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Abstract
Heparan sulfate proteoglycans (HSPGs) are essential players in several steps of tumor-associated
angiogenesis. As co-receptors for several pro-angiogenic factors such as VEGF and FGF, HSPGs
regulate receptor-ligand interactions and play a vital role in signal transduction. Previously, we
have employed an enzymatic strategy to show the importance of cell surface HSPGs in endothelial
tube formation in vitro. We have recently found several fluoro-xylosides that can selectively
inhibit proteoglycan synthesis in endothelial cells. The current study demonstrates that these
fluoro-xylosides are effective inhibitors of endothelial tube formation in vitro using a matrigel
based assay to simulate tumor-associated angiogenesis. These first generation scaffolds offer a
promising stepping-stone to the discovery of more potent fluoro-xylosides that can effectively
neutralize tumor growth.
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Introduction
Inhibiting tumor angiogenesis is a powerful approach to mitigate cancer growth.[1] Heparan
sulfate proteoglycans (HSPGs), cell-surface and ECM proteins containing highly sulfated
glycosaminoglycan (GAG) chains, play vital roles throughout the various stages of
angiogenesis and tumor growth.[2;3;4] They act as co-receptors for a variety of pro-
angiogenic factors including VEGF and FGF.[5;6;7] As co-receptors, HSPGs facilitate
receptor-ligand interactions and signal transduction. HS chains require certain sulfation
patterns in order to bind to growth factors.[8] In particular, the binding of HS and FGF2
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requires N-sulfated glucosamine units and 2-O sulfated iduronic acid units.[9] Furthermore,
to bind to FGF receptor, HS chains require 6-O sulfated glucosamine residues and 2-O
sulfated iduronic acid along with N-sulfated glucosamine.[10;11] Thus, only HS chains
containing such a sulfation pattern can potentiate FGF/FGFR mediated signaling.

Xylosides containing certain hydrophobic aglycone groups can act as acceptors for GAG
biosynthesis in the Golgi.[12;13;14] The primed GAGs are then secreted outside the cell and
can have a variety of biological consequences by competing with endogenous proteoglycan
chains.[15] Previously it was found that β-D-xylopyranoside virtually eliminated the
invasion of wound microvascular endothelial cells into fibrin gels.[16] Xylosides have also
shown efficacy in preventing tumor progression.[17;18;19] It is also possible to inhibit
proteoglycan synthesis by utilizing fluorine-containing xylosides.[20]

Previously we have shown that cell surface HS is essential for tube formation in vitro using
heparitinase I and III.[21] Recently, we found that several novel fluoro-xylosides selectively
inhibited GAG synthesis in vitro in endothelial cells (Table 1).[22] Based on these results,
we hypothesized that these fluoro-xylosides would be effective inhibitors of endothelial tube
formation as well. In this article we utilize the matrigel tube formation assay to show the
anti-angiogenic efficacy of these novel fluoro-xylosides.

Methods
Cell Culture

Bovine lung microvascular endothelial cells of passage 4–8 (a generous gift from Dr.
Randall Dull) were cultured in MCDB-131 Complete media (Vec Technologies) in a
humidified 37 ºC incubator. Cells were split 24 hrs prior to conducting tube formation
assays in order to keep them in the log phase of growth.

Tube formation assay
Reduced growth factor basement membrane matrix (RGF-BME, Trevigen) was thawed
overnight at 4 ºC in a frost free refrigerator. Fifty μl of RGF-BME was then plated out in
wells of a chilled 96 well plate using chilled pipette tips. The 96 well plates were then
incubated in a humidified incubator for 1 hr. Concurrently, BLMVEC were suspended by
incubation with Tryp LE Express (Invitrogen). 1 × 105 cells were then added to each well
along with MCDB-131 complete media and various fluoro-xylosides. The plates were then
incubated at 37 ºC for 16 hrs prior to Calcein staining and imaging.

Calcein staining
Media was removed from each well containing cells by gentle dabbing with a paper towel.
The wells were then washed twice with PBS and then 100 μl of 2 μM Calcein AM was
added to each well. Cells were then stored for 30 min in the incubator. After incubation in
the calcein AM working solution, the cells were washed once again with PBS and imaged
with an Olympus IX81 microscope attached to a color CCD Filter and a GFP emission filter
using 485 nm excitation/520 nm emission.

Results and Discussion
Tube formation experiments were performed on reduced growth factor basement membrane
extract (matrigel) which simulates angiogenesis near the tumor microenvironment (Figure
1). Since BLMVEC spontaneously form tubes on RGF-BME, wells without any compounds
were used as positive controls. Sulforaphane (provided by the manufacturer) was used at 20
μM as a negative control.
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Initially tube formation experiments were performed at a 300 μM concentration of each
fluoro-xyloside as this concentration has previously been shown to inhibit GAG
biosynthesis. [22] As shown in Figure 1, only xylosides III and IV were able to inhibit tube
formation at 300 μM concentration. No other fluoro-xylosides tested had any effect on tube
formation at this concentration.

Based on these initial results, two other concentrations of xylosides III and IV were tested
for their ability to inhibit tube formation in order to understand the dose-dependent nature of
these small molecule drug candidates (Figure 2). Xylosides III and IV did not inhibit tube
formation at 150 μM concentration whereas they strongly inhibited tube formation at 600
μM concentration. At this concentration, the extent of inhibition of tube formation is
comparable to the Sulforaphane negative control.

Angiogenesis is a complex multistep process whereby blood vessels sprout from existing
vessels. It requires a multitude of molecular players including integrins, ECM components,
proteases, and growth factors.

Several potent anti-cancer agents such as Bevacizumab (Avastin) have utilized this
knowledge to attack tumors in the past.[23] However, drugs such as Avastin, which act only
on singular molecular targets, may not be as efficacious as drugs that can affect multiple
targets. The fluoro-xylosides presented in this paper represent a novel and powerful tool to
inhibit angiogenesis because of their ability to target GAG biosynthesis and hence affect the
multitude of interactions that are affiliated with cell-surface GAGs and proteoglycans.

In this paper we have shown two fluoro-xylosides (III and IV) that are potent inhibitors of
endothelial tube formation in vitro. There is a direct correlation between the most potent
inhibitors of tube formation and the most potent inhibitors of GAG synthesis.[22] Since we
have previously shown that cell surface heparan sulfates are essential players in the process
of tube formation, it is likely that these fluoro-xylosides prevent tube formation by inhibiting
GAG production.[21] Not only are these fluoro-xylosides ideal drug candidates due to their
small size and their ability to penetrate cells, they are also excellent chemical biology tools
to probe proteoglycan biology.

It can be argued that these first generation fluoro-xylosides are ineffective because of their
high dosage requirements (300 μM). However, there are several methods of improving their
potency. Our lab has previously shown that varying the aglycone moiety attached to the
xyloside can greatly affect its ability to prime distinct GAGs.[12] Additionally, several
methods exist for targeting activated endothelial cells in the tumor microenvironment.
[24;25] Future studies will utilize this information to design more potent fluoro-xylosides
and test them in vivo. In conclusion we have found novel fluoro-xylosides that inhibit GAG
production in endothelial cells and also inhibit tumor-associated angiogenesis.

Research Highlights

• Novel fluoro-xylosides inhibit endothelial tube formation in vitro

• The fluoro-xylosides presented specifically prevent glycosaminoglycan
biosynthesis

• Endothelial cell glycosaminoglycans are essential for tube formation
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Figure 1.
Several fluoro-xylosides were added to BLMVEC on RGF matrigel at 300 μM
concentrations. Representative images are: A). 20 μM sulforaphane control B) Positive
control C) Xyloside I D) Xyloside II E) Xyloside III F) Xyloside IV G) Xyloside V H)
Xyloside VI I) Xyloside VII. These experiments were performed three times in duplicate
wells.
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Figure 2.
Dose-dependent inhibition of tube formation by xylosides III and IV. Representative images
are: A) Xyloside III 150 μM B) Xyloside IV 150 μM C) Xyloside III 600 μM D) Xyloside
IV 600 μM. These experiments were performed three times in duplicate wells.
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Table 1

Fluoro-xylosides tested for their ability to inhibit tube formation of BLMVEC in vitro.

I

II

III

IV

V

VI

VII
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