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Mitochondria produce up to 95 per cent of the
eukaryotic cell’s energy. The coding genes of the
mitochondrial DNA may therefore evolve under
selection owing to metabolic requirements. The
killer whale, Orcinus orca, is polymorphic, has
a global distribution and occupies a range of eco-
logical niches. It is therefore a suitable organism
for testing this hypothesis. We compared a global
dataset of the complete mitochondrial genomes
of 139 individuals for amino acid changes that
were associated with radical physico-chemical
property changes and were influenced by positive
selection. Two such selected non-synonymous
amino acid changes were found; one in each of
two ecotypes that inhabit the Antarctic pack ice.
Both substitutions were associated with changes
in local polarity, increased steric constraints
and a-helical tendencies that could influence
overall metabolic performance, suggesting a
functional change.
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1. INTRODUCTION
Mitochondrial DNA (mtDNA) sequences are used
extensively to infer the evolutionary and demographic
history of taxa, and many such studies assume that
the mitogenome evolves under neutrality [1]. However,
recent studies have questioned this assumption [2,3].
Differences in the metabolic requirements of organ-
isms may exert varying selective pressures on the
mitochondrion [4,5], which has a key role in the
oxidative phosphorylation process [6]. Selection
acting on the mitochondrial genome can therefore
shape the pattern of mutational variation in the
protein-coding sequences in response to metabolic
conditions. Although evidence for purifying selection
on the mitogenome has been reported [7–9], only
a few empirical studies have found evidence for
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positive selection on the mammalian mitogenome
(e.g. [5,7,10,11]), suggesting that adaptive change
may be rare.

The killer whale is a useful organism for testing
hypotheses of selection on the mammalian mitogen-
ome. It is distributed from the tropics to the polar
regions, and has diversified into distinct ecotypes,
which differ in diet, body size and latitudinal (and
therefore thermal) range [12] (electronic supplemen-
tary material). All these factors could select for
changes in metabolic requirements and therefore
potentially act selectively on the regions of the mito-
chondrial genome responsible for controlling
oxidative phosphorylation [4,5]. Here, we assess the
mode of evolution of the mitogenome in the killer
whale by comparing a global dataset of mitogenome
sequences.
2. MATERIAL AND METHODS
We compared the sequences of the 13 protein-coding genes
(ATP6, ATP8, COX1, COX2, COX3, CYTB, ND1, ND2, ND3,
ND4, ND4L, ND5, ND6) from the complete mitochondrial genomes
(16 386–16 392 bp) of 134 individual killer whales and partial
mitogenomes (7450–16 355 bp) from an additional five individuals,
constituting 67 distinct haplotypes, generated by a recent phylo-
geography study [12]; see Morin et al. [12] for sequencing details;
GenBank accession numbers are provided in the electronic sup-
plementary material. Mitogenome haplotypes are unique to each
ecotype [12]. Ecotype was determined before genetic analyses
based on morphological or behavioural data (electronic supplemen-
tary material) [12]. All eight previously described killer whale
ecotypes (electronic supplementary material) and 21 individuals
of an unknown ecotype, which included seven sampled from the
tropics, were included in this analysis [12]. The samples were
therefore taken from across the complete latitudinal range of this
species.

A number of criteria for detecting positive selection have been
proposed. Some methods, such as the non-synonymous to synon-
ymous rate ratio model (dN/dS), are biased against detecting
positive selection in conservative gene sequences where even single
amino acid changes can be adaptive. Therefore, we applied the
modified MM01 model [13] using the algorithm implemented in
TREESAAP [14]. TREESAAP categorizes the physico-chemical
changes owing to amino acid replacements into eight magnitude cat-
egories ranging from 1 to 8, with 1 being the most conservative and
8 the most radical, and then determines whether the observed mag-
nitude of amino acid changes deviates significantly from neutral
expectations. The analyses were conducted independently on each
gene. Significant positive z-scores indicate that higher magnitude
non-synonymous substitutions are more frequent than expected
under neutrality, implying change owing to positive selection
[11,13]. The phylogenetic tree from which a chronology of diver-
gences was inferred was constructed from the mtDNA control
region sequences (electronic supplementary material). The most
likely model of evolution for each gene (electronic supplementary
material) was selected using JMODELTEST 1.1 [15]. A sliding
window of 15 codons was used, and 31 amino acid properties were
included for the selection analysis [11,14]. We only considered
amino acid replacements with magnitude categories 6–8 and signifi-
cant (p , 0.01), positive z-scores as being under positive selection
following McClellan et al. [11]. Sites under selection were displayed
on the bovine cytochrome b structure using the software VMD [16]
to aid with the qualitative assessment of their functional relevance.

Ancestral sequences were reconstructed with DATAMONKEY [17]
for taxa and genes showing adaptive divergence as inferred by
TREESAAP, using joint and marginal maximum likelihood as
well as sampled reconstruction, using the evolutionary model
selected as above.
3. RESULTS AND DISCUSSION
We found 62 amino acid changes in the coding genes
of the mitogenome (electronic supplementary
material); however, we only identified two putatively
adaptive changes, both in the cytochrome b gene:
one shared by all 15 sequenced Antarctic type B
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Figure 1. Structure of the bovine cytochrome b sequences

(pdb code: 1PPJ; ISP, iron–sulphur protein) [23]. The
amino acids corresponding to the non-synonymous sites in
the killer whales are displayed in orange and the positively
selected sites (193 and 279) are coloured by atom type
(red, oxygen; blue, carbon; yellow, nitrogen; the alanine

and threonine side chains are represented as solid and trans-
parent cylinders, respectively). The prosthetic groups are
represented in black, and bound inhibitors in brown (ant,
antimycin; stig, stigmatellin). Exercise intolerance in
humans is associated with genetic variants at the sites

shown in yellow [5].
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individuals, and another shared by 32 out of the 36
Antarctic type C individuals sequenced. Specifically,
all 15 type B individuals had a threonine substituted
for alanine at site 279, and the 32 type C individuals
had an alanine substituted for threonine at site 193.
The z-scores for these substitutions were positive and
significant (.2.326, p , 0.01) for all pairwise com-
parisons with the other killer whale sequences,
implying positive selection on the physico-chemical
amino acid properties.

Cytochrome b catalyses the reversible electron
transfer from ubiquinol to cytochrome c coupled to
proton translocation against the gradient (Q-cycle).
The proton gradient is used by ATP synthase to
Biol. Lett. (2011)
produce adenosine triphosphate (ATP) from adeno-
sine diphosphate [6]. Both amino acid changes imply
a variation in local polarity (alanine is neutral, threo-
nine is polar) and increased steric constraints.
Changes in the protein environment in the vicinity of
electron transfer moieties can have an impact on the
redox properties of these molecules [18–20]. We
therefore expect that the substitution in site 193,
which is adjacent to bH haem (figure 1), will be more
significant and potentially interfere with the electron
transfer that occurs at the bH haem during the
Q-cycle. Although the biochemical complexity of the
oxidative phosphorylation processes prevents us from
predicting the exact functional implications of the sub-
stitution, we suggest that it will have an impact on the
overall ATP production by the respiratory chain, and
consequently on the overall metabolic performance of
type C. The physico-chemical property determined
by TREESAAP to be influenced by positive selection
in both changes was a-helical tendencies, and it is
known that alterations in the protein conformation
can also influence the redox properties of the prosthe-
tic group [18]. McClellan et al. [11] also found
a-helical tendencies to be influenced by positive
selection in an interspecific comparison of cetacean
and artiodactyl cytochrome b sequences.

Given the conserved nature of the cytochrome b,
any deleterious non-synonymous changes would be
expected to be subject to purifying selection (e.g. [8])
and not to rise to fixation. Neutral changes
may occur and become fixed owing to demographic
influences such as a population bottleneck. As
an advantageous mutation approaches fixation in a
non-recombining locus such as the mitogenome,
non-linked neutral variation is swept to low frequency
in a population and linked variation is swept to high
frequency, reducing variation [2]. Eight out of the
18 nucleotide polymorphisms found throughout the
mitogenome in the 36 type C individuals were private
within the four individuals without the putatively
advantageous mutation (electronic supplementary
material). There was no variation in 18 of the 32
type C individuals with the mutation. Further
comparison with non-linked loci is needed to discrimi-
nate between the removal of variation owing to a
selective sweep and demographic influences.

Based on morphological differences [21] and reci-
procal monophyly of the mitogenome sequences
[12], it has been suggested that type B and type C
are distinct species. Positive selection on the cyto-
chrome b could therefore be caused by adaptive
divergence relating to a combination of variables that
influence metabolic requirements, such as body size
or diet; type C is a fish-eating dwarf form of killer
whale, whereas type B is one of the largest forms of
killer whale and primarily feeds upon seals [21,22]
(J. W. Durban & R. L. Pitman 2010, unpublished
data). However, the amino acid changes in both eco-
types could be the result of parallel evolution owing
to environmental conditions such as oxygen concen-
tration or sea temperature. Both type B and type C
at least seasonally inhabit Antarctic pack ice, and
both have been sighted over-wintering in the pack ice
[21]. The third Antarctic ecotype, for which we
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found no evidence of positive selection, inhabits the
offshore ice-free waters during the austral summer
and over-winters at lower latitudes [21]. However,
the mutations are in the opposite direction for each
ecotype, suggesting that divergent evolution may be
more likely. The two changes were private alleles
within type B and type C, respectively, and neither
substitution was found in the reconstructed ancestral
sequence (electronic supplementary material),
suggesting that each mutation has occurred and
become fixed and almost fixed, respectively, since
type B and type C diverged from their most recent
common ancestor, approximately 0.15 Ma [12].
Therefore, the ancestral form may not have been
subject to the same selective pressures.
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