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It has been shown that prolonged exposure to a human face leads to shape-selective visual aftereffects. It
seems that these face-specific aftereffects (FAEs) have multiple components, related to the adaptation of
earlier and higher level processing of visual stimuli. The largest magnitude of FAE, using long-term
adaptation periods, is usually observed at the retinotopic position of the preceding adaptor stimulus.
However, FAE is also detected, to a smaller degree, at other retinal positions in a spatially invariant
way and this component depends less on the adaptation duration. Several lines of evidences suggest
that while the position-specific FAE involves lower level areas of the ventral processing stream, the
position-invariant FAE depends on the activation of higher level face-processing areas and the fusiform
gyrus in particular. In the present paper, we summarize the available behavioural, electrophysiological
and neuroimaging results regarding the spatial selectivity of FAE and discuss their implications for the
visual stability of object representations across saccadic eye movements.
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1. INTRODUCTION
The repeated presentation of a given visual stimulus
leads to various perceptual consequences. A number
of studies have demonstrated that brief (,1 s) prior
exposure to the same or a related stimulus generally
facilitates (in the form of faster and more accurate
response) its subsequent recognition, a well-studied
phenomenon called priming. Other repetition-related
effects, called aftereffects, are created by the technique
of selective adaptation. During such paradigms, the pro-
longed exposure of a given stimulus biases the
perception of the subsequent pattern in a predictable
way. For example, after being adapted to a grid pattern
tilted to the right, a vertical pattern will look more like
being tilted towards the left (the tilt aftereffect [1]).

The existence of adaptation to basic low-level visual
dimensions—i.e. motion, orientation, size, curvature,
spatial frequency, texture or perceived hue (for
review see [2–6])—has been known for a long time,
and the investigation of visual aftereffects provided
crucial information about the mechanisms involved
in the processing of specific visual attributes. On the
other hand, we know surprisingly little about the
mechanisms of neural adaptation underlying shape-
specific aftereffects related to the analysis of complex
object form. Recently, however, it has been shown
that, similar to the aftereffects caused by adaptation
to lower level visual features, prolonged exposure to
a visual object—even if it is such a complex one as a
human face—will also lead to shape-selective visual
r for correspondence (gkovacs@cogsci.bme.hu).
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aftereffects. The first to report visual aftereffects in
face perception were Webster & MacLin [7]. They
used distorted faces (for example, with decreased dis-
tances between internal features in comparison with a
normal, veridical face) and found that prolonged adap-
tation to such faces biased the perception of veridical
faces in a direction opposite to the adapting distortion
(i.e. perceived as having expanded features). Figure 1
summarizes the most important aftereffects regarding
human faces.

Since their discovery, face aftereffects (FAEs) have
been used widely in the cognitive neuroscience
community to tap into the mechanisms of face percep-
tion [7–17]. Probably the most important question
related to the FAE is to what extent it reflects specific
processes of face perception. The answer to this ques-
tion determines the specificity of FAE, as theoretically
it is possible that FAE is owing to a combination of
localized aftereffects for low-level stimulus features,
such as orientation, texture and spatial frequency.
Such effects, inherited from earlier areas, are not with-
out precedent in the visual system. For instance,
contrast adaptation in the magnocellular layers of the
primate lateral geniculate nucleus is known to be
inherited from the retina, while adaptation-related
changes in contrast sensitivity in the motion-sensitive
area MT presumably also occur in early visual areas
(for a review see [18]). Thus, it is of utmost impor-
tance to determine if FAE reflects the neural
processes of face processing or of earlier feature pro-
cessing. In their original study, Webster & MacLin
[7] acknowledged that the observed FAE ‘. . . need
not reflect specific processes of face processing’.
They nevertheless argued that the asymmetry of FAE
This journal is # 2011 The Royal Society
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Figure 1. Illustration of some of the FAEs: distortion, identity, gender, facial expression and gaze-direction. Upper row: the
adaptor stimuli; middle row: the ambiguous/neutral target stimulus; lower row: illustration of the percept after being adapted.
For example, prolonged exposure to the second face of the upper row (Grace Kelly) would lead to the perception of the 50%

morph stimulus (middle row) as biased towards another person (Halle Berry). For a demonstration of the effect, please visit
http://cogsci.bme.hu/~gkovacs/FAE.html.
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Figure 2. Behavioural results of several of the most important articles regarding the positional specificity of FAE. The numbers

below the x-axis refer to the positional difference of adaptor and target stimuli (08 is a condition where adaptor and target
stimuli were presented in the same retinal position). Long-adaptation time was at least 2 s, short-adaptation time was a few
hundred milliseconds. For a detailed description please see text. (a) Leopold et al. [13], (b) Afraz & Cavanagh [28], (c) Xu
et al. [57], (d) Fung & He [8], (e) Kovács et al. [27].
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between normal and distorted faces (adaptation to a
normal face did not lead to FAE) is a property that
is different from the characteristics of low-level
feature adaptation, hence FAE reflects processes that
may not be specific, but at least are central to face
perception.

One way to test the specificity of FAE is to
measure its invariance for various low-level proper-
ties, such as size, orientation and position. The
logic behind such experiments is that if FAE reflects
the adaptation of neural processes specific to face
Figure 3. N170 as the major electrophysiological correlate of
FAE for contralaterally presented target stimuli. Grand-aver-
age ERPs are presented over the occipito-temporal sites of
the right hemisphere. Black is non-adapted control; red

(500 ms adaptation time) and dark blue (5 s): adaptor and
target are both in the same (left) hemifield; yellow
(500 ms) and light blue (5 s): adaptor is presented in the
ipsilateral hemifield. Modified from Kovács et al. [27].
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perception then it should transfer across stimulus
transformations to which it is known to be invariant.
The involvement of hierarchically higher processing
steps in FAE are suggested by the fact that face
aftereffects are, to a large extent, invariant to
changes in size [12,19–21], orientation [14,22],
colour and contrast [23]. These findings suggest
that face-selective neural processes at the higher
stages of visual processing, tolerating the above
changes of the stimuli, can adapt and might rep-
resent the neural basis of FAEs. Probably the most
well-studied local feature, which has also led to the
most controversial results, is the positional speci-
ficity/invariance of the FAE. In our present paper,
we summarize the current results regarding the
spatial selectivity of FAE and try to resolve the
possible contradictions of the literature.
2. DATA SUPPORTING THAT FACE
AFTEREFFECTS ARE POSITION-INVARIANT
(a) Behaviour

One of the most cited papers regarding FAE is the
demonstration of norm-based coding of facial iden-
tity. Leopold et al. [13] were the first to
demonstrate that adapting to a face for several
seconds biases perception of a subsequent face so
that an average face resembles the computationally
opposite identity (figure 1b). They also tested if this
FAE can be explained based on the combination of
adaptation to low-level features. In their experiment,
subjects were required to fixate a small red dot at a
given location along the midline of the face during
the adaptation phase and then they had to make a
saccade to another fixation dot halfway between the
eyes during the test face presentation (figure 2a).
They found that adaptation to face identity general-
ized across retinal positions up to 68. Later, Fang &
He [8] and Fang et al. [24] used adapters floating
in an approximately 6 � 68 area and also found
viewpoint aftereffects for face stimuli (figure 2b).

Thus, these studies suggest the role of higher level
neurons with large receptive field sizes as possible cor-
relates of FAE. However, in these studies, the adapting
and test faces always overlapped spatially since the
stimulus size was larger than (118 [13]) or comparable
to (38 [8]) the visual field size within which
translational tolerance was tested.

Cortical neurons of the macaque brain involved in
the analysis of faces, such as the inferior temporal
cortex (IT), usually have receptive fields that cover
both sides of the fixation point, extending into the ipsi-
lateral visual field [25,26]. Thus, an ultimate test for
the role of these neurons in the creation of FAE
would be to show its translation tolerance over the ver-
tical midline. In a previous study, Kovács et al. [27]
tested if adaptation effects on face gender perception
were invariant to the hemifield of the test stimulus
relative to the preceding adaptation stimulus. Using
an adaptation stimulus of 500 ms, we found that the
observed gender-specific FAE, although smaller than
after 5 s adaptation time, transfers completely to the
opposite hemifield (figure 2e). Afraz & Cavanagh
[28] used a 5 s adaptation time and tested
Phil. Trans. R. Soc. B (2011)
systematically the retinotopy of the face identity after-
effect. They also found a smaller but significant FAE
even if the adaptor and test faces were presented 68
peripherally in opposite hemifields (figure 2b). In
fact, the magnitude of FAE depended on the distance
from the adapting stimulus to the same degree whether
or not the test and adaptor faces were in the same
hemifield. Altogether, these results suggest at least par-
tial spatial tolerance of the FAE, extending across the
vertical midline. This would support the theory that
the adaptation of high-level neurons, having large
receptive fields, leads to the FAEs.
(b) Neurophysiology

Despite the large body of experiments regarding the
nature of behavioural FAE, there are relatively few
studies testing the neural correlates of human FAE,
using electrophysiological or neuroimaging methods.
It has been shown that an early occipito-temporal,
negative component of the event-related potential
(ERP), appearing 170 ms after stimulus onset, shows a
reduction in amplitude following prolonged adaptation
to the gender of a given face in a category-specific
manner [12,29]. Harris & Nakayama [30] have shown
similar adaptation effects of the magnetoencephalo-
graphic equivalent of the N170 component, the
M170, after the presentation of another face stimulus
for as short as 200 ms. This N170 adaptation effect
reflects the configural/holistic processing of faces, as
suggested by its sensitivity to the orientation of the
stimulus [31] and to the alignments of the upper and
lower face halves in a composite face illusion paradigm
[32], and it can also be observed when the two sub-
sequent stimuli differ in their viewpoint ([33], but
see [34] for a different conclusion regarding M170).
Similar reduction of the N170 was also observed
in gaze direction adaptation [16] and recognition
tasks [35].

Since these previous experiments point to the
relationship of FAE and of the N170 ERP com-
ponent in a series of ERP-recording experiments,
we tested the position specificity of electrophysiologi-
cal adaptation effects (figure 3). Our ERP results
paralleled the behavioural FAE in the sense that we
observed similar adaptation effects measured on the
amplitude of the N170 ERP component when the
adaptor (presented for 500 ms) and the test stimuli
were in the same or in the opposite visual hemifields
[27]. Furthermore, we observed slightly larger adap-
tation effects on the N170 ERP component after
short-term adaptation than after long-term adap-
tation. These results suggest that short-term
adaptation duration leads to a position-invariant
FAE, which is related to the reduction of the N170
ERP component. Consequently, the observed FAE
is probably owing to the adaptation of the neurons
responsible for the configural/holistic stages of face
processing (for summary see [36,37]), rather than
earlier processing steps.

But where are the neurons responsible for the
behavioural and electrophysiological effects of face
adaptation situated? Although the sensitivity of high-
density electrophysiological studies has increased
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drastically in the past few years, we have no clear infor-
mation about the cortical sources of the M/N170
component. Most current papers indicate that there
are multiple generators of this component. In addition
to the fusiform gyrus [38–42], the superior temporal
sulcus [38,43,44] and occipital extrastriate areas [40]
are identified as the major sources of N170. Thus,
ERP/MEG recordings are not the ideal methods for
determining the cortical location of the position-invar-
iant FAE. In comparison with the ERP recordings,
functional magnetic imaging (fMRI) provides data
with better spatial resolution. Another advantage of
fMRI over ERP recordings is that it has been widely
used previously in the adaptation paradigms as well.
The so-called fMRI adaptation (fMRIa) method has
proved to be an efficient and popular way in studying
visual functions and specifically face perception (for
reviews see [45–48]). fMRIa paradigms are based on
the finding that if two subsequent stimuli are pro-
cessed by the same neural population, then
adaptation reduces the neural activity evoked by the
second stimulus and this, in turn, leads to a lower
blood oxygen level-dependent (BOLD) signal.

Thus, to determine the location of the neural corre-
lates of position-invariant FAE, we replicated our
previous FAE experiment in the MRI scanner
(figure 4). Our results show that the right fusiform
face area (FFA, for a summary see [49]) shows adap-
tation effects that are position-invariant and can be
evoked by short (500 ms) as well as by long
(4500 ms) adaptation durations [50]. The magnitude
of the fMRIa effect was similar in all the studied con-
ditions. Interestingly, this was true even if the stimuli
were presented 58 peripherally in the right, ipsilateral
visual hemifield. This suggests that the right FFA
shows complete position invariance, including ipsilat-
eral peripheral sites. This is in agreement with the
results of previous studies, using stimulus repetition-
evoked fMRIa, which suggest an invariance of FFA
to the face’s position, size [45,46], spatial scale [51]
and viewing angle [24].
3. DATA SUPPORTING THAT FACE
AFTEREFFECTS ARE ALSO SPECIFIC
FOR THE RETINAL POSITION
(a) Behaviour

Recent single-unit recording studies have provided evi-
dence that some positional information is preserved
even at the highest processing levels of the ventral pro-
cessing stream of the macaque brain, in the inferior
temporal cortex (for review see [52]). It was found
that the receptive fields of inferior temporal neurons
can differ in size, have ‘hot spots’, where they are
most sensitive to stimulation and are typically biased
towards the contralateral hemifield [53–55]. Therefore,
if adaptation of these neurons is indeed involved in
shape-selective aftereffects, they should show at least
partial position-selectivity. Indeed, this is what we
found with 5000 ms long adaptation times (figure 2e):
the gender-specific aftereffects are larger when the
adaptor and target faces are presented on the same
retinal position when compared with when they are
displayed in different hemifields [27,56].
Phil. Trans. R. Soc. B (2011)
Afraz & Cavanagh [28] tested further the retinotopy
of the FAE. Using an identity-specific FAE, they
presented the adaptor face peripherally and varied
the position of the test anti-face around fixation.
They found that the magnitude of the FAE depends
on the relative distance of the adaptor and test faces
(figure 2b). Their results indicated a position speci-
ficity of the FAE with 10.88 full width at half
maximum (FWHM) of the position-tuning curve.
The study suggesting the highest level of position
specificity was performed on facial expression judge-
ments. Xu et al. [57] used a simple concave or
convex curve as adaptor and found that, as a conse-
quence of 2000 ms adaptation, subjects perceived
subsequent faces as significantly happier or sadder.
They described that even a small (0.98) displacement
of the adaptor curve, relative to the mouth region of
the test face, led to a complete elimination of the
facial expression aftereffect (figure 2d). Thus, it
seems that the abstract facial-expression aftereffect,
induced by such a simple feature as a curved
line, is much more local than the gender- and
identity-specific FAE.

(b) Neurophysiology

In ERP recording experiments, it was found that after
long-term (5000 ms) gender adaptation, the N170
amplitude reductions show strong position-specificity:
they are larger when the adaptor and target faces are
presented on the same retinal position when compared
with when they are displayed in different hemifields
(figure 3; [27,56]). Similarly, fMRI responses evoked
by the contralateral test stimuli were significantly
reduced in the right occipital face area (OFA) after
long-term adaptation in a position-specific manner:
we observed no fMRIa effect in OFA if the adaptor
and test faces were presented in opposite hemifields
(figure 4). The OFA has been shown to be involved
in early processing of facial features in other fMRI
and transcranial magnetic stimulation experiments
and in lesion studies of acquired prosopagnosia
[42,58–61]. Regarding the spatial properties of
OFA, previous studies showed that its response has
clear contralateral preference [62] and position-
specific fMRIa [49]. Grill-Spector et al. [46] on the
other hand suggested that the fMRIa in OFA translates
across 5.68 of the visual field. Altogether, these results
suggest the role of OFA in the formation of FAE and
imply that the receptive field size of OFA neurons is
larger than 58, but it does not extend across the vertical
meridian towards the ipsilateral hemifield.
4. SPATIOTOPIC REPRESENTATION AND FACE
AFTEREFFECTS
(a) Behaviour

What happens if the observer makes an eye movement
between the adaptation and testing phases so that their
gaze is directed to another location of the visual field?
Suppose the subject is presented first an adaptor at a
given peripheral fixation location and next, before
the presentation of the test stimulus, (s)he moves
her/his eye to the centre of the screen. If we observe
aftereffects at the visual field position where the
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Figure 4. The approximate location of the FFA in the middle fusiform gyrus and OFA in the inferior occipital gyrus. Mean
MNI coordinates are indicated next to the labels. Diagrams indicate the mean decrease of BOLD signal when compared
with the non-adapted condition. Asterisks mark significant differences (p , 0.05) between the non-adapted and adapted con-

ditions. Dark-grey bars, long same; light-grey bars, long different; dark-grey crossed bars, short same; light-grey crossed bars,
short different; contra and ipsi, contralateral and ipsilateral hemifields of the target stimulus. Long: 4500 ms adaptation time;
short: 500 ms adaptation time. Same: adaptor and target in the same retinal position; different: adaptor and target in different
hemifields. From the data of Kovács et al. [50].
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adaptor stimulus was previously presented, and which
is now projected on a peripheral part of the retina, then
the effect is independent of the actual retinal coordi-
nates of the stimulus and is called spatiotopic (for
reviews see [63–65]). However, if we only observe
adaptation-related aftereffects on the central retinal
location of the adaptor, which is now shifted to
another position of the visual field as well, then it
depends on the retinal location and is purely
retinotopic.

Currently adaptation experiments suggest that the
aftereffects observed for tilt [66,67], motion [68,69],
duration [70], binocular rivalry [71] and shapes [67]
have components that cannot be explained on the
basis of retinotopic adaptations. These results together
suggest the existence of spatiotopic representations,
where position of objects is determined in world-based
coordinates, for several types of stimulus categories.

Regarding faces and the FAE, Melcher [67] used a
variant of the gender adaptation experiment with the
stimuli of Kovács et al. [12]. In his study, subjects
had a three-alternative forced choice recognition task
of male faces morphed together with female faces.
He observed that after adaptation to a female face rec-
ognition performance increases, signalling the
presence of specific aftereffects. To measure the spatio-
topy of the effect his subjects had to make a 108
Phil. Trans. R. Soc. B (2011)
saccade between adaptation and test presentation
and the position of the test face was either correspond-
ing to the previous spatial location of the adaptor or it
was in the opposite side of the fixation spot (figure 5).
The results showed significant FAE both at the spatial
location of the adaptor as well as in the opposite hemi-
field and these results support the existence of
position-invariant mechanisms (figure 6). However,
the effect was larger at the spatiotopic than at the con-
trol location and the magnitude of the effect was not
significantly different from the FAE observed when
subjects did not move their eyes and the adaptor and
target faces were presented on the same peripheral reti-
nal location. This suggests that there is a complete
transfer of adaptation effect across saccades and
supports the existence of spatiotopic representations
for faces.

Another paper, using a different approach with bin-
ocular rivalry, supports the existence of spatiotopic
transfer for faces. van Boxtel et al. [71] investigated
the influence of retinotopic and spatiotopic pre-adap-
tation on binocular rivalry. They presented a face
and a house in a rivalry situation after being adapted
to a face for as long as 30 s. As a result of adaptation,
predominance during rivalry was biased away from the
face stimulus towards the house. They found that pre-
vious face adaptation biases predominance when
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Figure 6. The behavioural results regarding the spatiotopy of FAE. Red bars, retinotopic; blue bars, spatiotopic; black, control.

(a) Melcher [67], (b) Van Boxtel et al. [71], (c) Afraz & Cavanagh [72].

Review. Face aftereffect M. Zimmer & G. Kovács 591
adaptor and rivalry locations are retinotopically as well
as when spatiotopically matched, while no such effect
occurs at other control locations. In contrast to the
finding of Melcher [67], however, the retinotopic
influence of rivalry was significantly larger than the
spatiotopic. Another difference between spatiotopic
and retinotopic effects regards the temporal develop-
ment of the effect: while retinotopic effects are
present since the beginning of the rivalry period it
seems that spatiotopic effects require a minimum of
10 s of rivalry time to develop.

A further experiment, using a modified version of
the Melcher [67] paradigm, questions the existence
of spatiotopic transfer of FAE. Afraz & Cavanagh
[72] used a two-alternative forced choice gender dis-
crimination paradigm with the face morphs stimuli,
generated by three-dimensional head models, of
O’Toole et al. [73]. They found a significant FAE
when subjects moved their eyes between the adap-
tation and test period from the periphery to the
centre, but this effect was smaller than when they
Phil. Trans. R. Soc. B (2011)
had to fixate continuously in the centre. These results
were interpreted as clear evidence of the retinotopy of
FAE. However, the fact that gender decision was also
biased when the subjects made a 108 saccade during
the inter-stimulus interval when compared with a
non-adapted condition suggests that a significant
part of FAE translates across retinal positions as well.
The fact that they found no advantage of the spatioto-
pic location when compared with the control position
suggests no spatiotopic transfer of FAE.

It is not yet clear why some studies find spatiotopic
FAE while others do not. As Cavanagh et al. [63]
argues, higher-level factors such as working memory
or attention might be easily involved in the creation
of binocular rivalry adaptation, explaining the spatio-
topic effects. However, no such effects might explain
the differences of the studies of Melcher [67] and
Afraz & Cavanagh [72]. But in these two studies sev-
eral confounds are to be found that make the final
conclusions regarding the role of spatiotopic represen-
tation during the FAE rather difficult. First of all the
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task was different in the studies: identification versus
gender discrimination. Both studies used the female
prototype image of the female–male morphs as
adaptors (i.e. adaptor and target faces were of the
same identity). Melcher [67] asked the subjects to
identify the target faces as one of the three possible
male faces, hence asking identity decision and using
identity-specific adaptation as well. Afraz & Cavanagh
[72] on the other hand asked the subjects to perform
two-alternative gender discrimination. As the images
of the same persons were used as adaptors and test
stimuli, they, in fact, tested identity contingent
gender adaptation. Models of face perception suggest
that different signals in faces (such as identity, age,
gender and expression) are processed by independent
systems (e.g. [74]). On the one hand, the FFA has
been implicated in identity recognition [75–79]. The
full positional invariance of this area for both contra-
lateral and ipsilateral stimuli [50] suggests a high
degree of spatial invariance. On the other hand, neu-
ropsychological [80] and imaging [81,82] studies
suggest that facial gender is processed in other cortical
areas. Thus, it is possible that the two studies tapped
into separate neural mechanisms of face perception,
one responsible for recognition while the other respon-
sible for gender decisions, and these two mechanisms
have different retino/spatiotopic representations.

Another issue that makes the interpretation difficult
regards the way they tested retinotopic adaptation and
the non-adapted state (figure 5). Both studies used a
peripheral adaptor and subsequent test stimulus in
their retinotopic condition, when no eye movements
of the subjects were required (the non-adapted
condition was identical to this except for the presen-
tation of adaptor). Thus, while in spatiotopic and
control conditions, subjects made a saccade towards
the centre; after the adaptation period (with foveally
fixated adaptor stimulus) they had fixated at the
central fixation spot throughout the whole of the reti-
notopic and non-adapted trials and the adaptor face
was peripheral. In other words, three factors, the
foveal/peripheral nature of the adaptor, the relative
position of adaptor and test stimuli (unrelated, spatio-
topic or retinotopic relation) and the presence/absence
of eye movements co-varied: spatiotopic or control
conditions were used with foveal adaptor and eye
movements while retinotopic conditions were used
with peripheral adaptor and without eye movements.
This makes the comparison of retinotopic and spatio-
topic conditions difficult. It is possible that eye
movements interfere with the representation, reducing
the effect in the spatiotopic and control conditions of
Afraz & Cavanagh [72] when compared with the reti-
notopic conditions. But it is also possible that the
neurons responsible for the FAE have information
about the saccadic eye movements, via feedback con-
nections, and this facilitates the transfer of FAE
across spatial positions, as found by Melcher [67].
Thus, it will be important to reveal how task, eye
movements and spatial position interact with the
FAE. Whether the transfer of FAEs to spatially match-
ing coordinates is a special case of positional
invariance that is influenced by spatial attention [63]
will be decided in future experiments.
Phil. Trans. R. Soc. B (2011)
(b) Neurophysiology

There are no electrophysiological or neuroimaging
studies of the spatiotopic transfer of FAE as of today.
The available results regarding motionprocessing suggest
that the activity of the retinotopic portion of area MT
depends on the gaze direction as well ([83–86], but see
[87] for another conclusion). Similarly, Merriam et al.
[88] found evidence of spatial remapping in higher-
order retinotopic areas (specifically in area V3a and
hV4) during the presentation of simple light flashes.
McKyton & Zohary [89] tested similar questions in the
object selective lateral occipital (LO) complex. They
compared the fMRIa effect for man-made objects when
their displacement was limited to either the retina or
the screen, by manipulating eye position and object
locations. Clear fMRIa was found in LO when the
object’s screen position was fixed, regardless of the
object’s retinal position, also suggesting spatiotopic
representations. Sereno & Huang [90] mapped the
organization of the multisensory ventral intraparietal
area and found evidences of the location coding
of visual stimuli with respect to the head, not with
respect to the retina. Comparable paradigms and
improved analysis techniques might help us to find such
mechanisms in face perception in the future as well.

5. THE IMPORTANCE OF ADAPTATION TIME
Several lines of data show that the presentation duration
of the adaptor stimulus determines how it will interact
with the subsequent target. We know that adaptation
duration affects perceived FAE logarithmically, consist-
ent with the classic time course of aftereffects for simple
visual attributes [91–93]. Consistent with the idea that
the duration of adaptation is a crucial factor, recent
fMRI studies found that obtaining orientation-tuned
adaptation signals in V1 requires long-term (several
seconds) adaptation [94], whereas adaptation effects
in extrastriate areas were already seen after short-term
adaptation [95]. Moreover, Fang et al. [24] also
showed that adaptation duration affects the properties
of fMRIa in FFA and OFA. It seems that a reduction
of adaptation duration allows the isolation of different
steps of face processing [27,50]: while long-term adap-
tation affects neurons that are sensitive to the physical
differences of the stimuli (for example in OFA or
LO), as well as position-invariant neurons (in the
FFA), short-term adaptation affects position- and
viewpoint-invariant neurons (also cf. [27,50]).

Recent results using object morphing and adap-
tation confirmed the important role of temporal
parameters in determining the behavioural effects.
Daelli et al. [96] used long-term (3000 ms) adaptation
and varied the delay of inter-stimulus interval between
50 and 3100 ms using an object-matching task. They
found a crossover from adaptation aftereffects to prim-
ing effects as the delay lengthened: object-specific
adaptation aftereffects vanished with time, unmasking
a temporally sustained priming bias.
6. SUMMARY AND CONCLUSIONS
It seems that FAEs have multiple components that are
related to the adaptation of earlier and higher-level
processing of visual stimuli. The largest magnitude of
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the FAE is invariably observed at the identical retino-
topic position where the adaptor stimulus was
presented. This component of the aftereffect depends
strongly on the length of the adaptation period as
well. These facts, together with the results of electro-
physiological and neuroimaging experiments, suggest
the involvement of lower processing levels, specifically
of the contralateral OFA and earlier areas of the IT.

However, the FAE is also detected, to a smaller
degree, at other retinal positions showing spatially
invariant processing and this component, in contrast
to the spatially specific one, occurs even with short
adaptation periods. These facts and experiments test-
ing fMRIa support the contribution of higher-level
face-processing areas and the right FFA in particular.

These conclusions are in line with previous data
suggesting a progressive construction of spatially invar-
iant representations along the visual-form pathway
[64,67], and are consistent with the suggestion that
low-level areas are largely retinotopic but that high-
level features can be matched for the same object even
when the retinal position is different [97]. Furthermore,
it is interesting to note that similar ideas have been put
forward regarding spatial selectivity for action as well:
the right posterior parietal cortex represents space in
both hemispheres, while other action-related areas, such
as the frontal eye field, show contralateral selectivity
[98,99]. The question remains to what extent the spatial
invariance of object representations might play a role in
the stability of the world across eye movements.
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