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Abstract

Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNAK164) is a highly conserved,
DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits
translesion synthesis (TLS) polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/
Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of
Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1,
K185 of Rad1 (Rad1K185) was identified as the only topological equivalent of PCNAK164. To investigate a potential role of
posttranslational modifications of Rad1K185 in DNA damage management, we here generated a mouse model with a
conditional deletable Rad1K185R allele. The Rad1K185 residue was found to be dispensable for Chk1 activation, DNA damage
survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during
somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1K185 is not a functional counterpart of
PCNAK164.
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Introduction

Maintaining DNA integrity is crucial to the survival and

reproduction of all organisms. As a consequence, elaborate

mechanisms have evolved to preserve genetic information. Cells

rely on a complex protein network capable of sensing specific

DNA damage and triggering adequate responses. Distinct DNA

damage checkpoints can delay specific phases of the cell cycle and

this extra time window allows a cell to repair or transiently tolerate

DNA damage. If the damage is too severe, the system can force the

cell to go into senescence or apoptosis [1]. Inappropriate DNA

damage management has been associated with a variety of

diseases, like cancer and premature ageing [2].

DNA sliding clamps and post-translational modification (PTM)

thereof play important roles in DNA replication, recombination,

and repair, as well as DNA damage responses (DDR), and DNA

damage tolerance (DDT) [3]. The homotrimeric DNA sliding

clamp Proliferating Cell Nuclear Antigen (PCNA) encircles the

DNA and acts as a critical processivity factor for the replicative

polymerases d and e. In the presence of stalling DNA lesions, for

instance caused by DNA alkylation or UV exposure, prolonged

exposure of single-stranded DNA may ultimately lead to the

formation of DNA double strand breaks. To prevent the formation

of such detrimental secondary lesions, DDT enables DNA

replication to be continued. This feature renders DDT as an

integral component of the overall cellular response in surviving

genotoxic stress [3]. In eukaryotes two DDT pathways are

distinguished: translesion synthesis (TLS) and template switching

[4]. Both pathways, initially identified as the Rad6 epistasis group,

strongly depend on DNA damage-inducible, site-specific ubiqui-

tylation of PCNA at lysine (K) 164 [5]. DNA damage-inducible

monoubiquitylation at PCNAK164 (PCNA-Ub) is mediated by the

E2 conjugase Rad6 and the E3 ligase Rad18 and recruits TLS

polymerases via their ubiquitin binding motifs [6,7,8,9]. These

TLS polymerases are capable of replicating directly across

damaged DNA templates [3]. TLS polymerases have an extended

catalytic domain that can fit non-Watson-Crick base pairs,

allowing this class of polymerases to synthesize directly across

DNA lesions [10]. Simultaneously, the inherent lack of proofread

activity renders TLS polymerases error-prone, even in the

presence of an intact template. Further K63-linked polyubiquity-

lation of PCNA-Ub stimulates template switching, which enables

stalled replicative polymerases to bypass the damage by switching

transiently to the intact template strand of the sister chromatid [4].

Interestingly, affinity maturation of antibodies takes advantage

of error-prone TLS polymerases to introduce point mutations at a

high rate into the variable region of immunoglobulin genes of B

cells, a process known as somatic hypermutation (SHM) [11]. To

initiate SHM, the activation-induced cytidine deaminase AID is

induced transiently in activated B cells to create uracil residues in

the variable region of Ig genes by deaminating cytidines [11,12]. It

is thought that three major pathways can process the U:G

mismatch in an error-prone manner. 1) Direct replication of the

uracil results in G/C to A/T transitions, as U instructs a template

T to DNA polymerases [13,14]. 2) Excision of the U by the base

excision repair protein Ung2, generates a non-instructive abasic

site that can be processed by specific TLS polymerases [15]. 3)

Alternatively, the U can be recognized as a U:G mismatch by the
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mismatch recognition complex Msh2-Msh6, resulting in exonu-

clease 1 (Exo-1) activation, formation of a single-stranded gap,

activation of Rad6/18, PCNA-Ub and recruitment of the TLS

polymerase g (Pol g) to generate 90% of all A/T mutations

around the initial mismatch [16,17,18,19,20]. Interestingly, TLS

polymerases involved in G/C transversions, like Rev1, are not

controlled by PCNA-Ub. This suggests that G/C transversions are

regulated differently [16,17]. For instance, this may involve

ubiquitylation of the alternative DNA sliding clamp 9-1-1 (see

below) [21].

Besides the homotrimeric PCNA DNA sliding clamp, a

heterotrimeric DNA sliding clamp exists, Rad9-Rad1-Hus1 (9-1-

1), which is evolutionary and structurally highly related to PCNA

[22,23]. While its role as DNA damage sensor in the DDR is well-

defined [24], more recent reports revealed a role of 9-1-1 in DDT.

The non-catalytic Rev7 subunit of the TLS polymerase f a

heterodimer of Rev3 and Rev7, is recruited to DNA in a damage-

inducible and Rad9-dependent manner in S. cerevisiae [25]. In

addition, in S. pombe polymerase k physically interacts with 9-1-1,

and its recruitment to chromatin is dependent on checkpoint

activation [26]. These observations suggest a function of 9-1-1 in

controlling TLS and possibly SHM in B cells. Most remarkably, a

recent study in S. cerevisiae by Fu et al. indicated that DNA damage

activates Rad6/Rad18 to ubiquitylate not only PCNA but also

Rad17, the orthologue of mammalian Rad1 at a non-conserved

lysine residue, K197 [27]. Furthermore, it was shown that Rad17

ubiquitylation controls phosphorylation of Rad53, the yeast Chk2

orthologue, a downstream component of the DNA damage

response [27]. Strikingly, by solving the crystal structure of human

9-1-1, Doré et al. made the observation that the non-conserved

Rad17K197 is not a topological equivalent of PCNAK164 [23]. In

fact, Doré et al. revealed mammalian Rad1K185 as the only

topological equivalent of PCNAK164 [23].

The facts that: 1) a topological equivalent of PCNAK164 exists in

mammalian Rad1; 2) PCNA ubiquitylation by Rad6/Rad18 is

selective for K164; and 3) that in yeast PCNA and 9-1-1 are both

ubiquitylated in a DNA damage-inducible manner by Rad6/

Rad18, prompted us to investigate whether the conserved

mammalian Rad1K185 is not just a topological equivalent but also

a functional counterpart of PCNAK164. To investigate the role of

any PTMs of Rad1 in mammals, we introduced a K185R

mutation in exon 4 of mouse Rad1. We found that the Rad1K185R

mutation does not affect mammalian Chk1 activation, DNA

damage survival, TLS function during SHM and class switch

recombination (CSR) of Ig genes. These data are consistent with a

recent report published by the Ulrich lab, suggesting that DNA

damage-inducible ubiquitylation of 9-1-1 as observed by Fu et al.

might not exist in yeast [28].

In addition, we simultaneously flanked exon 4 by LoxP-

recombination sites. This strategy allows us to determine a

putative role of Rad1K185 modification in mammalian DNA

damage management and to inactivate Rad1 conditionally in

mammalian tissues. Cre-mediated deletion of exon 4 inactivates

Rad1, providing an ideal model system to perform structure

function analyses of Rad1 in a mammalian system.

Materials and Methods

Cloning of Rad1K185R targeting vector
The 59 arm of homology (,3 kbp) was amplified with a PmeI

site at the 59 end and an AscI site at the 39 end (FWD: 59-TTT

TGT TTA AAC ACC AGA CTG GCT TCA AGT TCT TG-39

and REV: 59-TTT GGC GCG CCT CTT TAA AGA CAC

CTG ATT CCA A-39). The 39 arm of homology (,2.5 kbp) was

amplified with a SbfI site at the 59 end and a NotI site at the 39 end

(FWD: 59-TTT CCT GCA GGG TAA CCA CAA AGC ATT

TTA TA-39 and REV: 59-TTT GCG GCC GCT GTT TGG

ATC CAC TAA ATG CCA TGC-39). To generate a Rad1 exon 4

containing the K185R mutation the 59 portion of exon 4 was

amplified using a natural HindIII site in the FWD primer 59-GCA

TGC TAG AAG CTT GGC AGA T-39 and the mutagenic

reverse primer: 59- GCA CTG ACG TAC CTG AAA TAC GGC

CGG TCA GGA GAC ACA GTG ATC T-39. The 39 portion of

exon 4 was amplified using the mutagenic forward: 59-AGA TCA

CTG TGT CTC CTG ACC GGC CGT ATT TCA GGT ACG

TCA GTG C-39 and the reverse primer REV: 59-TTT TTA ATT

AAC TCA AGG TTG GAA AAT TAT GGA AT-39 containing a

PacI site at the 39 end. To obtain the HindIII, PacI flanked

K185R mutant exon4 of Rad1, the partial products were mixed

and amplified using the FWD and the REV primer. All PCR

products were amplified with Pfu polymerase (Promega) and

subcloned in the TOPO blunt vector (Invitrogen) for sequencing

(3730 DNA analyzer, Applied Biosystems). To generate the

targeting vector, the fragments containing the 59 arm of homology

(AH), the 39 of AH and the mutated Rad1 exon 4 were cloned into

the pFLEXIBLE targeting vector [29], using the indicated

restriction sites.

Generation of Rad1K185R mice and genotyping
E14 129/Ola embryonic stem cells were electroporated with

NotI linearized Rad1K185R targeting vector. To screen for

homologous recombination of the targeting vector in targeted

ES cells, DNA was extracted from the ES cell clone and PCR

primers specific for the proper integration of the targeting vector

(59AH: FWD: 59-CCC CGG AGA TAG AGT CTA ACA TG-39

(P1 FWD, Figure 1A); REV: 59-TAG CAT ACA TTA TAC GAA

GTT ATG GCG-39 (P1 REV, Figure 1A) and 39AH: FWD: 59-

GTA TGC TAT ACG AAG TTA TCC TGC AG-39 (P2 FWD,

Figure 1A); REV: 59-GAG GGC TTC AGT AGC GAC AGC-39

(P2 REV, Figure 1A)) were used. PCR cycle: 1) 94uC, 2 minutes; 2)

94uC, 30 seconds; 3) 60uC, 1 minute; 4) 72uC, 3 minutes; 5) 72uC,

10 minutes. Step 2 to 4 were repeated 34 times.

Homologous recombinant E14 129/Ola ES cell clones with a

normal karyotype were injected into B6 blastocysts to obtain

chimeric mice. To detect chimeric mice with a mutant Rad1 allele,

mice were genotyped with the following PCR primers: FWD: 59-

AGG TAC GTC AGT GCG ATT ACC CT-39 (G1 FWD,

Figure 1A); REV1: 59-GTA GAA GGT GGC GCG AAG GGG-

39 (G1 REV, Figure 1A) and REV2: 59-GTA GAT TAT GAG

AAT CGG CTT CCA AC-39 (G2 REV Figure 1A). Germline

competent mice were crossed with the Flpe deleter strain (provided

by S. Dymecki, Harvard Medical School, Boston, MA) to delete

the selection cassette in vivo [30]. Genotyping of Flpe deleted

Rad1K185R mice: FWD: G1 FWD (Figure 1A) and REV 59-CCC

TCA AGA TGT AAC CTC ATC TAC-39 (G3 REV, Figure 1A).

All experiments were approved by an independent animal ethics

committee of the Netherlands Cancer Institute (ID 8065) and

executed according to national guidelines.

Derivation of Rad1K185R mouse embryonic fibroblast cell
lines

Mouse embryonic fibroblasts (MEFs) were derived from

embryos at day 14.5 of gestation. MEFs were maintained in

complete medium (IMDM, 8% FCS, 50 mM 2-mercapthoetha-

nol, penicillin/streptomycin). Immortalization of MEF cell lines

was established by lentiviral-mediated shRNAs targeting p53

[31].

Conditional Rad1 Mutant Mice
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DNA damage survival
Naive splenic B cells from three mice per genotype were

obtained by CD43 depletion using biotinylated anti CD43 (Clone

S7, BD Biosciences), and the IMag system (BD Biosciences), as

described by the manufacturer. For UV-C irradiation, 105 B cells

were irradiated (254 nm, UV StratalinkerH 2400, Stratagene) in

0.5 ml complete medium containing 50 mg/ml E. Coli LPS

(055:B5, Sigma). For c-irradiation, a 137Cs source was used.

Following irradiation, cells were cultured in 1 ml complete

medium and LPS. To determine DNA damage sensitivity, the

survival of 105 B cells grown in 1 ml complete medium and LPS in

the continuous presence of different doses of cisplatin (CisPt) or

methyl methanesulfonate (MMS) was determined after four days

of culture. The number of viable (propidium iodine negative) B

cells was determined by FACS. Data were analyzed using FlowJo

8.8.6 software.

Isolation of germinal center B cells and mutation analysis
Germinal center (CD19+, PNA high, CD95+) B cells were

sorted from Peyer’s patches. Genomic DNA was extracted using

proteinase K treatment and ethanol precipitation. The JH4

39flanking intronic sequence of endogenous rearrangements of

VHJ558 family members were amplified during 40 cycles of PCR

using PFU Ultra polymerase (Stratagene). PCR products were

purified using the QIAquick Gel Extraction kit (Qiagen) and

cloned into the pCR-Blunt II TOPO vector (Invitrogen Life

Technologies) and sequenced on a 3730 DNA analyzer (Applied

Biosystems). Sequence alignment was performed on the first 300

bp starting from the intronic region using Seqman software

(DNAStar). Calculations exclude non-mutated sequences, inser-

tions, deletions, and SNPs. Clonally related sequences were

counted only once. Statistical analysis was performed as described

[17].

Class switch recombination
Naive splenic B cells from three mice per genotype were

obtained by CD43 depletion as described above. Purified B cells

were cultured in complete medium containing LPS either in the

presence or absence of 10% IL-4-containing supernatants

generated from X63-m-IL-4 cell cultures [32]. Flow cytometric

analysis of surface Ig expression was performed on day 4 of culture

using goat anti mouse IgM-APC, IgG1-PE and IgG3-PE

(Southern Biotech). Data were analyzed using FlowJo 8.8.6

software.

Chk1 activation Western blotting
One day prior to UV irradiation wild type and Rad1K185R

MEFs were seeded at 1.6*106 cells per 15 cm dish in 20 ml

complete medium. The next day, cells were washed with PBS and

irradiated with 100 J/m2 UV-C (254 nm, UV StratalinkerH 2400,

Stratagene) after removal of the PBS. Hereafter complete medium

was added. 10, 40 and 70 minutes later cells were harvested by

Figure 1. Targeting strategy and genotyping Rad1K185R mouse. A) Targeting strategy Rad1K185R mouse. LoxP recombination sites are
represented by black triangles. Flpe recombination sites are represented by white triangles. PCR primers are represented by gray arrow heads. Please
note that this figure is not drawn to scale. B) Genotyping PCRs for non-flipped (Primers G1 FWD, G1 REV and G2 REV) and flipped Rad1K185R mice
(Primers G1 FWD and G3 REV).
doi:10.1371/journal.pone.0016669.g001

Conditional Rad1 Mutant Mice
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scraping the cells in cold PBS, centrifuged (5006g). After removal

of the supernatant, cells were lysed in 200 ml ELB buffer (150 mM

NaCl; 50 mM Hepes pH 7.5; 5 mM EDTA; 0.1% NP-40;

protease inhibitors (Roche)) and incubated for 30 minutes on

ice. Next, samples were centrifuged for 10 minutes at 20,8006g

(4uC). The supernatant was transferred to a new tube and the

protein concentration was measured using standard Bradford

method. Western blotting was performed using standard protocols.

NuPAGE 3-8% Tris-Acetate gels (Invitrogen) were used for

protein separation. Antibodies used were: mouse anti-Chk1,

1:1000 (sc-8408, Santa Cruz); rabbit anti-pChk1 S345, 1:1000

(clone 133D3, Cell Signaling); mouse anti-Actin, 1:10,000 (clone

C4 (MAB1501R), Milipore).

Results

Generation of Rad1K185R mutant mice with a floxed exon
4

To test the possible role of Rad1K185 modifications in

controlling mammalian DDT, we generated a mouse mutant

with a site-specific Rad1K185R mutation in exon 4 of the Rad1 locus

(Figure 1A). Simultaneously, we also flanked this exon with LoxP

recombination sites, which allows conditional inactivation of the

Rad1K185R allele and functional analysis of Rad1 in higher

eukaryotes. To identify homologous recombinants, we established

a long range PCR strategy to detect homologous recombinant ES

cells (primer sets P1 and P2, Figure 1A). To prevent possible

detrimental effects of the selection cassette, Rad1K185R mice were

crossed with the Flpe deleter strain to remove the selection cassette

in vivo [30]. Mice homozygous for Rad1K185R were obtained by

intercrossing heterozygous mice. Heterozygous and homozygous

Rad1K185R mice were born at Mendelian ratios, indicating that the

Rad1K185R mutation has no detrimental effect on mouse

development (data not shown).

Rad1K185 does not control Chk1 activation
Mammalian 9-1-1 has been implicated in the activation of the

checkpoint kinase Chk1, a critical activation step for DDR [24].

For example, upon UV irradiation Hus1-deficient MEFs display

significant lower levels of serine (S) 345 phosphorylated Chk1

(pChk1 S345) [33]. Moreover, Fu et al. have shown that PTM of

9-1-1 plays a role in DDR activation as well, as rad17-K197R sgs1D
yeast cells also have an impaired DDR [27]. These observations

led us to postulate that possible PTMs at Rad1K185 could also

contribute to the activation of the mammalian DDR. As opposed

to Hus1-deficient MEFs and rad17-K197R sgs1D yeast cells,

Rad1K185R MEFs do not display impaired DDR activation after

DNA damage as revealed by pChk1 S345 levels (Figure 2).

Rad1K185R B cells display normal DNA damage sensitivity
Modification of PCNA plays an important role in the regulation

of DDT, as PCNAK164R cells are extremely sensitive to various

DNA damaging agents, primarily DNA damaging agents that

cause replication blocking lesions [5]. Besides the importance of

PCNA modification in DDT, 9-1-1 modification in yeast seems to

play a role in DNA damage management as well [27]. Fu et al.

showed that rad17-K197R yeast cells are sensitive to the alkylating

agent methyl methanesulfonate (MMS) [27]. Hence, we deter-

mined the sensitivity of Rad1K185R B cells to replication blocking

lesions such as induced by MMS, UV-C and CisPt. Moreover, as

9-1-1 was shown to be involved in the repair of DNA double

strand breaks (DSBs) by means of homologous recombination

[34,35], we also investigated whether Rad1K185R B cells were more

sensitive than WT cells to c-irradiation. In contrast to rad17-

K197R yeast cells, Rad1K185R B cells were as sensitive as WT B

cells to MMS, as well as CisPt, UV-C and c-irradiation (Figure 3).

Rad1K185 is not involved in the regulation of SHM and
class switch recombination (CSR)

The majority of point mutations generated during SHM depend

on TLS [11]. During non-SHM TLS, the TLS polymerases Rev1,

polymerase g and k need their ubiquitin binding motifs to

efficiently interact with PCNA-Ub after DNA damage [6,7,8,9].

However, during SHM only polymerases g and k require PCNA-

Ub for their recruitment. Polymerases g and k are responsible for

the generation 90% of all mutations at template A/T around the

initial mismatch [16,17,18,19,36,37]. Interestingly, TLS polymer-

ases involved in G/C transversions, like Rev1, are not controlled by

PCNA-Ub, suggesting that G/C transversions are regulated

differently [16,17]. Rev1 interacts with Rev7, and Rad9 can recruit

Rev7 to the site of DNA damage [25]. Additionally, 9-1-1 was

shown to physically interact with polymerase k and that recruitment

of polymerase k to the chromatin was dependent on checkpoint

activation [26]. Therefore, we postulated a role for Rad1K185-

specific modification in SHM. However, unlike PCNAK164R B cells,

Rad1K185R B cells are capable of undergoing normal SHM, as we

observed no significant changes in the base exchange pattern of JH4

intronic sequences of germinal center B cells (Figure 4).

We also tested whether the Rad1K185R mutation had any effect

on CSR in B cells (Figure 5). The Rad1K185R mutation does not

affect ex vivo class switching of naive B cells to IgG3 or IgG1.

Discussion

The DNA sliding clamps PCNA and 9-1-1 are critical docking

stations for proteins involved in diverse processes such as

replication, recombination, and DNA damage management.

Site-specific PTM of these sliding clamps helps to coordinate the

activation of specific pathways. Stalled replication forks activate

the Ub-conjugase/ligase Rad6/Rad18 complex to mediate

PCNAK164-specific ubiquitylation and subsequent stimulation of

DDT. In this regard, the recent finding that in S. cerevisiae the same

Rad6/Rad18 complex ubiquitylates Rad17, the yeast Rad1

orthologue, at lysine residue 197 was quite intriguing [27].

However, Rad17K197 is not conserved and based on structural

arguments unlikely to be a substrate of Rad6/Rad18 [23]. Yet,

structural comparisons by Doré et al. did reveal a lysine residue

(K185) in the Rad1 subunit of 9-1-1 that is indeed a topological

equivalent of PCNAK164 [23].

Figure 2. Rad1K185R MEFs have normal Chk1 activation. WT and
Rad1K185R MEFs were irradiated with 100 J/m2 UV-C and harvested after
10, 40 and 70 minutes after irradiation. Subsequently, the Chk1
phosphorylation status at S345 (pChk1 S345) was investigated by
Western blotting using pChk1 S345-specific antibodies. The results are
representatives of two independent experiments.
doi:10.1371/journal.pone.0016669.g002

Conditional Rad1 Mutant Mice
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Figure 3. Rad1K185R B cells do not display sensitivity to various DNA damaging agents. WT (blue) and Rad1K185R (Red) B cells were
stimulated with LPS and exposed to increasing amounts of UV-C (A), MMS (B), CisPt (C) and c-irradiation (D). The percentage of survival is shown on
the y-axis after four days of culture. Data represent the mean and SD of individual cultures (n = 3). The results are representatives of two independent
experiments.
doi:10.1371/journal.pone.0016669.g003

Figure 4. Normal SHM in Rad1K185R GC B cells. A) Mutated JH4 regions from WT and Rad1K185R GC B cells. B) Rad1K185R GC B cells display a
normal nucleotide exchange pattern in hypermutated Ig genes. In the left panel, values are expressed as the total numbers of mutations. In the right
panel, values are expressed as the percentage of total mutations. Chi square testing did not reveal any significant changes in the nucleotide
exchange pattern (p,0.01). C) Relative contributions of A/T mutations, G/C transversions and G/C transitions in the different mouse strains. Values are
expressed as the percentage of total mutations.
doi:10.1371/journal.pone.0016669.g004

Conditional Rad1 Mutant Mice
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To investigate whether PCNAK164 and Rad1K185 are not just

topological equivalents, but also functional counterparts, we first

tried to identify DNA damage-inducible Rad1 ubiquitylation in

different mammalian cell lines. After extensive experimentation we

were unable to observe any DNA damage-inducible PTMs, in

particular ubiquitin modification of Rad1 (data not shown). As this

approach proved unsuccessful for potentially a number of reasons,

we took a genetic approach by introducing a Rad1K185R mutation in

the mouse germline. Being aware of the fact, that equal topology

does not necessarily imply equal functionality, we simultaneously

flanked exon4 of Rad1 with LoxP sites. This strategy allows

conditional inactivation of endogenous Rad1 and study structural

variants of mammalian Rad1 in the absence of wild type Rad1.

Our data clearly demonstrate that any PTM at Rad1K185 does

not play a role in DNA damage management, SHM or CSR.

These studies are in line with recent observations made by the

Ulrich lab [28]. Their results argued against a role of DNA

damage-inducible and Rad17K197-specific ubiquitylation and the

relevant phenotypes of the rad17-K197R yeast strain. Specifically,

in this particular study the authors reported that modification of

Rad17 is independent of: 1) DNA damage; 2) Rad6/Rad18; 3) the

acceptor site Rad17K197; and 4) loading of the complex onto

DNA, a prerequisite for PCNAK164 ubiquitylation [28]. Further-

more, the authors were unable to observe DNA damage sensitivity

or defects in DNA damage checkpoint signaling in rad17-K197R

yeast cells. Instead, they showed that all 9-1-1 subunits are

(poly)ubiquitylated and that this modification likely directs

proteasomal degradation [28].

Collectively, our data show that putative PTMs at Rad1K185 do

not play a role in DNA damage management, which is in line with

recent observations made in the Ulrich lab [28]. We conclude that

mammalian Rad1K185 is a mere topological, but not a functional

counterpart of PCNAK164.

Having flanked Rad1 exon 4 with LoxP recombination sites

allows a conditional inactivation of Rad1 in mice and cell lines

derived thereof. Upon deletion of exon 4, any alternative splicing

gives rise to out-of-frame transcripts downstream of exon 3. As

Rad1 null embryos are not viable [38], our and equivalent systems

of Rad9 [39] and Hus1 [40] will enable a detailed structure/

function analysis of the mammalian 9-1-1 DNA sliding clamp in

DNA damage management in future studies.
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