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Abstract

In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such
constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming
potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study,
ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov
model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model
lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental
observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the
cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their
own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to
calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each
cycle, we established a method to calculate the water-ion coupling ratio (CRw-i) through cycle flux algebra. These calculations
predicted that CRw-i would increase at low potassium concentrations. One envisions an intuitive picture of permeation as
random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables.
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Introduction

The ion channel is a molecular device that provides a unique

reaction platform for the permeation of ions and water molecules

[1]. The channel facilitates ion flux across the membrane while

maintaining ion selectivity. This activity is carried out with a

rather simple structure named the pore. In an open pore, ions and

water molecules diffuse without requiring energy consumption.

The crystal structure of the KcsA potassium channel revealed that

the pore is narrow, having a diameter close to the potassium ion

size [2]. This allows the passage of bare ions and water molecules,

but prevents them from passing each other within the pore (single-

file permeation) [3]. This dependency of ion and water flux is a

fundamental property of the ion channel, and there are several

experimental methods for evaluating the coupled flux [3,4,5]. The

experimental data thus obtained comprises important information

on the interaction of ions and water during the permeation process

and is useful for investigating the underlying mechanisms of

permeation. However, the lack of an adequate theoretical

background for the purpose of quantitative examination of the

coupling has left the proper interpretation of such valuable data

elusive. In this study, we present a theoretical method for

evaluating ion and water coupling on a discrete-state diagram

using a thermodynamic concept of cycle flux.

During ion permeation, water molecules, both those on

permeating ions and those flanked by ions in the narrow pore,

are obligatorily transported along with ions. Ion channels simply

serve as a geometrical constraint, a single-file pore, through which

queues of ions and water molecules stream, leading to coupled

flux. The water flux, driven by the difference in the electrochem-

ical potential of ions, is called ‘‘electroosmosis’’ and is an example

of free energy transduction, since water is carried uphill [6,7,8].

This unique mechanism has been studied thermodynamically. In

particular, the streaming potential (Vstream), the reverse phenom-

enon of the electroosmosis, has been measured electrophysiolog-

ically, from which the ratio of the water and ion fluxes during the

permeation (the water-ion coupling ratios; CRw-i) was evaluated

[4,5,9,10,11,12]. The CRw-i value is a signature revealing indi-

vidual contribution of ion and water molecules in a flowing queue

through the pore. These elementary processes cannot be resolved

in ionic current measurements, since the high permeation rate

makes the observables as the mean behavior of the ion flux. Thus,

measurements of CRw-i provide unprecedented information on

the permeation. However, this data has yet to be related to the

underlying permeation mechanisms in quantitative manner.

To examine CRw-i quantitatively, we considered the discrete-

state Markov model (DSMM) for ion permeation, on which the

concept of the cycle flux was introduced. In earlier studies,

electrophysiologists have constructed DSMMs intuitively in an

effort to quantitatively account for the experimental single-channel

current amplitudes [13,14,15,16]. The position of ion binding

site(s) was estimated and the transition paths among the states were
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proposed. The rate constants were estimated from the experi-

mental data of the current amplitudes. Here, the DSMM for ion

permeation is introduced using a microscopic approach (Fig. 1).

One way to picture this is to imagine a movie of ions and water

undergoing permeation through a single-file pore, such as in the

gramicidin channel (Fig. 1A). Computer simulation has revealed

all the detailed trajectories of ions and water molecules undergoing

permeation [17,18,19,20,21,22,23,24]. Ions and water molecules

in the pore tend to stay in preferred locations, rather than

assuming a diffused distribution along the pore. Ensembles of these

snapshots reveal that the distribution of ion and water molecules is

segregated into a limited number of distribution ‘‘states’’. The

coarse graining of these states and assignment of the transition

paths give the transition rates between states. These states and

transitions can be represented diagrammatically (Fig. 1B), includ-

ing the first-order rate constant kij for each possible transition i R j

between states. This is a DSMM for ion permeation.

In DSMM, the states on the diagram represent the ion occupancy

states in an open pore. In the case of the KcsA channel, the crystal

structure revealed that ions are located in four potential binding sites

in the selectivity filter (for example PDB code: 1k4d) [25]. This

justified the use of the discrete model of ion permeation [26]. The

discrete diagram thus constructed serves the purpose of expressing

the permeation processes quantitatively.

The concept of the cycle flux was introduced by T.L. Hill [27]. On

the state diagram, the net ion flux is represented by a random walk

(Fig. 1B). There are multiple cyclic paths on the diagram. For

example, an ion enters from the right side (transition 1 R 3), then,

the ion moves from the right binding site to the left (3 R 2). The ion

exits to the left side (2 R1) and completes a cycle a. Each cycle

represents how ion and water molecules are transferred. The rate of

completing a cycle is called cycle flux [28]. Cycle flux is driven by the

free energy conjugated to the cycle [27,29]. In a complex diagram,

there are many possible cyclic paths but not all the cycles generate

non-zero net flux. During a random walk, selecting a cycle or cycles

from among the others determines the macroscopic observables.

Therefore a structure of permeation emerges on the DSMM by

introducing the concept of cyclic paths and the cycle flux.

How is the cycle flux evaluated? The stochastic processes of ion

permeation jumping from one state to another on DSMM have

Figure 1. Permeation processes through a single-file pore. A. A schematic model for a narrow pore that allows passage of ions and water
molecules only in single-file. B. A discrete-state Markov model for the channel having two binding sites. The two binding sites are either ion-occupied
or not. There are four states, including the double-occupancy state. Tracing transition arrows (violet or blue) leads to cyclic paths (cycle a, b and c),
and transitions around cycles generate the net flux (cycle flux). C. A Maxwell’s demon stays at the inner pore entrance and takes account of the ion
and water molecules in and out of the pore during the net influx. A time series of the random elementary steps (entering or exiting of either an ion or
a water molecule) noted by the demon is shown. D. A time series of cycles deduced from a random sequence of ion and water pop-ups. A piece of
the random sequence was lumped together and assigned to one of the one-way cycles, and the random sequence of ion-and-water pop-ups was
converted to a series of one-way cycles. Detailed trajectories are reproduce by two demons in both sides of the pore. The cyclic sequence provides a
more visual image of permeation processes than the simple random sequence. The sum of cycle fluxes gives the net flux.
doi:10.1371/journal.pone.0016578.g001
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been simulated with a Monte Carlo method, and counting num-

bers of cycle completion gave an approximate solution of the cycle

flux [26,28]. On the other hand, Hill developed a diagrammatic

method for obtaining the exact solution for the one-way cycle flux

[27,30]. This graphical method has been applied to simple

diagrams, but has not been applied to more complicated diagram

such as that for the KcsA potassium channel. This is the challenge

taken up by this study.

The concept of the cycle flux is visualized in the following way

(Fig. 1C,D). We assume the view point of ‘‘Maxwell’s demon’’,

who focuses on the inner entrance of the pore and takes into

account the ions and water molecules coming into and going out

of the pore (Fig. 1C). During a net outward ionic flux, for example,

the demon is concerned with only entering and exiting traffics,

rather than with the detailed trajectories towards the pore

entrance. The observed queue of ion and water molecules is

shown. This queue can be transformed into a cyclic process on the

diagram (Fig. 1D): A short stretch of the sequence is assigned to a

cycle of one-way directionality. Continuing this assignment leads

to the generation of a sequence of cycles. Thus, the whole random

sequence of ion-water pop-up animation (Fig. 1C) can be

translated into random transitions among cycles (Fig. 1D). The

sequence of cycles recapitulates the permeation process, while

retaining the essential information on the permeation.

Researchers participating the molecular dynamics for ion

permeation studies have more information than the demon has.

For potassium channels, huge calculation has been performed, and

researchers supported the knock-on mechanism for explaining the

efficient permeation [19,20,22]. From huge numbers of micro-

scopic trajectories, understanding underlying processes are,

however, elusive. Our proposal in this study is to provide a

mesoscopic view point for analyzing permeation processes [31].

We start our analysis by applying the diagram method to the

gramicidin A channel as a lesson, since the diagram is simple and

the analytical solution is available. Then, the cycle flux was

calculated for the first time for the KcsA potassium channel. Cycle

flux evaluation not only gave the exact solution of the water-ion

coupling ratio, but it also provided a more intuitive picture of

permeation that the random transitions among the cyclic paths

underlie the permeation processes.

Methods

The underlying theory of the cycle flux and the diagrammatic

methos are presented.

The theory of the cycle flux
The physical processes of ion permeation through the channel

in real space can be projected onto a random walk in the discrete-

state diagram (Fig. 1). After a long random walk, the time spent in

the state i gives the steady-state probability (pi), which can be

calculated algebraically from the rate constants of the diagram

(matrix inversion) [27]. Under the steady-state condition, the net

reaction flux for each transition pair (the transition flux: kij pi – kji pj)

is readily calculated. Meanwhile, a random walk on the diagram

completes a cycle and the rate of completion is defined as the cycle

flux [27]. There are multiple cyclic paths on the diagram, and in the

steady state the cycles are completed at their own individual rates.

The sum of all the cycle fluxes gives the net flux of the reaction.

Thus, a random walk among states on the diagram can be

integrated into random transitions among cycle kinetics.

Each cycle k with the cycle flux of Jk is composed of two one-

way cycles having directionality for outward flux (Jk+) and inward

flux (Jk–), where Jk = Jk+– Jk2. The cycle flux contains more

detailed information than the net flux. The driving force and flux

are closely related in a cycle. The ratio of one-way cycle fluxes is

given as

Jkz=Jk{~Exp {Dm=kT½ � ð1Þ

where Dm represents the electrochemical potential difference for

the relevant substances travelling across the membrane [27,29].

The cycle flux cannot be calculated from pi except for simple

diagrams, such as that for the gramicidin channel, and a Monte

Carlo simulation was needed for the approximate solution. On the

other hand, T. L. Hill developed a diagrammatic method for the

exact solution of the one-way cycle flux [30].

In general, the elapsed time for completing a cycle has been

estimated by applying the mean first passage time. In diagrams

having cyclic paths, the objects of interest are random walks that

end with the first cycle completion. Hill extracted an essential idea

for deriving the mean first passage time and implemented it in a

diagrammatic format, named the expanded diagram [30]. Here,

the general idea underlying the diagrammatic method is described.

The expanded diagram. For a given diagram having

multiple cyclic paths (original diagram), of primary concerns are

the time-averaged rates of one-way cycle completions. As a simple

example, a four-state diagram for the gramicidin A (gA) channel

was considered (Fig. 2A). To evaluate the cycle flux, the original

diagram was transformed such that each cyclic path was de-

composed into two independent one-way cyclic paths (the

expanded diagram). Clockwise and counter-clockwise transitions

around the cyclic paths on the original diagram were tranformed

into two separate independnet paths on the expanded diagram.

First, the starting state s was selected. Here we defined the

starting state at state 2 (Fig. 2C). Second, independent paths for

either directionality of cycles were searched by drawing the tree

diagram. The tree diagram was formed by tracing all the states

without the formation of cycles (a Hamiltonian path [32]). As

shown in Fig. 2C, a transition line out of state 2 for each possible

transition option (i.e. to state 1, 3 or 4) is drawn (red lines), and this

branching process continues state by state, with a proliferation of

paths (Fig. 2C, black lines). A state on the original diagram

appeared repeatedly on different paths, which were distinguished

from one another by adding a second index (alphabetical) after the

original state designation (sub-states). For example, a sub-state of

state 3 is observed in one path and designated ‘‘3a’’ and in another

path designated ‘‘3b’’. The sequences of sub-states specify the one-

way paths.

Third, an expanded diagram was formed by introducing the

returning paths. We are concerned only with time averages over a

very long continuous walk. Our object, therefore, is to transform

the tree diagram so as to permit a continuous walk on a new

diagram that duplicates the state transition choices in the

continuous walk on the original diagram. This is accomplished

by returning each cycle-completion arrow to the state or sub-state

that originated the cycle just completed (Fig. 2C, blue arrows).

These procedures eventually generate a new diagram (expanded

diagram), with all the cyclic paths having a single direction (one-

way cycles). The expanded diagram is thus a more-detailed version

of the original diagram. The cycles of the original diagram are

subdivided into one-way cycles. The transition paths and transition

rates are the same at every step for a walk on the original and

expanded diagram. That is, the two walks are essentially identical.

Hence, each cycle type is completed at the same rate on the two

diagrams.

One-way cycle flux. For a given cycle, the number of cycle

completion, or the cycle flux, can be counted when random

Cycle Flux Algebra for Water-Ion Permeation
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transitions pass through the one-way return path. The cycle flux is

formalized as the mean first passage time [30]. Let Pi(t) be the

fraction of walks that are in state i at t on the expanded diagram.

In principle, all the Pi(t) can be found by solving the set of linear

first-order differential equations, with constant coefficients, of the

form

dPi

dt
~{Pi

X
j

kijz
X

j

kjiPj ð2Þ

where kij is the rate constant for the transition from the i state to

the j state, and the sums here are over those states j that can

convert to state i upon a transition.

For the mean first passage time or first cycle completion,

absorbing states are introduced. The absorption states are assigned

as the states at the end of the one-way return arrows in the expanded

diagram. The one way return paths in the expanded diagram

secures the repeated trials of random walks for completing the cycles

on a single diagram over a very long time. In the tree diagram, on

the other hand, a large ensemble of walks all starting at t = 0 is

assumed to obtain ensemble averages. Thus, the expanded diagram

is based on the time-averaging method. The fraction of the walks

that ends at absorbing state m between t an t + dt is

dPm

dt
dt~P0mdt~km0mPm0 (t)dt ð3Þ

where km’m is the transition rate from m’ to m, where m’ is the

immediate precursor of the absorption state m. Here ms represent

the states at the end of the one-way return arrows. For example,

state 2 is the absorbing state (Fig. 2C), but multiple absorbing states

exist in more complicated models. In this model, m’ is state 3a and m

is state 2 for cycle b+ (Fig. 2C). Equation 3 is applied to the

absorbing paths (blue arrows in Fig. 2C). In the expanded diagram,

Pi (the steady-state probability of the sub-state i) is the fraction of

time spent in state i in the long repeated random walk. Pis are

obtained from the inversion of the matrix for the expanded

diagram. Having found the Pi for the diagram, the one-way cycle

flux, Jk6, is obtained from km’m Pm’. In general, there are multiple

cyclic paths in the expanded diagram for a given cycle of the original

diagram. The mean rate of k cycle completions is Jk6 = Sk6 km’m

Pm’.

In summary, the systematic method of drawing the expanded

diagram enabled tracing of the independent paths for cycles of

both clockwise and counter-clockwise directionality, and the states

in the original diagram were decomposed into the sub-states. The

path allocated the steady-state probability of the sub-states, and

these path-dependent sub-states define the cycle flux.

Stoichiometric numbers and non-zero cycle fluxes. To

calculate the net flux, stoichiometric numbers for each cycle are

prerequisite. There are three cyclic paths for the original gA

diagram (Fig. 2B), which were decomposed into six one-way cyclic

paths in the expanded diagram (Fig. 2C). For each cycle, the net

number of ion and water molecules carried around a cycle (ni and

Figure 2. A diagrammatic method for examining ion permeation. A. The classical DSMM for the gramicidin channel. The ion occupancy
states and the transitions between them are shown with the rate constants. The left side of the channel is assigned as the outside of the membrane,
and the right side, the inside. The blue arrows indicate the paths for efflux and the violet ones the paths for influx. Curved lines merging to arrows
depict association processes of either ion or water molecules from the inside or outside. For example, the path for the rate constant k13 associates
with an ion from the inside. B. Designation of the states (number) and the cyclic paths (alphabet). The arrows indicate the direction of ion efflux,
which is defined as the + direction hereafter. The stoichiometric numbers for water (red) and ions (green) for each cycle are shown. Cycle c does not
give the net flux, since the stoichiometric numbers were zero. C. The expanded diagram of the gramicidin model for the one-way cycle flux. State 2
was arbitrarily defined as the starting state. Three routes outflow from state 2 (red), and each is either branched or not. This generates the tree
diagram (black solid lines). Then the returning paths to the state upstream, which complete the cycles, are drawn with one-way arrows (blue arrows).
Through this procedure all the cycles in the original diagram were decomposed into one-way cycles (a+, a2, b+, b2, c+ and c2), and states (except
for the case of 2) were divided into sub-states. Sub-state 1b, for example, is the second sub-state of state 1. The one-way cycle flux for a+ can be
calculated as k32 6 P3c.
doi:10.1371/journal.pone.0016578.g002
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nw) were tallied (Fig. 2B). For cycle a and b, the ni value was the

same, while the nw value was set differently.

The diagrammatic methods
The cycle flux was calculated with the following procedure. Step

1: The expanded diagrams were drawn, on which the names of the

one-way cycles are assigned. All the cyclic paths were identified

through this systematic procedure of the diagram drawing. Step 2:

The transition matrix was formulated based on the expanded

diagram, and the matrix inversion was performed for the steady-

state probability of the sub-states. Step 3: The stoichiometric

numbers for the ion and water molecules were counted for each

cycle. Step 4: The one-way cycle fluxes were calculated as follows.

For each one-way cyclic path, the completing transition indicated

by an returning arrow was focused. The probability of the sub-

state on the base point of the arrow was multiplied by the

transition rate indicated by the arrow direction, which gave the

cycle flux. For one-way cycles having multiple paths, the cycle flux

was calculated as the sum of the cycle flux for the paths.

The gramicidin A channel. In the expanded diagram

(Fig. 2C), there are all together ten sub-states including state 2

(three sub-states for state 1, 3 and 4), and the transition matrix

having 10610 dimensions was formulated (Eq. 4). Each element of

the matrix was filled with the rate constant for relevant transition

between sub-states based on the expanded diagram. For example,

the first element of the fifth column is filled with the rate constant

from S1a to S3a, i.e., k13. This rate constant is the same with

transitions from S1 to S3 in the original diagram. The same rate

constant was used for transition of S1b R S3b (the second element

of the sixth column) and S1c R S3c (the third element of the

seventh column). The steady state probability of the sub-states was

calculated from the matrix inversion either analytically or

numerically. The bold elements in the matrix are the rate

constants for absorbing transitions.

The transition matrix for the original 4-state diagram is simple,

{k12{k13 k12 k13 0

k21 {k21{k23{k24 k23 k24

k31 k32 {k31{k32{k34 k34

0 k42 k43 {k42{k43

0
BBB@

1
CCCAð5Þ

the rate constants for which (Fig. 2A) have been reported under

various experimental conditions. Here, the set of rate constants for

Rb+ permeation was used, since the gA channel exhibits typical

multi-ion nature for Rb+ permeation (Table 1) [33], and

significant contribution of cycle b was expected. The voltage-

dependence was implemented as kij(V ) = kij
0 Exp[-dij e V/kT] (kij

0

is the rate constant at 0 mV, dij is the electrical distance, e the

elementary charge, V the membrane potential, k the Boltzmann

constant and T the absolute temperature). The structure of the gA

channel is symmetrical, and the free energy profile should be a

mirror image at 0 mV, hence the rate constants for the sym-

metrical paths are also the same at 0 mV, such as k23
0 = k32

0. For

transitions associating with either ion or water, the rate constant

becomes kij(V) = c kij
0 Exp[-dij e V/kT], where c represents the ion

concentration of the bulk solution. A matrix inversion was

performed for the steady-state probabilities of sub-states (Pi) both

algebraically and numerically using Mathematica (Wolfram

Research, Champaign, IL). The algebraic solution for Pi is given

in the Appendix S1. The sum of Pi from the expanded diagram

should be equal to that of the states (pi) obtained from the original

diagram, which was indeed confirmed by the algebraic results.

p1~P1azP1bzP1c;

p2~P2;

p3~P3azP3bzP3c;

p4~P4azP4bzP4c

ð6Þ

S1a S1b S1c S2 S3a S3b S3c S4a S4b S4c

S1

S2

S3

S4

{k12{k13 0 0 k12 k13 0 0 0 0 0

0 {k12{k13 0 k12 0 k13 0 0 0 0

0 0 {k12{k13 k12 0 0 k13 0 0 0

0 0 k21 {k21{k23{k24 0 k23 0 k24 0 0

k31 0 0 k32 {k31{k32{k34 0 0 k34 0 0

0 k31 0 k32 0 {k31{k32{k34 0 0 k34 0

0 0 k31 k32 0 0 {k31{k32{k34 0 0 k34

0 0 0 k42 k43 0 0 {k42{k43 0 0

0 0 0 k42 0 k43 0 0 {k42{k43 0

0 0 0 k42 0 0 k43 0 0 {k42{k43

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

ð4Þ

Table 1. The rate constants for the permeation model of the gramicidin channel.

Experimental conditions Rb+ k32 (107 ms21) k13 (M21 ms21) k21 (ms21) k24 (M21 ms21) k43 (M21 ms21)

ki
0 4.56107 9.06107 0.96107 9.06107 9.96107

Electrical distance 0.39 0.04 0.07 0.04 0.07

The rate constants at 0 mV (kij
0) and their voltage dependency, as indicated by the electrical distance, are shown. The electrical distance is a fraction of the membrane

potential. The potential energy profile is assumed to be symmetrical, and the rate constants for symmetrical paths are set identical.
doi:10.1371/journal.pone.0016578.t001

ð5Þ

ð4Þ
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Occupancy probability of ions at each four binding site was

calculated from pis.

Before calculating the one-way cycle flux, the stoichiometric

number was examined (Fig. 2B). It turned out to be zero for cycle

c, and needs not to be considered for the cycle flux. From the

expanded diagram, the one-way cycle flux (Jk6) can be calculated

as the product of a sub-state at the base of a returning arrow and

the rate constant for the returning arrow (Fig. 2C).

Jaz~k32P3c; Ja{~k12P1b; Jbz~k32P3a; Jb{~k42P4b ð7Þ

The net flux was calculated from the cycle flux,

Jnet~Jaz{Ja{zJbz{Jb{ ð8Þ

On the other hand, the net flux is also calculated from the original

diagram using the transition flux (Jij) from one state to another,

which is defined from the steady-state probability of the states,

rather than the sub-states.

Jij~kijpi{kjipj ð9Þ

The transition flux is related to the cycle fluxes such that cycles

passing through a relevant transition path are summed up [27].

Thus,

J32~JazJb ð10Þ

This relation confirmed that the net flux can be calculated from

the original diagram in the case of the gA model.

The KcsA potassium channel. Morais-Cabral et al. proposed

the eight-state permeation model for the KcsA channel from the ion

distribution in the selectivity filter of several crystal structures [26]. In

their model, either an ion or a water molecule occupies one of the

four binding sites, and two ions are not allowed to occupy adjacent

positions because of electrostatic repulsion. We hereafter call this

model the canonical KcsA model. Morais-Cabral et al. subsequently

further simplified the model, and the transition paths to which they

assigned the rate constants are shown (Fig. 3A). Recently, ‘‘atypical’’

ion distributions not involved in the canonical model were observed

Figure 3. A kinetic model for ion and water permeation through the KcsA potassium channel. A. A DSMM for the KcsA channel. The dark
blue arrows indicate the transitions for efflux, and the violet for influx. B. Two examples of the expanded diagram. For the left diagram, transitions
started from state 3 to state 1a (red line), and a trajectory of the branching tree is indicated by the white arrows. At each sub-state, returning paths for
completing cycles were found. For each cycle, stoichiometric numbers were calculated. Among them, a cycle 4a R 5a R 7a R 4a gave the
stoichiometry of zero for both ion and water flux, and thus it was not named. C. The expanded diagram. This diagram was constructed by setting the
starting state as 3, from which the red lines were drawn for the initial transitions. The numbers indicate the state number followed by the sub-state
alphabetical character. The arrows indicate the last transitions for completing a cycle. The solid arrows indicate the completing transitions for non-
zero cycles, and they are labeled with the cycle names. The broken arrows are the completing transitions for cycles generating no net flux. There are
six sub-cycles for cycle a+ and a2, but the rest of the cycles have only one. D. The cycles contributing to the non-zero net flux. The arrows indicate
the direction of net efflux. The water-ion coupling ratios were assigned for each cycle. The green numbers represent the stoichiometric number for
the ions and the red represent the water molecules.
doi:10.1371/journal.pone.0016578.g003
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in the study of molecular dynamics [24]. To include these states, the

canonical model must be expanded, which is an issue of our

undergoing study, but it is the outside of the scope of this paper.

Calculating cycle fluxes for the canonical KcsA model is

challenging, and it has not been reportedly performed previously.

In contrast to the simple gA channel, we addressed two crucial

points for the multiply branched KcsA model. First, an

encompassing of all the possible routes for drawing the expanded

diagram requires careful tracing on the diagram. In the tracing

procedure, connectivity between states is the main concern, and

the directionality of the transition paths in the original diagram

needs not be an issue. Second, among the one-way cyclic paths,

some of them generate non-zero cycle flux and others do not,

which is identified by the net numbers of transfer counted around

the cycles (stoichiometric numbers). The above issues have not

been areas of concern in the simpler models [27].

The expanded diagram for the KcsA channel. Drawing

the expanded diagram was initiated from state 3, which has the

largest number of transition paths to other states and, we found that

this selection generated the simplest expanded diagrams. The initial

transitions out of state 3 for each possible transition option (to state

1, 4, 5 and 6) are colored red (Fig. 3C). Tracing all the states without

the formation of cycles (a Hamiltonian path [32]) generated growing

numbers of branched paths (a tree diagram). On the tree diagram,

returning paths were searched along the branched paths, and they

are drawn with one-way arrows (blue arrows). This procedure

generates the expanded diagram. On the expanded diagrams, one-

way cycles were named on the blue arrows.

Two examples with detailed branching paths (white arrows) are

shown in Fig. 3B. In the left diagram, transitions started from state

3 to 1a and traced through 2a, 4a and 5a, where it branched to 7a

and 6a. Along this tree diagram, returning arrows were drawn at

each state. One-way cycles, cycle a–, j–, b–, d–, were formed.

Similarly, in the right diagram an initial transition towards state 6h

leads to generation of cycles having + directionality.

Altogether, each state was divided into as many as eleven sub-

states: 11 sub-states for state 1; 10 for state 7; 8 for state 5 and 6; 7

for state 2 and 4; and 1 for state 3 (Fig. 3C). There were 52 sub-

states. The rate constants for transitions between the sub-states

were filled on the matrix of 52652 dimensions according to the

expanded diagram.

Non-zero cycles. All the possible cycles on the original

diagram were identified on the expanded diagram (Fig. 3C). To

find cycles exhibiting non-zero cycle flux (non-zero cycles), the

following procedure was taken. Some non-zero cycles were

identified upon visual inspection as one-way cycles formed with

arrows of the same color around a cyclic path on the original

diagram (either blue or violet in Fig. 3A). These cycles definetely

generate non-zero cycle flux. For example, cycle f of either of the

one-way directions is formed by three arrows of the same color.

There are nine cyclic paths satisfying this criteria (from a to i

cycles) (Fig. 3D upper row) [11].

To determine other non-zero cycles, the net number of ion and

water molecules transferred in a cycle was counted. Among cycles

returning to state 3, there are cyclic paths involving transition

arrows of blue and violet colors, while they produce non-zero cycle

fluxes. Those cycles are shown in the lower portion of Fig. 3D.

The rest of the cycles (examples are shown in Fig. 3B with the

black dotted arrows) did not generate the cycle flux. The

examination was successfully completed (Fig. 3 C). Altogether

there are 14 non-zero cycles. For each cycle, a stoichiometric

number (water : ion) was assigned.

The steady-state probability of sub-states and fluxes.

The matrix inversion was performed numerically using Mathematica

and all the Pi values were obtained. For cycle flux calculation, a

labeled arrow in the expanded diagram was focused, and the Pi at the

base of the arrow was multiplied by the rate constant for transition

indicated by the arrow. For example, cycle b– was named on the

expanded diagram of upper left (Fig. 3B), where transition started

from state 3 to 1a R 2a R 4a R 5a and returned to state 3. The cycle

flux of b– (Jb–) was calculated from the completing arrow (5a R 3) as

k13 6P5a. Similarly,

Jaz~k3P2bzk1P1bzk1P1f zk1P1dzk1P1hzk1P1j

Ja{~k2P2azk4P1czk4P1ezk4P1gzk4P1izk4P1j ;

Jbz~k5P1d ; Jb{~k13P5a; Jcz~k5P1j ; Jc{~k17P6b;

Jdz~k5P1h; Jd{~k17P6a; Jez~k5P1f ; Je{~k13P5b;

Jf z~k9P4d ; Jf {~k13P5e; Jgz~k9P4g; Jg{~k17P6f ;

Jhz~k9P4f ; Jh{~k17P6e; Jiz~k9P4e; Ji{~k13P5f ;

Jjz~k5P1a; Jj{~k9P4a; Jkz~k5P1e; Jk{~k13P5b;

Jlz~k5P1i; Jl{~k17P6c; Jmz~k5P1g; Jm{~k13P5d ;

Jnz~k5P1k; Jn{~k17P6c

ð11Þ

The net flux is defined as the sum of the cycle fluxes.

Jnet~JazJbzJczJdzJezJf zJg

zJhzJizJjzJkzJlzJmzJn

ð12Þ

Fig. 4 summarizes the procedure of the cycle flux calculation.

Results

One-way cycle flux in the gramicidin channel
In this study, the classical four-state DSMM for the gA channel

was applied and the water permeation was implemented into the

model by introducing the stoichiometric number (nw) (Fig. 2A and

B). The general solution for this simple diagram has been obtained

previously [13,15,33]. Here, the results for gA channel using the

cycle flux calculation are demonstrated. Among the cycles, the ni

value is one for cycle a and b and zero for cycle c. Thus, two cycles

(a and b) contribute to the net ion flux (Fig. 1B), while cycle c gives

zero-flux.

The net ion flux was calculated from either the original or the

expanded diagram using the same set of rate constants used for

Rb+ permeation, for which the gA channel exhibits a multi-ionic

character. As shown in Fig. 5A, the net flux as a function of the

membrane potential obtained from the original diagram and the

expanded diagram turned out to be identical (green). This is

shown algebraically from the solution of the cycle flux (see

Appendix S1).

One-way cycle fluxes of plus (black) and minus (red) directions

were calculated from the expanded diagram, which are a

decomposition of the net ion flux (Fig. 5A). In Fig. 5B, each

component of the one-way cycle flux at different Rb+ concentra-

tions is shown. As the Rb+ concentration increased, cycle b came

to predominate.

There are either six or seven water molecules within a

gramicidin channel [4,5]. Here, different stoichiometry for water

and ion transfer (nw-i) was assumed for each cycle (Fig. 1B). We

assume that the left ion in the state 2 is exchanged by a water

molecule from the left bulk (transition 2 R 1) and a water column

is pushed when an ion in the right bulk binds to the right side
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(transition 1 R 3). Then the number of water molecules

transferred in cycle a (nw
a) is one more than that for cycle b

(nw
b). The nw-i

b was set to six, while nw-i
a was seven. The water-ion

coupling ratio (CRw-i) was calculated as a function of the Rb+

concentration. It decreased gradually, which is consistent with the

earlier experimental reports [4,5].

Flux calculation for the KcsA potassium channel from the
original diagram

Morais-Cabral et al. obtained a set of optimized rate constants for

the original diagram (Fig. 3A) from experimental data, including the

single-channel current amplitudes and ion distributions in the crystal

structure at different potassium concentrations [26]. We followed the

assumption posed by Morais-Cabral et al. that the potential profile of

permeation was symmetrical, which rendered the number of the free

parameters less. Their parameters were used for the following

calculations (Table 2). For the original diagram of KcsA channel, the

steady-state probability of the states was calculated from the 767

matrix (see Appendices) by matrix inversion.

In contrast to the readily calculated net flux for the gA channel,

calculation of the net flux for KcsA from the original diagram

needs additional consideration. Algebraically the net flux is simply

defined as in Eq. 12. However, without the evaluation of the cycle

flux that was the case in the earlier studies, only the transition flux

(Eq. 9) was calculated. How is it possible to obtain equivalent

results of Eq. 12 from the steady state probabilities of the original

diagram? In other words, which transition fluxes should be used

for the net flux calculation?

A transition flux, J43, for example, gives

J43~Jf zJgzJhzJi{Jj ð13Þ

To cover all of the cycle fluxes of Eq. 12 for calculating the net

flux, all of the transition fluxes were examined. Among them, the

transition paths for J21
L and J12

U (U represents the upper route of

cycle a using transition paths of k1 and k2, while L represents the

lower path.) involve relevant cycles.

JL
21~JazJbzJczJdzJezJj ; JU

21~JazJkzJlzJmzJn ð14Þ

Summing up the above three transition fluxes (J43+J21
L+J21

U)

gives,

2JazJbzJczJdzJezJf zJgzJhzJizJkzJlzJmzJn ð15Þ

and, unfortunately, this is not equal to Eq. 12. Examining the

other linear combinations of the transition fluxes revealed that Jnet

could not be attained as a combination of transition fluxes of the

original diagram. Absence of the solution was proved exclusively

by matrix algebra (Appendix S1).

This procedure taken in this section provides a general rule as to

whether the net flux can be calculated from the original diagram

or not.

One-way cycle flux for the KcsA potassium channel
From the expanded diagram of the KcsA channel having a total

number of 52 sub-states (Fig. 3C), the rate constant matrix was

formulated (Methods). Given the rate constants, the matrix

inversion was performed numerically, which did not cost much

because of the sparse matrix.

To confirm the validity of the calculation, the steady-state

probability of each state was calculated from those of the sub-states

(e.g., Eq. 4 for the gA model), and the values were compared with

the probabilities calculated from the original diagram. The

calculation was performed in an electrolyte solution composed

of 0.1 M KCl on both sides of the membrane. In Fig. 6A, the

Figure 4. The scheme for the procedure for obtaining the one-way cycle flux. Diagrammatic procedures were indicated by the ovals.
Numerical values were indicated by blue boxes. The state and sub-state probabilities were obtained from matrix inversion. The results were indicated
by the rounded boxes. The one-way cycle flux and the stoichiometric number gave macroscopic observables, such as the net flux, the net ion flux
and the water-ion coupling ratio. Generally, the net flux cannot be calculated from the transition flux, and Monte Carlo simulation provides
approximate solutions.
doi:10.1371/journal.pone.0016578.g004
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probability of the states is shown as a function of the membrane

potential, in which the dotted line demonstrates the results from

the expanded diagram, while the solid line is taken from the

original diagram. Since the potential profile was assumed to be

symmetrical, the curves for the symmetrical states (state 1 vs. 2; 3

vs. 4; 6 vs. 7) are mirror images of one another. In Fig. 6B and C,

the probability of the sub-states for states 1 and 2 are shown. The

probability of states, p1 and p2, were subdivided into different

numbers of sub-states. The asymmetric decomposition of p1 and p2

into the sub-states seems to be a result of setting the starting state

at state 3. These results suggest that the sub-states for the one-way

cycle fluxes were successfully calculated from the expanded

diagram.

To calculate the macroscopic features, the stoichiometric

numbers are crucially important. By examining the permeation

processes step by step in the course of each cyclic path, the number

of ions and water molecules carried upon completing a cycle was

obtained (Fig. 3D).

Figure 5. Calculated permeation characteristics of the gramicidin model. A. The current-voltage curves at the Rb+ concentration of 1 M. B.
All of the one-way cycle fluxes are a function of the Rb+ concentration at 0 mV. C. CRw-i is a function of the Rb+ concentration.
doi:10.1371/journal.pone.0016578.g005

Table 2. The rate constants and their voltage dependency for potassium permeation of the KcsA channel.

k1 k3 k5 k9 k11 k13 k15 k17 k19

ki
0 4.06109 2.06109 5.06107 1.06109 4.061010 5.06108 1.06107 1.06106 2.56108

Electrical distance 0.3 0.2 0.2 0.1 0.2 20.2 0.1 20.1 0.1

The rate constants from Morais-Cabral et al. The potential energy profile is assumed to be symmetrical and the rate constants are identical for the symmetrical transition
paths.
doi:10.1371/journal.pone.0016578.t002
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The net ionic current
In the previous section, we proved that the exact solution of the

net flux cannot be calculated from the original diagrams in the level

of complexity for the KcsA diagram. This issue has not been clearly

addressed previously since, in the case of the simple diagram such as

that for the gA channel, the net flux was readily calculated from the

transition flux (Eq. 9). Furthermore, the net ionic current was

calculated from the net flux by simply multiplying z ni F.

I~zniFJnet ð16Þ
where z is the valence, F is the Faraday constant, since both cycles a

and b carry a single charge.

The net ionic current for the KcsA diagram is given as the sum

of charges carried by cycles, having different stoichiometric

numbers (ni). Thus,

I~zF Jaz2Jbz2Jcz2Jdz2JezJf zJg

�

zJhzJizJjzJkzJlzJmzJn

� ð17Þ

Fig. 7 shows the main results of this study. The net ionic current,

as well as ionic current by 6one-way cycle fluxes, as a function of

the voltage is shown (Fig. 7A). The relative contribution of the

cycle fluxes at different potassium concentrations demonstrates

that cycle a predominated throughout the concentration range

(Fig. 7B). Only cycle f made a significant contribution at low K+

concentrations (Fig. 7B lower). At 3 mM K+, the relative

contribution of cycle f was 0.55, and the probability of state 5

(p5), in which two ions occupied both ends, was 0.078. The

occupancy probability of ions on the four binding sites was 0.462

for both ends and 0.073 for the inner two sites.

The water-ion coupling ratio
Similar to the net ionic current, nw-i, the stoichiometric number

of water and ion flux, was assigned for each cycle flux (Fig. 3D),

from which CRw-i was calculated (Fig. 7C). These relationships are

expressed in the following way.

CRw{i~na
w{i

Ja

Jnet

znb
w{i

Jb

Jnet

znc
w{i

Jc

Jnet

z::: ð18Þ

CRw-i is the weighted sum of nw-i for each cycle. As the potassium

concentration was increased, the CRw-i decreased significantly, since

cycles having smaller nw-i became predominant. This is qualitatively

Figure 6. Probability of the states and sub-states for the KcsA channel. A. Probability of states at different membrane potentials. The solid
lines indicate the probability obtained from the original diagram and the symbols represent the probability calculated from the expanded diagram. B
and C. Probability of state 1 (p1 in B) and 2 (p2 in C) and the sub-states. The number of sub-states is 11 for p1 (P1a to P1k) and 7 for p2 (P2a to P2g). Only
sub-states significantly contributing to the state probability are labeled.
doi:10.1371/journal.pone.0016578.g006
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compatible to our previous results for the CRw-i values of the HERG

potassium channel, that may share this permeation diagram [11].

We predict that the CRw-i values of the KcsA channel should

increase significantly at low K+ concentrations.

The results of the net ionic current and CRw-i have been

calculated from a particular set of the rate constants, and the validity

of the parameter set must be further examined experimentally.

Cycle flux algebra
Here we show a general scheme for calculating the net ionic

current and CRw-i by using one-way cycle fluxes (Fig. 8). The

essence of the diagrammatic method for cycle flux is the capacity

to decompose the whole permeation diagram into several

independent one-way cycles, in which the driving force and the

cycle flux are conjugated (Eq. 1). In addition, assigned stoichio-

metric numbers, such as ni and ni-w, characterize the macroscopic

observables. We refer this approach the cycle flux algebra.

Discussion

For studying ion permeation through the channel, multimodal

results for the KcsA channel, such as the crystal structure, the ion

distribution in the pore, and the microscopic ion trajectories, have

been accumulated. Accompanying with the single-channel current

data, our understandings on the ion permeation have advanced

dramatically through examining the KcsA channel. However, ion

permeation processes cover a broad spectrum of events ranging

from the microscopic trajectories of local ion movement to the net

ion flux [31], while the available data are far apart in the spatial

and temporal regime. Therefore, one cannot integrate those data

for drawing full picture of permeation. Here we proposed a novel

approach filling in the gaps by introducing the concept of the cycle

flux on the DSMM.

DSMM plays an essential role in the integration of information

from different levels of the permeation events [31]. On DSMM,

Figure 7. Calculated permeation characteristics of the KcsA channel. A. The calculated current-voltage curves for the KcsA channel in the
symmetrical 200 mM K+ solutions. The + and 2 one-way cycle fluxes (green and blue) and the net ionic current (red). B. Each one-way cycle flux as a
function of the K+ concentration at 0 mV. Cycles a6 predominated, and the rest of the cycles were close to zero. Lower: The relative contribution of
each cycle. C. CRw-i as a function of the K+ concentration.
doi:10.1371/journal.pone.0016578.g007

Figure 8. The one-way cycle flux and the macroscopic
observables. Assigning the carried charge (zi) and the stoichiometiric
numbers of water and ion (nw-i) to cycles, the net current and the
coupling ratio are readily calculated from the one-way cycle fluxes.
doi:10.1371/journal.pone.0016578.g008
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the ion and water flow through the pore was considered as a

random walk on the reaction diagram. This generates a random

queue of ion and water molecules, and the Maxwell demon splits

them into a piece of sequence and assigns them to one-way cyclic

paths (Fig. 1). Accordingly, one realizes the permeation process as

transitions among cyclic paths rather than transitions among

states. Each cycle, driven by the conjugated driving force,

produces the cycle flux that can be calculated from the rate

constants of DSMM. Thus, the experimental observables, such as

the net flux, the net ionic current, and the CRw-i, can be calculated

as weighted sums of the cycle fluxes through taking into account

the stoichiometric numbers assigned for each cycle. The cyclic

path is an elementary unit in the mesoscopic level of permeation

hierarchy, and transitions among cyclic paths serve more

integrated picture of permeation processes.

Recently, systematic approaches to constructing DSMM from

the microscopic trajectories of computer simulation have been

developed [34,35]. Ensembles of microscopic trajectories were

collected and lumped, and ‘‘states’’ having transition paths to other

states with Markovian processes have been defined. Although this

bottom-up approach has not reportedly been applied to ion

permeation issues, DSMM can now serve as a connecting point

for microscopic trajectories and macroscopic observables.

Hill’s expanded diagram is a systematic way of searching paths in

the diagram, and all the one-way cyclic paths were traced

successfully (Fig. 4). Finding paths through decomposing the states

in the original diagram into the path-dependent sub-states is the

essence of the idea. Assigning the stoichiometric number as

attributes of cyclic paths gave several benefits on the cycle flux

analysis. (1) Non-zero cycles and zero cycles were distinguished on

DSMM. (2) Accordingly, a mesoscopic structure emerged on

DSMM. Some of the cyclic paths are important and others are not.

(3) Not only the net flux, but other macroscopic observables, such as

the ionic current and the CRw-i values were readily calculated,

otherwise have been estimated by the Monte Carlo simulation.

In earlier studies, applied DSMM for various channels has been

simpler relative to the KcsA model, and the issues raised in the

present study have not been recognized. For example, the net flux

for simple diagrams was calculated from the transition flux. In the

case of the gA model, this is valid. However, it has not been

obvious as to whether this simple strategy is applicable when

DSMM becomes complicated. Finally, we proved for the first time

that the traditional method is not valid for the KcsA model, and

the cycle flux algebra gave the exact solution. Furthermore, the

calculation of the cycle flux readily predicted the significant

changes in the CRw-i values at different K+ concentrations.

In this study we demonstrated a mesoscopic view point for

analyzing permeation processes [31]. Experimental observables

were related to the rate constants through the cycle flux algebra.

Furthermore, macroscopic observables are decomposed into linear

combinations of the cycle fluxes. The cycle kinetics-based

approach presented here opens a potential niche in the field of

permeation studies.
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