24 August 2001, 0 h, and Saturday,
26 August 2001, 23.00 h, the extended family pair ana-
lysed in figures 4 and 5 merged with other individuals to
form a larger herd that included members of socially
unaffiliated individuals (figure 6). Isolating the squared
wavelet coherence values during a 48 h period
(figure 6b), the extended family pair Monsoon—Stratus
demonstrates relatively strong movement synchroniza-
tion. In contrast, Monsoon and the socially distant
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Figure 6. A moment when the three individuals Monsoon, Stratus and Goya converge in space—time shows differences in movement
coordination irrespective of separation distance. (a) The spatial trajectories of Monsoon, Stratus and Goya represented by the
colours red, yellow and blue, respectively; the black arrows point to the starting position of this sequence of moves for each individ-
ual. The top panel of the two inset figures shows separation distances on a logq scale between individuals of each pair, with the top
line corresponding to the Monsoon—Goya pair, and the bottom line corresponding to the Monsoon—Stratus pair; the line is coloured
to indicate the degree of coherence as described in figure 4. The bottom panel of the two inset figures shows step-length values,
where the colours are as in the spatial trajectories, and the colour orange shows high overlap between Monsoon (red) and Stratus
(yellow). (b,c) Colour contour plots of squared wavelet coherence between the two pairs, where the colour values and significance
lines are as in figure 3: (b) Monsoon—Stratus (extended family); (¢) Monsoon—Goya (unaffiliated). Coherence analyses for the
remaining pairwise combinations are reported in the electronic supplementary material, appendix B, figure S2.

individual (Goya) have low levels of synchrony, despite emerges between them driven by common 2 cycle d™*
qualitative similarity in movement trajectories during co-oscillations (figure 6a,c, and bottom inset panel),
the first 24 h period (figure 6a,c, and inset panels). As probably driven by shared physiological or ecological
Goya and Monsoon separate, intermediate synchrony drivers of movement that occur when in the same
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locale, such as rest and movement, related to shade
availability and diurnal temperature fluctuations. Inter-
estingly, shared properties among the socially disparate
pairs formed by Goya and the other individuals were
disrupted during periods of close association, indicating
a possible cost of social interaction among weakly
bonded animals [33]. Examining wavelet coherence
values for Stratus—Goya shows similar results as
Monsoon—Goya, but with less common intermediate
synchrony possibly in relation to greater intra-individual
separation distances (electronic supplementary material,
appendix B, figure S2b,¢).

This application of our framework demonstrates that
the social network structure derived from long-term
(5 years) point-based data on social interactions is
represented by short periods (as short as 48 h) of move-
ment as captured through relatively continuous
temporally monitored location data. In contrast to
point observations, movement analyses are able to
capitalize on data that are not restricted spatially or
temporally. The ephemeral group containing these
three individuals contained nuanced differences (i.e.
synchrony between pairs was not always similar irre-
spective of separation distance) in movement
synchrony between members that appeared to be a
function of the complete suite of processes affecting ele-
phant movements (social, environmental and
physiological). Usefully, differentiated degrees of syn-
chrony identified using the presented framework were
congruous with the strength of social bonds among
these individuals as defined in Wittemyer et al. [32].

6. DISCUSSION

Patterns at the group level represent one key source of
information scientists have for understanding rules
determining movement, particularly those influenced
by their social context. As predicted by Couzin &
Krause [20], the influence of stochasticity, and in par-
ticular its correlation across individuals, is important
in determining coherence for the simulation and empiri-
cal studies discussed here. Further, identifying
relatively repeated, shared deterministic cycles in move-
ment data refines understanding about collective
movement at larger spatio-temporal scales and provides
clues to the relative roles of physiological, social and
ecological factors determining a movement path. This
is exemplified by contrasting the type of movement syn-
chrony found in elephants (presented here) and African
buffalo fission—fusion social structures, where move-
ments of both were sampled at hourly intervals. The
underlying movement patterns of buffalo are dominated
by random walk-type movements and synchrony
between individuals was either absent (when separated)
or strong (when in close proximity) simply as a function
of the degree of coordination in movement stochasticity
[8]. In the context of our framework, these buffaloes
show only the extremes of the synchrony continuum.
By contrast, the elephants show a richer collection of
synchronous states, driven by stronger circadian struc-
ture in individual movement trajectories. Different
kinds of social interactions and foraging strategies
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probably cause this contrast, where elephants show
greater complexity in both diet and sociality that
appears to drive the emergence of a diverse range of syn-
chronous states found between individuals.

Quantifying time—space-specific synchrony using
wavelet coherence in conjunction with other social
and environmental data allows novel insight regarding
the influence of social and ecological processes on
group-level behaviours, a critical arena for garnering
understanding of the architecture of collective move-
ments. Moreover, these calculations can show clear
evidence of when collective movement models can
assume constant rules of interaction across all members
(e.g. [34]) and when rules differ across individuals (e.g.
[35]). Emergent properties of group structure may result
from an array of factors [6], including population size
and number of influential neighbours [36], a shared
target [34] or noise [5]. As such, discerning the degree
to which coordination is a manifestation of sociality
versus shared environmental stimuli (e.g. travel to
water holes, easiest path away from a predator or fire
etc.) requires additional information beyond simply
identifying the structure of coherence between two
individuals. Coherence analysis is best viewed as a
complementary probe for providing guidance on
within-group heterogeneity in movement rather than a
strict test between competing mechanisms.

The quantification of movement synchrony
dynamics can offer insight into the mechanistic drivers
of collective movements. For example: (i) the relative
similarities and differences between the cohesion of
adjacent (nearest neighbours) and non-adjacent group
members can serve to elucidate whether group-level
properties are manifested by global or local cueing,
and can be applied to assess how and at what rate infor-
mation exchange occurs across a group, (ii) grouping
properties and rules can be identified by quantitative
characterization  of  group movement  during
dissolution/formation (i.e. fission—fusion), measured
by classifying synchrony across all pairs in relation to
the timing and location of perturbations (e.g. the level
of synchrony among group members during a predator
attack will probably be a function of the relative
position of group members and the location of the
attack, influencing the manner in which a group disas-
sociates during the disturbance and the time until
divided group components return to their pre-disturb-
ance state), and (iii) synchrony classification within
pack-hunting groups may refine understanding of pre-
dation events by identifying common modes of
activity during extended chases, elucidating the differ-
ential roles among group members or rules governing
coordinated behaviours during each mode (i.e. when
and where to break or join in the coordinated activity);
such an analysis may complement the use of space—
time clustering algorithms and state-space models for
identifying kill sites [37,38]. The very high-resolution
data necessary for quantifying fast-paced events in
group structure dynamics are likely to not be a limit-
ation in the near future (increasingly, data at much
less than 1h sampling intervals are available, with
1 min interval data already appearing in the published
literature [39]).
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Emphasizing pairwise comparisons, as done here,
allows identification of the time-specific switching
across levels of synchrony that can facilitate identifi-
cation of fine-scale and event-specific covariate
triggers for maintenance or changes in synchronous
states. For more than a handful of individuals, a
group- or a population-level measure of synchrony may
be desirable, yet organizing the myriad of resulting
pairwise analyses will be challenging. The framework
presented here can be scaled for analyses of large
group collective movements in the same manner that
inter-individual interactions are used to assess popu-
lation-level ~social structure (e.g. [40]). Likely
directions for scaling to group-level analyses include
averaging the amount of time spent in specific syn-
chrony states over all unique pairs for each synchrony
class or using the spectral information in each time
series to obtain information theoretic based measures
of disparity [41]. The latter may offer a more objective
approach  for  discrimination and  hierarchical
classification in a manner that remains faithful to the
time-series nature of movement. Recent statistical
work has extended discrimination and classification
techniques for grouping time series to be based on
time—frequency representations of the data [42,43]
and provides possible avenues to approach wavelet-
based population-level classification schemes based on
movement data. It should be noted, however, that the
space—time specific information obtained from pairwise
analyses will get lost in such averaging and grouping
approaches. As such, the analysis approach taken will
probably be somewhat system or question specific.

We have emphasized a statistical framework to quan-
titatively compare the degree of movement synchrony
between concomitant movement trajectories. This fra-
mework connects quintessential aspects of movement
data (combined determinism and stochasticity) shown
by many wildlife species with a means for localizing
temporally dynamic patterns in space—time. As such,
this framework enables investigation of the mechanistic
rules governing collective movements and individual
interactions. However, this framework as developed
here does not attempt to solve the very difficult pro-
blems associated with using trajectory data alone to
quantify specific behavioural states [15,44] and possible
related optimization strategies connecting resource
distribution to movement [23,45], or the influence of
sampling interval on such conclusions [46,47]. Statisti-
cal tests of mechanisms of movement drivers (e.g.
social versus ecological) will ultimately require a multi-
tude of covariate data. But, as we have shown here, by
remaining flexible with the data, location time series
can be used to begin to disentangle some of the relevant
processes and suggest areas of future data collection,
opening lines of inquiry that are just beginning to be
approached in movement ecology.
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