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Abstract

Recently emerged deep sequencing technologies offer new high-throughput methods to quantify gene expression,
epigenetic modifications and DNA-protein binding. From a computational point of view, the data is very different from that
produced by the already established microarray technology, providing a new perspective on the samples under study and
complementing microarray gene expression data. Software offering the integrated analysis of data from different
technologies is of growing importance as new data emerge in systems biology studies. MAYDAY is an extensible platform for
visual data exploration and interactive analysis and provides many methods for dissecting complex transcriptome datasets.
We present MAYDAY SEASIGHT, an extension that allows to integrate data from different platforms such as deep sequencing
and microarrays. It offers methods for computing expression values from mapped reads and raw microarray data,
background correction and normalization and linking microarray probes to genomic coordinates. It is now possible to use
MAYDAY’s wealth of methods to analyze sequencing data and to combine data from different technologies in one analysis.
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Introduction

The ultimate aim of most biological research is to gain an

understanding of biological systems and how their constituting

parts function together. Traditionally, researchers would focus on

a sub-system of interest, e.g. a small regulatory pathway, and try to

determine its function. They would conduct a large number of

individual experiments, e.g. to quantify the expression level of the

genes involved or to measure the abundance of certain

metabolites. Today, individual experiments have been partly

replaced by high-throughput data generation methods. The age of

large-scale high-throughput data generation in biology started

with the introduction of microarrays that could be used to measure

a large portion of the transcriptome of an organism, cell type, or

tissue in parallel. The resulting ‘‘transcriptomics’’ data sets necessi-

tated a new kind of analysis software able to efficiently deal with

data of that size.

New deep sequencing technologies (also called next-generation or

second generation sequencing methods) are now available [1–3] to

study the transcriptome in unprecedented detail (RNA-Seq, [4]).

Both, the new techniques and traditional microarrays are

successfully being applied to other research areas, such as the

study of chromatin immunoprecipitation (ChIP-seq [5] resp.

ChIP-chip [6]). Common to these different applications is the

enormous size and complexity of the resulting data.

Visual data inspection is often the fastest way to gain insight into

these large data sets. Researchers can visually distinguish patterns

that automated methods would miss. This process can be the basis

for building hypotheses that can then be tested either by applying

automated, algorithmic analyses, or by interactively exploring the

data. Software for transcriptomics analyses must therefore allow to

visualize any aspect of the data in a flexible manner and should not

impose one single path of analyses. Furthermore, visualizations

must be interactive to facilitate data exploration.

A large number of different methods have been developed for

automated as well as exploration-driven analysis of complex

transcriptomics data. The aim is to reduce data complexity resp.

dimensionality and to extract essential information such as

regulatory relationships between genes.

Tools for analyzing RNA-Seq data include TopHat [7], which

analyzes mapped reads to identify splice junctions between exons.

Cufflinks [8], its sister tool, assembles mapped reads into a

parsimonious set of transcripts and then estimates the relative

abundances of these transcripts based on their supporting reads.

CisGenome [9] is an integrated tool for tiling array, ChIP-seq,

genome and cis-regulatory element analysis. Commercial packages

include ArrayStar (with the QSeq extension), GenomeStudio

(Illumina), Partek Genomics Suite, and the CLC bio suite. Only

very few tools integrate both microarray and RNA-Seq data and

provide a user-friendly interface to many different statistical and

data-mining as well as visualization methods. Thorough analyses

require the consecutive application of several methods, depending

on the nature of the data, the experimental conditions and on

observations made during the course of the analysis itself. Tight

integration of different analyses methods and statistical tests with

the visualizations is thus of utmost importance for efficient

analyses.

MAYDAY [10,11] is a framework for explorative data analysis. It

combines many interactive visualizations with a solid foundation

of statistical methods, a data model supporting meta information,
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classification and data-mining methods and sophisticated filtering

and automation approaches into a user-friendly application. While

MAYDAY’s initial emphasis was on transcriptomics data, it can also

be used to analyze metabolomics, proteomics and many other

kinds of numeric data. MAYDAY requires no background in

programming but allows programmers to access its internal data

structures either by writing plug-ins or by using its interactive R
and JavaScript shells.

Here, we present MAYDAY SEASIGHT, an extension that allows to

integrate sequencing with traditional microarray data and enlarges

MAYDAY’s scope of application to a new type of data as well as to

integrated analyses of data from different experimental platforms.

MAYDAY including SEASIGHT is open-source software available

at http://www.microarray-analysis.org.

Materials and Methods

MAYDAY [10,11] is a framework for explorative data analysis. It

combines many interactive visualizations with a solid foundation

of statistical methods, a data model supporting meta information,

classification and data-mining methods and sophisticated filtering

and automation approaches into a user-friendly application.

Written entirely in Java, it can be installed locally or run without

any installation as WebStart application independent of the

underlying operating system. MAYDAY provides efficient core data

structures as well as a powerful plugin management system which

allows for fast extension via custom plugins. About 80 major

plugins are currently included, covering such areas as clustering,

filtering, classification, and visualization. Finding significantly

differentially expressed genes is another core function covered by

MAYDAY. A host of different statistical methods are already

available (e.g. Student’s t-test, SAM [12], Rank Product [13],

WAD [14], ANOVA) which can be combined with correction

methods for multiple testing.

The fundamental idea underlying MAYDAY’s design is that users

should be able to visualize their data in any way they want at any

time during the analysis. It offers a range of different visualizations

such as scatter plots, box plots, profile plots, enhanced heat maps

[15], a genome browser and pathway visualizations [16]. All

visualizations are interactive and can be customized in many ways.

Many types of meta data (numeric, categorical, statistical, etc.) can

be used in visualizations to provide additional information, e.g. by

integrating statistical significance into a heat map. All plots can be

exported as publication quality files in different formats.

Microarray, Sequencing and Locus data import
Here we present a new extension for MAYDAY, SEASIGHT, that

adds a framework for importing raw data from different sources.

On the one hand, we have added support for deep sequencing

(DS) data. DS methods produce a large number of sequences,

called reads. A wide range of specialized software packages are

available to ‘‘map’’ these reads to a reference genome sequence,

i.e. to assign each read to one or more loci within that genome (see

[17] for a review). The output of these programs is usually some

form of tabular text file. SEASIGHT offers an import filter for

mapped reads that can parse any tabular file as long as the

essential information is present. At least, read start positions with

respect to genomic coordinates are required. Any further

information missing from the file (species, chromosome, read

length or end position, strand information) will be requested from

the user. SEASIGHT can also import data stored in the recently

introduced mapping file formats SAM and BAM [18]. On the

other hand, SEASIGHT supports importing microarray data from

different microarray platforms such as GenePix, Affymetrix,

Agilent and ImaGene files, as well as generic tabular files. All

imported data is stored in a generic data structure for further

processing.

Working with locus information
When data from microarray and DS experiments are analyzed,

or when comparing several DS experiments, a common set of

genomic locations must be constructed first. Besides the data

import and transformation methods, some of which make use of

locus data, SEASIGHT contains methods for creating, combining,

filtering and transforming genetic coordinates. SEASIGHT can

import mappings of identifiers (genes, CDS, ...) to coordinates

from files in GenBank, EMBL, Generic Feature (GFF) and Protein

Table (PTT) format. Furthermore, we have a very flexible parser

for tabular text files supporting any type of column separator,

quotation and comment characters and column arrangements. As

for the read import step, missing data (species, chromosome, etc.)

will be requested from the user. Furthermore, we have a basic

algorithm to derive a set of coordinates from DS data based on

read counts or sequencing coverage. Locus data can be

transformed, for example by changing species or chromosome

names using a replacement mapping, by shifting positions,

changing feature lengths or strand information, which can be

necessary e.g. when using data produced by a non-strand specific

protocol.

When several sets of coordinates are present in a data set, they

often need to be combined to produce a common set of

interrogated positions. We have implemented four methods for

this task (see figure 1). The ‘‘union’’ approach uses all unique loci

of all input sets, the ‘‘pairwise’’ approach produces one locus for

each pair of neighbor coordinates discarding loci not covered by

any input set. Both approaches have a minimal size parameter.

More sophisticated methods are the ‘‘greedy’’ method which

combines loci if they exceed a minimal overlap (or fall below a

maximal distance of each other) and the ‘‘minmax’’ method which

tries to find maximal extensions by merging overlapping loci

within predefined minimal and maximal sizes. Using these

methods, users will either get a higher resolution (in terms of

genomic coordinates) in the resulting dataset (union, pairwise) or a

less sparse expression matrix (greedy, minmax). Depending on the

research question, either of these possibilities may be more

appropriate.

Finally, SEASIGHT provides a method to filter one set of

coordinates based on another set using a maximal distance,

minimal overlap approach.

Data normalization
Using data from different sources requires users to carefully

decide on a normalization strategy. SEASIGHT’s main element is the

transformation matrix (see figure 2). Imported data is presented as a

list of rows (experiments), which can be freely ordered by the user.

Successive transformation steps can be performed on each

experiment. These include background correction (subtraction,

normexp, RMA), two-channel array normalization (loess, printtip-

loess), inter-array normalization (average scaling, percentile

scaling, quantile, reference channel quantile), summarization

(median polish, mean, median), read count combinations (naive,

coverage, RPKM (reads per kilobase exon model per million

reads, [19]), DCPM (depth of coverage per base per million reads,

[20])), locus-dependent functions (locus import, summarization,

mapping), and other transformations (logarithm, interval mapping,

MA-transformation, dye-swap, identifier mapping).

Some of these transformations work on single experiments,

others work on a (unordered) set of experiments which can be

Combined Analysis of RNA-Seq and Microarray Data
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selected using an intuitive interface. This grouping of experiments

can be different for each transformation step being added. The

goal of these successive steps is to transform each experiment such

that all experiments are comparable. The exact definition of

‘‘comparable’’ depends on the respective study. Usually it means

that values in different experiments are semantically identical, i.e.

a certain numeric value has the same meaning (denotes the same

expression strength) regardless of which experiment it appears in.

The successive transformation steps and their input experiments

can be represented by a n|m matrix T , where n is the number of

experiments and m is the total number of successive steps needed

to apply all transformations taking into account all opportunities to

execute transformations in parallel, i.e. when their input sets of

experiments do not overlap. We use the term transformation instance

for a specific application of a transformation, its input set of

experiments and its set of parameters. Then each cell of the matrix

contains zero or one transformation instance. Each instance can

occupy more than one cell. These cells all occur in the same

column but need not be in consecutive rows. Cells can be left

empty in which case the data in the respective experiments is not

altered in that step. The process of applying the transformations

can then be done efficiently by iterating over the columns of the

matrix. All transformation instances in a column can be executed

in parallel with their respective parameters, using the occupied

matrix cells to determine the input experiment set for each

instance.

A second matrix S of size n|mz1 is used internally to model

the state of each experiment. The ith column contains the state of

each experiment before the ith transformation step. The first

column contains the state after parsing, the last column the state

after the final transformation is applied. This state matrix is filled

before the transformations are applied to the data, at the same

time the transformation instances are added to T . Each

transformation method supplies a list of valid input states and

the output state after its application to valid input data. These can

be used to determine whether a certain transformation is

applicable to an experiment at a given transformation step. Thus,

SEASIGHT allows users to quickly add transformation steps to their

experiments, without having to wait for lengthy computations to

finish. At the same time, a lot of the complexity is hidden from the

Figure 2. Transformation matrix for part of the case study (using three Affymetrix CEL files and three sequencing result files for the
same kidney sample [21]). Experiments are displayed as rows, transformations as boxes with color indicating grouping of the transformations.
Final data properties are displayed on the right side. Transformations can be added, removed and configured using context menus.
doi:10.1371/journal.pone.0016345.g002

Figure 1. Merging multiple sets of loci. SEASIGHT offers several methods to combine locus data from different sources. Strong horizontal lines
represent genomic loci, fine lines represent reads in the top panel. See text for details.
doi:10.1371/journal.pone.0016345.g001
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user. For example, after a background correction was applied to

data from a microarray experiment, further background correc-

tion is neither possible nor useful.

The resulting state of each experiment is displayed, containing,

among others, the number of probes or mapped reads, the number

of genetic loci that are present in the experiment, and information

on other properties of the data such as the kind of values (absolute

vs. relative expression, logged vs. unlogged data, single vs.

multichannel array data, etc.).

During the configuration of the transformation matrix, no

lengthy calculations are actually performed. Only the state matrix

S is updated to reflect the data properties resulting from applying

the chosen transformations to the data. When satisfied with the

predicted result, the user can start the computation to create a

dataset for analysis. This dataset can then be stored in MAYDAY’s

efficient snapshot file format and shared with other users. Later

changes to the transformation matrix are possible to fine-tune the

resulting dataset. To this end, the transformation matrix (including

all imported data) can be saved to a single, compressed file at any

time.

Results

To illustrate MAYDAY SEASIGHT, we use data from a compar-

ative study of RNA-Seq and microarray experiments [21]. Total

RNA from liver and kidney samples of a single human male were

extracted and each sample was hybridized to three Affymetrix

HG-U133 Plus 2.0 microarrays as well as sequenced in three lanes

on an Illumina Genome Analyzer, resulting in three technical

replicates per platform per tissue. The original paper contains even

more replicates and control lanes (see [21] for details) which we

did not use in our case study for reasons of clarity. As input for

SEASIGHT, we used the raw microarray data in Affymetrix CEL

format and the mapped reads in Eland’s (Solexa) output format as

available on the original authors’ website.

Arrays were normalized using our implementation of the RMA

method [22] and locus information for probesets was added from

the authors’ tabular annotation file. Sequencing data was

converted to RPKM values for each locus-annotated feature on

the array. The RPKM values were mapped logarithmically to the

range ½0,16� and we used quantile normalization on all samples to

create the combined dataset (see figure 2). This dataset,

encompassing 12 columns representing the experiments and

16473 rows representing the common features (here transcripts),

was then used for subsequent analyses within MAYDAY.

To compare the sensitivity of sequencing and array data, we

removed genes only found expressed by one technology. First we

computed mean expression values from the three technical

replicates for each tissue/technology. We call transcripts expressed

if their expression value is above 4 and as non-expressed if it is

below 3, thus excluding cases where genes would be considered

not expressed because they fall just below the expression threshold.

Figure 3( left) shows a scatter plot of mean expression values for

the kidney sample with the respective sets of genes highlighted.

Each technology detects a similar number of genes not found by

the other.

Then we removed 6566 genes with low expression values (which

are mostly only detected by one of the two technologies) and used

MAYDAY’s implementation of the Rank Product method to find

differentially expressed genes between the six kidney and the six

liver experiments. Genes called as differentially up- resp.

downregulated (Rank Product pfpv0:05) were then visualized in

a profile plot (Figure 3 right) using the mean expression for each

set of technical replicates and coloring each profile on a red–green

gradient depending on its mean expression value in the liver

sample array replicates. 156 genes were found to be significantly

upregulated in the kidney sample, 176 genes in the liver sample.

The next step could now be functional analysis of these genes, for

instance using GO terms, or visualizing the most significantly

regulated pathways.

Parsing the input files (CEL and CDF files, mapped reads, locus

information) and adding all transformations (as shown in figure 2)

took five minutes. The computation of the final dataset took less

than three minutes. The whole analysis on 30 million mapped

reads (970 million bases) and 3.6 million array features was done

using MAYDAY running with 4GB of main memory. All

downstream analyses (after the dataset has been constructed) are

also possible using MAYDAY’s default of 500 MB memory.

Figure 3. Case study. Total RNA from liver and kidney of a single human male was extracted, sequenced as well as hybridized microarrays. We used
three sequencing replicates and three microarray replicates for each tissue. All data processing was done using Mayday SEASIGHT. Left: Scatter plot of
mean replicate gene expression in the kidney sample for array (x axis) and sequencing data (y axis) with the genes only found as expressed by one
technology highlighted. Right: Visualization of genes reported as differentially expressed between kidney and liver by both sequencing and array
data (Rank Product, pfpv0:05). Overall, both technologies show a high agreement. Some genes are only detected by one technology indicating that
they complement each other.
doi:10.1371/journal.pone.0016345.g003
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Discussion

We present SEASIGHT, a new extension for MAYDAY, consisting

of file parsers for microarray data, mapped sequencing reads and

locus information from different sources, as well as a large number

of data transformations (platform-specific as well as generic in

nature) and operations on locus data. New methods can easily be

added as MAYDAY plugins. Our aim is to provide a user-friendly

framework for expression analyses (or more generally transcript-

abundance based analyses), in single platform (e.g. Affymetrix

microarrays or next-generation sequencing methods), as well as

cross-platform scenarios. The intuitive user interface of SEASIGHT

allows to quickly test different normalization strategies while the

underlying software design which allows to create ‘‘chains’’ of

transformations results in the high flexibility of our approach.

We have implemented processing of large amounts of data in

Java, which can be problematic due to the enormous size of non-

native datatypes and the overhead inherent in Java collections. To

overcome these problems, we implemented our own memory-

efficient data structures based on native data types and optimized

containers, such as sparse arrays covering genomic regions. These

structures scale linearly with the input data size and, in most cases,

access to the data is achieved in constant time. We conclude that

the widely-held belief that ‘‘Java cannot handle large amounts of

data’’ does not apply if programmers take care to design efficient

data structures for their particular problem.

Many software packages deal with read mapping, i.e. the

assignment of genomic coordinates to each read produced in a

deep sequencing experiment. Each algorithm has its own benefits

and disadvantages, and the choice of an algorithm and specific

parameters depends on the type of experiment. Read mapping is a

time-consuming and memory-intensive step that is often done on

dedicated computers. Thus we decided to keep mapping and

analysis separate and not include a read mapping tool in MAYDAY.

Since all tools provide output in tabular or SAM/BAM format,

their output can readily be used with SEASIGHT.

Although the case study presents only a small portion of

MAYDAY’s features, the value of a common importing and

processing system such as SEASIGHT is obvious. Importing raw

data and configuring the transformation matrix took only a few

minutes, drastically shortening the time researchers have to invest

to get their data into a form that allows comparative analyses.

We will continue to develop and implement new methods for

MAYDAY and SEASIGHT. For instance, the current peak finding

algorithm is very basic and was only included as a proof of

concept. Until a more sophisticated method is included, we suggest

the use of a dedicated peak finding program for this task.

Furthermore, the correct choice of normalization methods for DS

data as well as for the reconciliation of DS and array data is a field

of ongoing research, and also strongly depends on the respective

dataset. We do not presume to know the correct method for each

case, and the choice of methods employed in the case study is

certainly debatable. We think it is important to offer a large

number of well-tested methods in one framework, to give

researchers a choice to quickly find the right method without

having to familiarize themselves with dozens of separate tools.

SEASIGHT extends MAYDAY by a powerful data import

framework, making MAYDAY’s power as a tool for visual and

explorative data analyses available to researchers using new

technologies or non-standard experimental pipelines. Further-

more, it facilitates the use of microarray data to validate deep

sequencing results. When deep sequencing data is produced

without a fully sequenced genome that reads can be mapped to,

SEASIGHT can still be used for analyses given a mapping of

identifiers for the measured transcription levels.
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