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Abstract

Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely
little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled
(fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just
prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles
gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti
embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection
of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti
development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr.
melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the
Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene
during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae.
aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related
insects.
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Introduction

Completion of the Aedes aegypti and Anopheles gambiae genome
projects uncovered orthologues of many known developmental
regulatory genes in these two important mosquito vectors of
dengue and malaria, respectively [1,2]. Although characterization
of the function of these genes could provide insight into the
evolution of insect development or potentially reveal novel
strategies for vector control, extremely little is known about the
genetic regulation of mosquito development [3,4]. Excellent
descriptive analyses of Ae. aegypti embryogenesis were completed
in the 1970’s [5,6], and additional developmental analyses in this
species were recently published [7,8]. Still, expression of only a
handful of mosquito embryonic genes has been described in Ae.
aegypti or other vector mosquitoes [9,10,11,12,13,14,15,16]. This is
likely a result of the technical challenges historically encountered
by those performing developmental analyses in mosquitoes. In
fact, Christophers [17], author of the most comprehensive text on
the biology of Ae. aegypti, indicated that the eggs of this species are
not the most suitable form on which to study mosquito
embryology.

Given the many known advantages of studying the biology of
Ae. aegypti [3,18], we recently published a series of protocols for the
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study of its development [19,20,21,22,23]. These methodologies,
in addition to those published previously [9,11], will promote
analysis of mosquito developmental genetics. We are presently
employing these techniques to examine mosquito nervous system
development. Analysis of mosquito neural development will lead
to a better understanding of the developmental basis of motor
function, sensory processing, and behavior, key aspects of
mosquito host location.

During Drosophila  melanogaster nervous system development,
midline cells secrete guidance molecules such as Netrin (Net)
proteins that regulate the growth of commissural axons [24,25,26].
The Dr. melanogaster Net proteins are expressed at the midline and
are required for proper commissural axon guidance in the
embryonic ventral nerve cord. Frazzled (Fra), the Drosophila
homolog of the vertebrate Deleted in Colorectal Cancer (DCC)
Net receptor, guides axons in response to Net signaling [27] and
also controls Net distribution in flies [28]. Previous studies
indicated that deletion of netd and B or fra results in defective
guidance of commissural axons in Drosophila [27,29,30]. More
recent data suggest that Drosophila Nets function as short-range
guidance cues that promote midline crossing [31].

Although data support the homology of axon-guiding midline
cells [16,32,33,34,35,36], homology of midline cells, which form
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differently in various arthropod species (discussed in [32]) has been
debated. To address whether common molecular mechanisms
regulate nerve cord formation during arthropod nervous system
development, we recently analyzed patterns of axon tract
formation and the putative homology of midline cells in distantly
related arthropods. These comparative analyses were aided by a
cross-reactive antibody generated against the Netrin (Net) protein,
a midline cell marker and regulator of axonogenesis [16]. Despite
divergent mechanisms of midline cell formation and nerve cord
development in arthropods, detection of conserved Net accumu-
lation patterns suggests that Net-Ira signaling plays a conserved
role in the regulation of ventral nerve cord development of
Tetraconata [16]. Here, we continue to examine this hypothesis
through examination of the expression of the Net receptor frazzled
in both Ae. aegypti and An. gambiae. Moreover, for the first time, we
use siRNA-mediated knockdown to functionally test this hypoth-
esis in Ae. aegypti.

Results and Discussion

Development of the mosquito embryonic ventral nerve
cord

A scaffold of axon pathways develop in Dr. melanogaster and give
rise to the embryonic ventral nerve cord, which has a ladder-like
appearance (Fig. 1D). Within each segment of the developing fruit
fly embryo, a pair of bilaterally symmetrical longitudinal axon
tracts are pioneered separately on either side of the midline in each
segment. A number of early growth cones project only on their
own side, but most CNS interneurons will project their axons
across the midline in either the anterior or posterior commissural
axon tracts before extending rostrally or caudally in the developing
longitudinals ([24,25]; Fig 1D). Nerve cord development was
assessed during mosquito embryogenesis with an anti-acetylated
tubulin antibody (Fig. 1A-C). Acetylated tubulin is first detected in
Ae. aegypti at 52 hrs. after egg laying (AEL) when the longitudinal
axon tracts have begun to form and the commissural axon tracts
are initiating (Fig. 1A). During the next several hours, the axon
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tracts thicken as additional neurons project their axons (Fig. 1B).
Anterior and posterior commissures are initially fused (not shown),
as observed in Dr. melanogaster [37]. At 56 hrs. AEL, the
commissures have separated, and the mature ventral embryonic
nerve cord of Ae. aegypti (Fig. 1B) resembles that of An. gambiae
(33 hrs. AEL shown in Fig. 1C) and a St. 16 Drosophila embryo
(Fig. 1D).

Expression of fra in the developing mosquito CNS

Net accumulation data have indicated that Net-Fra signaling
may play conserved roles during insect ventral nerve cord
development [16,36]. However, in insects, fia expression has not
been examined outside of Drosophila, where it is expressed on
developing axons of the commissural and longitudinal axon
pathways, including the earliest commissural axons [27]. Expres-
sion of Ae. aegypti fra (Aae fra) and An. gambiae fra (Aga fra) were
therefore analyzed through whole-mount i situ hybridization at
the onset of nerve cord development in both species. dae fra
expression initiates in developing neurons, including the earliest
commissural axons, just prior to establishment of the axonal
scaffold and is maintained during ventral nerve cord formation
(Fig. 2B-D). Comparable fra expression patterns are detected in
the developing nervous system of An. gambiae (Fig. 2A). These data
are consistent with the hypothesis that Fra functions to regulate
growth of commissural axons in mosquitoes.

si-RNA mediated knockdown of fra during Ae. aegypti
development

Analysis of fia expression (Fig. 2) suggested that this gene may
regulate ventral nerve cord development in mosquitoes. Function-
al testing of this hypothesis required the development of a strategy
to selectively inhibit gene function during mosquito development.
RNA interference (RNAi) technology, which has emerged as an
effective method for inhibiting gene function in many organisms,
was therefore combined with previously described Ae. aggypti
microinjection techniques [38,39] to knockdown fra during Ae.
aegypti development. Two separate siRNAs corresponding to

Figure 1. Development of the Ae. aegypti embryonic ventral nerve cord. Anti-acetylated tubulin staining (A-C) marks the developing axon
tracts in 52 hr. (A) and 56 hr. (B) Ae. aegypti embryos. By 56 hrs. (C), the Ae. aegypti nerve cord resembles that of a 33 hr. An. gambiae embryo and a
St. 16 Dr. melanogaster nerve cord (BP102 staining is shown in D). These time points in the three respective species correspond to germ-band
retracted embryos in which segmentation is obvious and organogenesis has initiated. Filleted nerve cords are oriented anterior up in all panels. The
anterior commissure is marked by a black arrowhead, and a white arrowhead marks the posterior commissure.

doi:10.1371/journal.pone.0016730.g001
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Figure 2. Expression of fra in the developing mosquito CNS. Comparable fra expression patterns are detected in lateral views of the
developing nervous systems (arrows) of An. gambiae (33 hrs., A) and Ae. aegypti (52 hrs., B). Ventral views of Aae fra expression in 52 hr. (C, segments
T3-A5) and 54 hr. (D; segments A2-A6) Ae. aegypti embryos are shown. Anterior is oriented left in A and B and up in C and D.

doi:10.1371/journal.pone.0016730.9g002

different regions of Aae fra, fra sStIRNA-A and fra siRNA-B, as well as
a scrambled control version of siRNA-A, were used in these
experiments.

siRNAs were injected pre-cellular blastoderm, and knockdown
was assessed through both quantitative real-time PCR (qRT-PCR)
and whole-mount @ situ hybridization. Multiple qRT-PCR
replicates at three different time points, including 24, 48 (not
shown), and 72 hrs. (Fig. 3), confirmed knockdown of fra that was
maintained through the end of embryogenesis. At 72 hrs., the time
point that was typically assayed once injection protocols and
knockdown strategies had been optimized, fra transcript levels
were reduced by 80% on average (Fig. 3, p<<0.0001), and a
maximum of 90% knockdown was achieved in one replicate.
Knockdown in the developing CNS was verified through i situ
hybridization, which confirmed reduced levels of fra transcripts in
the embryonic CNS at levels comparable to those detected by
gRT-PCR, and which revealed nearly complete knockdown in the
developing nervous systems of embryos bearing strong phenotypes
(Fig. 4C). These studies suggest that siRNA methodology can be
used for targeted disruption of embryonic gene function in Ae

aegypti.

Ae. aegypti fra knockdown CNS phenotypes

The impact of fia knockdown on Ae. aegypti embryonic nerve
cord development was assessed through anti-acetylated tubulin
staining at 54 hrs. AEL. In embryos injected with fra siRNA-A,
71% of anterior commissures and 80% of posterior commissures
are thin or absent (Fig. 4B, C, Table 1). As observed in Drosophila
[27], the posterior commissure is more severely disrupted than the
anterior, with 51% of the embryos displaying a severe phenotype
in the posterior commissure and 36% of embryos displaying a
severe anterior commissure phenotype (Table 1). Occasional
breaks in the longitudinal tracts were also noted in fra knockdown
embryos. Injection of either fra siRNA-A (Fig. 4B,C) or siRNA-B
(Fig. 4D), which correspond to two separate Aae fra sequences,
produced similar phenotypes. This result indicates that the
knockdown phenotypes described are due to loss of fia and are
not the result of off-site targeting. Injection of the scrambled

@ PLoS ONE | www.plosone.org

control siRNA did not disrupt nerve cord development (Iig. 4A,
Table 1).

It should be noted that the penetrance and severity of the Aae fia
knockdown phenotype are higher than that reported for the
Drosophila fra null, in which only 12% of the anterior commissures
and 43% of the posterior commissures are reportedly thin or
absent [27]. In fact, in embryos in which CNS transcripts are
nearly depleted, the Aae fra knockdown phenotype (Fig. 4B,C)
bears strong resemblance to the Drosophila commussureless phenotype,
in which commissure formation is entirely blocked [40]. These
results suggest that Net-Ira signaling may play a more critical role
in formation of the Ae. aegypti ventral nerve cord, and that the
guidance cues postulated to compensate for loss of Net-Ira
signaling in Dr. melanogaster [29] may not be present in mosquitoes.
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Figure 3. Confirmation of fra knockdown in Ae. aegypti. qRT-PCR
was used to assess fra levels following microinjection of fra siRNA-A. A
scrambled version of fra siRNA-A was injected as a control. At 72 hrs.
post injection, levels of fra were 80% less than that of the control-
injected group (N=3, p<<0.0001).
doi:10.1371/journal.pone.0016730.g003
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Figure 4. Ae. aegypti fra knockdown CNS phenotypes. Anti-acetylated tubulin staining (reddish brown) marks the axons of the ventral nerve
cords of scrambled control (A) and fra siRNA injected embryos (B-D). Knockdown phenotypes characterized by thinning or loss of commissural axons
were observed at 54 hrs. (B-D). Comparable results were obtained with two different siRNAs (fra siRNA-A in B,C; fra siRNA-B in D). Knockdown of fra
was confirmed by double-labeling to detect fra mRNA expression (dark blue in C). Nerve cords are oriented anterior up in each panel. The anterior
commissure is marked by a black arrowhead, and a white arrowhead marks the posterior commissure.

doi:10.1371/journal.pone.0016730.g004

These observations suggest that further analysis of embryonic
nerve cord development in mosquitoes may uncover underlying
differences between Dr. melanogaster and mosquito nervous system
development. In support of this concept, our ongoing analysis of
semaphorin knockdown in Ae. aegypti suggests that the function of this
gene in nerve cord development has evolved in insects (data not
shown).

Developmental Genetics in Vector Mosquitoes

Although we have made great advances in understanding
developmental genetics in Drosophila, comparatively little is known
about the genetic basis for development in mosquitoes and other
arthropods. In this investigation, we examined the role of Fra
during development of two vector mosquitoes. Expression of fra in
the developing ventral nerve cord was found to be conserved
between the two mosquitoes and Dr. melanogaster. However, the
results of this investigation, the first targeted knockdown of a gene
during vector mosquito embryogenesis, illustrate that although Fra
plays a critical role during development of the Ae. aggypti ventral
nerve cord, mechanisms regulating embryonic commissural axon
guidance may have evolved in distantly related insects. This is a
somewhat unexpected finding given the many similarities in insect
CNS development that have been observed (for example, see

Table 1. Quantification of Aae fra knockdown phenotype
penetrance and severity.

Anterior Posterior
wT Mild Strong WT Mild Strong
Control 91 (100%) 0 (0%) 0 (0%) 91(100%) 0 (0%) 0 (0%)

fra sSiRNA-A 22 (29%) 26 (35%) 27 (36%) 15 (20%) 22 (29%) 38 (51%)

Embryos stained with anti-acetylated tubulin were scored at 54 hrs. post-
injection of fra siRNA-A or scrambled control siRNA. The number and
percentage of total segments bearing wild-type (WT), mild, or strong
phenotypes in the anterior and posterior commissures are reported. Mild
phenotypes correspond to thinning commissures, and severe phenotypes
correspond to near or complete absence of commissural axons.
doi:10.1371/journal.pone.0016730.t001
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[34,41]). Given these findings in Ae. aegypti, it would also be
interesting to apply the siRNA-mediated knockdown strategies
utilized here to An. gambiae and to formally assess the function of
Aga fra.

Characterizing the function of additional developmental genes
in mosquitoes is critical. To date, expression patterns of only a
handful of mosquito developmental genes [9,10,11,12,13,14,
15,16] have been reported. Adelman et al. [13] showed that
control sequences for one of these genes, nanos [11], demonstrated
promise as part of a transposable element-based gene drive
system that may be used to spread and fix antipathogen
effector genes in mnatural populations. Their investigations
illustrate the exciting potential for the application of evo-devo
approaches in efforts to develop strategies for vector control. The
methodologies used in this investigation, in particular the siRNA-
mediated knockdown strategy for functional analysis of develop-
mental genes in Ae. aggypti embryos, will broaden and enhance
these efforts.

Materials and Methods

Ethics statement

This study was performed in accordance with the recommen-
dations in the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health. The animal use protocol was
approved by the University of Notre Dame Institutional Animal
Clare and Use Committee (Study # 11-036).

Mosquito Rearing, Egg Collection, and Fixation

The Ae. aegypti Liverpool-IB12 (LVP-1B12) strain and An.
gambiae (M Form) were used in these investigations. Procedures for
mosquito rearing and egg collection [22,42], which was performed
at 26°C, have been described. Ae. aggypti embryos were fixed as
described [20]. An. gambiae embryos were fixed using a comparable
procedure, except that eggs were fixed at room temperature.

Immunohistochemistry

Immunohistochemistry was performed as described [19]. Anti-
acetylated tubulin (Zymed, San Francisco, CA) was used at a
concentration of 1:100, and HRP-conjugated secondary antibod-
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ies (Jackson Immunoresearch, West Grove, PA) were used at a
final concentration of 1:200.

In situ hybridization

Riboprobes corresponding to Aae fra (AAEL014592) and Aga fra
(AGAP006083) were synthesized according to the Patel [43]
protocol. In situ hybridization was performed as previously
described [23].

RNA interference

Knockdown was performed through embryonic microinjection
of siRNAs targeting Aae fra. siRNA design and microinjection were
performed as described [21]. The following siRNAs were
synthesized by Dharmacon RNAi Technologies (Lafayette, CO):
siRNA-A sense: CCA GAT GGG TAT GGG AGA T and
antisense: GGT CTA CCC ATA CCC TCT A (corresponding to
base pairs 2011-2032 of Aae fra) and siRNA-B sense: TCC ATA
CAC CTA CGA AGG A and antisense: AGG TAT GTG GAT
GCT TCCT (corresponds to base pairs 3862-3883 of Aae fra). A
scrambled version of siRNA-A was used as a control: sense GAT
TAG ACG AAT ACC ACT A and antisense: CTA ATC TGC
TTA TGG TGA T. siRNAs were injected at a concentration of
6 ug/ulL.

Measurement of knockdown effectiveness was determined
through in situ hybridization (see above) and through qRT-PCR.
qRT-PCR was performed as previously described [44]. In short,
total RNA was extracted from ~30 pooled siRNA-microinjected
mosquito embryos using Trizol (Invitrogen, Carlsbad, CA). cDNA
was prepared with the High Capacity RNA to cDNA Kit (Applied
Biosystems, Foster City, CA), which includes a blend of random
and oligo(dT) primers, according to the manufacturer’s instruc-
tions. Real-time quantification was performed using the SYBR
Green I PCR kit (Applied Biosystems, Foster City, CA) in
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