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Abstract
Recently-proposed dynamic magnetic resonance (MR) inverse imaging (InI) is a novel parallel
imaging reconstruction technique capable of improving the temporal resolution of blood-oxygen-
level-dependent (BOLD) contrast functional MRI (fMRI) to the order of milliseconds at the cost
of moderate spatial resolution. Volumetric InI reconstructs spatial information from projection
data by solving ill-posed inverse problems using simultaneous acquisitions from a RF coil array.
Previously a spatial filtering technique based on linearly constrained minimum variance (LCMV)
beamformer was suggested to localize the hemodynamic changes of dynamic InI data with
improved spatial resolution and sensitivity. Here we report an advancement of the spatial filtering
method, which combines the eigenspace projection of the measured data and the ℓ1-norm
minimization of the spatial filters’ output noise amplitude, to further improve the detection power
of BOLD-contrast fMRI data. Using numerical simulation and in vivo data, we demonstrate that
this eigen-space linearly constrained minimum amplitude (eLCMA) beamformer can reconstruct
spatiotemporal hemodynamic signals with high statistical significance values and high spatial
resolution in event-related two-choice reaction time visuomotor experiments.
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INTRODUCTION
Functional Magnetic Resonance Imaging (fMRI) has been widely adopted for noninvasive
human hemodynamic brain imaging in recent years (Belliveau, Kennedy et al. 1991;
Kwong, Belliveau et al. 1992). Conventional fMRI time series are measured by echo-planar
imaging (EPI) (Mansfield 1977), which encodes the spatial information by fast switching of
gradients leading to spatial modulation of spin precession frequencies. Subsequently,
Fourier analysis of the EPI signals maps the weights of spectral components onto spatial
locations to accomplish the image reconstruction. The total scan time per image is thus
closely related to the time needed to complete the traversal of the k-space. Most fMRI
studies use single-shot echo-planar imaging (EPI) to achieve a temporal resolution of
approximately one to three seconds with the whole brain coverage, suitable for estimating
hemodynamic response in the human brain. The temporal resolution for the single-shot EPI
can be moderately improved by exploiting the symmetry in k-space (Noll, Nishimura et al.
1991) and the redundancy in the repetitive measurements to further accelerate the data
acquisition (Jones, Haraldseth et al. 1993; van Vaals, Brummer et al. 1993; Madore, Glover
et al. 1999). Alternatively, incorporating echo shifting pulse sequences with multislice EPI
can also shorten the TR to 27 ms and improve fMRI temporal resolution to 250 ms for the
whole head coverage (Gibson, Peters et al. 2006). Independently, parallel imaging
techniques, such as image space sensitivity encoding (SENSE) (Pruessmann, Weiger et al.
1999), k-space simultaneous acquisition of spatial harmonics (SMASH) (Sodickson and
Manning 1997), and generalized autocalibrating partially parallel acquisitions (GRAPPA)
(Griswold, Jakob et al. 2002), have been introduced to achieve another two- to three-fold
temporal acceleration based on the spatial information among channels of an RF coil array
at the cost of SNR reduction. At fixed field strength, the temporal acceleration capability of
parallel MRI is closely related to the number of receiving coils in an array. Without reaching
the theoretical bound (Ohliger, Grant et al. 2003; Wiesinger, Boesiger et al. 2004), the
number of RF coils in head coil arrays has increased from 8 to 32 and then 96 channels (de
Zwart, Ledden et al. 2002; de Zwart, Ledden et al. 2004; Wiggins GC 2005a; Wiggins GC
2005b; Wiggins, Triantafyllou et al. 2006). Inspired by the similar geometric arrangement of
coils in magnetoencephalography (MEG) (Hamalainen, Hari et al. 1993) and a highly
parallel MR signal detection array, single-shot volumetric MR inverse imaging (InI), which
was also known as MR-encephalography (MREG) (Hennig, Zhong et al. 2007), was
proposed to achieve a time resolution of 100 ms and a spatial resolution of 5 – 10 mm with
whole head coverage (Lin, Wald et al. 2006; Lin, Witzel et al. 2008a). Rather than
employing the standard gradient switching to explicitly encode spatial information, InI uses
the spatial information among channels of an RF coil array to solve a set of ill-posed inverse
problems in order to achieve high temporal acceleration with sufficient signal localization.

In InI, the inverse problems are mostly ill-posed due to the limited spatial information
offered by the minimally gradient-encoded acquisitions, the number of channels in an RF
coil array, and the maximal spatial frequencies that can be reconstructed from the B1 profiles
of different channels in a coil array at a given field strength. Previously, we have presented
methods of InI reconstruction with a constraint of minimizing the power of the reconstructed
image (Lin, Wald et al. 2006; Lin, Witzel et al. 2008a) and k-space data (Lin, Witzel et al.
2010). Instead of directly solving a reconstructed image, it is possible to design individual
spatial filters to project data from multiple RF coil channels onto individual volumetric
image voxel in order to localize the dynamic MRI signal (Lin, Witzel et al. 2008b).
Historically, a spatial filter technique also known as beamforming was first developed in
applications of wireless communications systems. The goal of using a beamformer is to
localize measurements from an array by designing a high spatial resolution filter such that it
generates a sharp pencil-like energy beam at the antenna front end pointing to the source or
the destination of interest (Van Veen and Buckley 1988). Many different spatial filtering
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techniques have been developed for long distance wireless communications (Liberti and
Rappaport 1999; Van Trees 2002; Sarkar 2003; Allen and Ghavami 2005). Linearly
constrained minimum variance (LCMV) beamformer (Frost 1972) is one of the most
popular spatial filtering algorithms applied to the receiver side to minimize the antenna
array’s output variance with linear constraints. In addition to fMRI reconstruction (Lin,
Witzel et al. 2008b), LCMV also has been extensively applied to EEG and MEG signal
localization (Van Veen, Van Drongelen et al. 1997; Ishii, Shinosaki et al. 1999; Sekihara,
Nagarajan et al. 2001; Sekihara, Nagarajan et al. 2002).

The LCMV spatial filter design uses the data covariance matrix estimated from the
measurements of all channels. Considering the measurements include the deterministic
signal part and the stochastic noise part, the variance, and thus the performance, of the
spatial filter’s output is closely related to the measurement noise. If it is possible to separate
“signal” and “noise” components from the measurements, it might be beneficial to design a
spatial filter to localize the source with higher SNR at the output of the spatial filter.
Eigenspace projection is one such method separating measurements into signal and noise
components by projecting the data on to empirically estimated signal and noise eigenspaces,
respectively (Van Trees 2002). The projection eigenvectors are derived from the eigenvalue
decomposition of the data correlation matrix. Two orthogonal subspaces corresponding to
signal and noise can then be constructed. Specifically, eigenvectors with magnitude-sorted
eigenvalues higher than a pre-defined threshold constitute the signal subspace and the rest of
eigenvectors span the noise subspace. The eigenspace beamformer can then be designed
based on the covariance matrix of measurements projected on either signal or noise
subspace. Various eigenspace beamformers have been applied to functional brain imaging
over the last twenty years. Multiple Signal Classification (MUSIC) algorithm has been
introduced (Schmidt 1986) and used in MEG source localization (Mosher, Lewis et al. 1992;
Sekihara, Poeppel et al. 1997; Sekihara, Nagarajan et al. 1999) as well as fMRI time-course
signal analysis (Sekihara and Koizumi 1996). Alternatively, it is possible to design
eigenspace spatial filters to specifically minimize the output variance of the projected
measurements onto the signal subspace (Sekihara 2008). It has been shown that both types
of beamformers can improve SNR significantly at the receiver side with low computational
cost (Van Trees 2002).

Aforementioned LCMV and eigenspace beamformers are mathematically based on
minimizing the output variance of the spatial filters. This is equivalent to minimizing the ℓ2-
norm least square error between the estimated and true source signals (Sekihara 2008).
While source localization methods based on the constraint of minimizing the ℓ1-norm of the
sources have been explored in both wireless communications (Barroso and Moura 1989;
Barroso and Moura 1994) and MEG source analysis (Barroso and Moura 1989; Barroso and
Moura 1994; Uutela, Hamalainen et al. 1999; Huang, Dale et al. 2006), designing a spatial
filter for minimal output disturbance quantified by the ℓ1-norm, to our best knowledge, has
not been discussed yet in neuroimaging analysis.

This study focuses on the development of spatial filtering of InI data using the eigenspace
projection and the ℓ1-norm minimization constraint. In the following, we first review the
principle of LCMV and the eigenspace LCMV (eLCMV) spatial filtering techniques (Van
Veen and Buckley 1988) to reconstruct dynamic InI data for fMRI studies. Subsequently, we
introduce linearly constrained minimum amplitude (LCMA) and eigenspace linearly
constrained minimum amplitude (eLCMA) beamformers by replacing the minimum ℓ2-norm
constraint with the ℓ1-norm constraint. We used numerical simulations to quantify the
performance of the four spatial filters: LCMV, eLCMV, LCMA, and eLCMA beamformers.
We also used all four spatial filters to reconstruct in vivo dynamic BOLD contrast InI during
a visuomotor task. Our results demonstrate the feasibility of applying the eLCMA
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beamformer to localize task-related active brain areas with the advantage of high statistical
t-values and less source spread.

MATERIALS AND METHODS
The data used in this study have been reported in our previous paper (Lin, Witzel et al.
2010). For the completeness of the readership, we briefly describe the experimental
information here again.

Subjects
Nine (n = 9) healthy subjects, with either normal or corrected normal vision, participated in
the in vivo experiment. Experiments for all subjects were under the approved condition by
the Institutional Review Board of our institutes. Written consent forms were also obtained
from each subject before the experiment.

Task
Our visuomotor task required the subjects to flex right hand fingers upon perceiving a high-
contrast hemi field (right field) visual checkerboard reversing at 8 Hz. The motor task was
sequential finger flexion between D1-D3, D1-D5, D1-D2, and D1-D4 (D1: thumb, D2:
index finger, D3: middle finger, D4: ring finger, D5: little finger). The purpose of this rather
complicated motor task is to elicit a stronger hemodynamic response. The checkerboard
subtended 8° of visual angle and was generated from 24 evenly distributed radial wedges
(15° each) and eight concentric rings of equal width. The stimuli were generated using the
Psychtoolbox (Brainard 1997; Dale 1999a). The reversing checkerboard stimuli were
presented in 500 ms epochs and the onset of each presentation epoch was randomized with a
uniform distribution of inter-stimulus intervals varying between 3 and 16 s (average inter-
stimulus-interval: 10 seconds). Twenty-four stimulation epochs were presented during four
240 s runs, resulting in a total of 96 stimulation epochs per participant. The choice for the
inter-stimulus intervals varying between 3 and 16 s was made by the consideration of the
duration of the HRF and practical concerns on accommodating 24 stimulus events within a
240 s run.

Image data acquisition
MRI data were collected with a 3T MRI scanner with a 32-channel coil array (Tim Trio,
Siemens Medical Solutions, Erlangen, Germany). The InI reference scan was collected using
a single-slice echo-planar imaging (EPI) readout, exciting one thick coronal slab covering
the entire brain (FOV 256 mm × 256 mm × 256 mm; 64 × 64 × 64 image matrix) with the
flip angle set to the Ernst angle of 30° for the gray matter (considering the T1 of the gray
matter is 1 second at 3T). 3D phase encoded EPI acquisition was used to obtain the spatial
information along the anterior-posterior axis. The EPI readout had frequency and phase
encoding along the superior-inferior and left-right axes respectively. We used TR=100 ms,
TE=30 ms, bandwidth=2604 Hz and a 12.8 s total acquisition time for the reference scan,
consisting of 64 TRs and two repetitions allowing the coverage of a volume comprising 64
partitions. For the InI functional scans, we used the same volume prescription, TR, TE, flip
angle, and bandwidth as for the InI reference scan. The principal difference was that the 3D
phase encoded EPI acquisition was removed so that the full volume was excited, and the
spins were spatially encoded by a single-slice EPI trajectory, resulting in a coronal X/Z
projection image with spatially collapsed projection along the anterior-posterior direction.
The InI reconstruction algorithm was then used to estimate the spatial information along the
anterior-posterior axis. In each run, we collected 2,400 measurements after collecting 32
measurements in order to reach the longitudinal magnetization steady state. A total of 4 runs
of data were acquired from each participant. In addition to the InI reference and functional
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scans, structural MRI data for each participant were obtained in the same session using a
high-resolution T1-weighted 3D sequence (MPRAGE, TR/TE/flip = 2530 ms/3.49 ms/7°,
partition thickness = 1.33 mm, matrix = 256 × 256, 128 partitions, FOV = 21 cm × 21 cm).
Using these data, the location of the gray-white matter boundary for each participant was
estimated with an automatic segmentation algorithm to yield a triangulated mesh model with
approximately 340,000 vertices (Fischl, Sereno et al. 1999; Dale, Fischl et al. 1999b; Fischl,
Liu et al. 2001). This mesh model was then used to facilitate mapping of the structural
image from native anatomical space to a standard cortical surface space (Fischl, Sereno et al.
1999; Dale, Fischl et al. 1999b). To transform the functional results into this cortical surface
space, the spatial registration between the InI reference and the native space anatomical data
was calculated by FSL (http://www.fmrib.ox.ac.uk/fsl), estimating a 12-parameter affine
transformation between the volumetric InI reference and the MPRAGE anatomical space.
The resulting spatial transformation was subsequently applied to each time point of the
reconstructed InI hemodynamic estimates to spatially transform the signal estimates to a
standard cortical surface space (Fischl, Sereno et al. 1999; Dale, Fischl et al. 1999b).

fMRI Reconstruction
The fMRI analysis of the InI data set across all channels in an RF coil array and across all
time points can be considered as two separate processing steps: 1) estimation of the
hemodynamic responses from the projection data for each channel in the RF coil array, and
2) performing the volumetric reconstruction by solving the inverse problem based on the
multi-channel hemodynamic response data. As discussed in our previous study, we first
process the time-domain data by deconvolving the InI time series measurements with the
design matrix to compute the coefficients of the HRF basis functions. Subsequently, the
spatial inverse reconstruction of these basis function coefficients from all channels in the
coil array is performed at each individual time frame. Under the assumption of linearity in
the BOLD fMRI responses (Boynton, Engel et al. 1996), this strategy can greatly improve
the computational efficiency since the time domain processing can reduce the size of the
data by 8-30 folds (Lin, Witzel et al. 2010). Specifically, we used Finite-Impulse-Response
(FIR) basis function of 30 s duration (6 second pre-stimulus interval) and General Linear
Model (GLM) to allow a high degree of freedom in characterizing dynamic responses.
Given TR=100 ms and the assumed 30 s as the duration for HRF, we had 300 unknown
coefficients for the FIR basis functions. With the estimates of the coefficients of HRF basis
on each channel of the coil array and at each time point, we then used the spatial filters
introduced in the following section to estimate the HRF and the associated dynamic
statistical parametric maps at each voxel in the brain.

InI RECONSTRUCTION THEORY
LCMV Beamformer

For the completeness of the presentation, here we briefly review the theory of linearly
constrained minimum variance beamfomer and InI reconstruction. Considering the InI
acquisition from a RF coil array with nR channels, we denote by y(tk) the InI measurement
for one pixel in the projection image acquired by leaving out nS partition encoding steps in
one volumetric field of view (FOV) at the kth time frame tk :

(1)

In the above equation y(tk) is a nR-by-1 measurement vector, x(tk) is a nS-by-1 source vector
to be reconstructed, and n(tk) is the contaminating nR-by-1 noise vector, and A is an nR-by-
nS forward matrix, which can be empirically measured from the InI reference scan (Lin,
Wald et al. 2006; Lin, Witzel et al. 2008b). Each row of the forward matrix A represents one
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fully gradient encoded volumetric image measured at one channel of the RF coil array. Each
column of A represents the measured MR signals from different channels of the coil array at
one particular image voxel. Specifically in the context of InI reconstruction, the forward
matrix A is different for each Fourier encoded location and each row of A corresponds to the
“voxel” intensities along the omitted direction at a specific Fourier encoded location. The
reference scan uses full partition encoding steps and measures the spatial sensitivity maps
from all channels of the coil array in 3D. In summary, Aij indicates the jth voxel intensity of
the reference scan at the ith receiving coil and a specified gradient encoded location.

The contaminating noise n(tk) can be spatially correlated among channels of a coil array.
Before designing spatial filters, such spatial correlation can be first removed by a whitening
process. The whitening matrix C-1/2 can be obtained by decomposing the noise covariance
matrix C:

(2)

The whitened measurement yw(tk) then becomes:

(3)

, where yw(tk)= C-1/2 · y(tk), Aw= C-1/2 · A, and ⟨nw(tk) · nw(tk)T⟩ = C−1/2 · C · C−1/2 = InR.
Here ⟨ · ⟩ represents the time ensemble average and InR is an nR-by- nR identity matrix.

The standard linearly constrained minimum variance (LCMV) spatial filter W with the size
of nR-by-nS is then designed to minimize the output source variance:

(4)

Each row of WT was subject to the linear constraint:

(5)

, where  and  represent the ith row of WT and the ith column of AW, respectively.

An nR-by-nR data correlation matrix D can be empirically measured from a time interval [t1,
tm]:

(6)

, where yw(tk) is the spatially whitened measurements defined in Eq. (3). The rank of the
generated data correlation matrix should be sufficient to span a space of possible source
signals. The temporal window for correlation matrix can be determined analytically if the
bandwidth of the interested signal is known (Brookes, Vrba et al. 2008), or empirically by
choosing a window three times longer than the number of sensors (Van Veen, van
Drongelen et al. 1997). Since the bandwidth of our interested sources are not known prior to
the experiment, we determine the size of the temporal window practically, which our
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previous InI LCMV paper used the range of [0s 8s] after stimulus onset (Lin, Witzel et al.
2008b). We choose the same duration in this experiment for the consistency of data analysis.

By introducing a Lagrange multiplier, the optimized spatial filter W can be derived
analytically (Van Veen, Van Drongelen et al. 1997):

(7)

In practice, the duration of the whitened measurements yw may not be long enough,
rendering the data correlation matrix D rank deficient. To remedy this problem, we proposed
a regularization procedure (diagonal loading) to improve the condition of D (Lin, Witzel et
al. 2008b):

(8)

Note that we are using the noise-whitened measurements, so, C = Ireg, where Ireg is an nR-
by- nR identity matrix. The scalar ε can be specified by the measurement SNR (Lin,
Belliveau et al. 2006; Lin, Wald et al. 2006):

(9)

The LCMV spatial filter then becomes:

(10)

The dynamic statistical parametric maps (dSPM) T(tk) for InI reconstruction value for each
reconstructed pixel in the image at each time frame can be estimated from the noise-

normalized spatial filter , which is derived from the ratio between the LCMV spatial
filter in (10) and the estimated baseline noise. Since the measurements are already noise-
whitened, C is now an identity matrix, i.e.:

(11)

, and

(12)

Eigenspace LCMV (eLCMV) Beamformer
The data correlation matrix after whitening (Eqs. (2) and (3)) ensures that the measurements
are contaminated by a multivariate spatially white noise of zero mean and unit variance.
However, the measurements can still be spatially correlated due to the signal part. Here we
further assume that the noise-whitened measurements can be separated into orthogonal
“signal” and “noise” components. Such separation can be practically done by projecting
measurements into “signal” and “noise” subspaces, whose bases can be derived from the
Singular Value Decomposition (SVD) of the symmetric data correlation matrix D:
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(13)

(14)

(15)

, where λk denotes the kth magnitude sorted (in a descending order) singular values of D at
the kth diagonal entry of Σ. Uk is the kth singular vector at the kth column of the matrix U. In
this study, the singular vectors with singular value greater than 1.0 are considered to form
the basis for the signal subspace, and singular vectors with singular value smaller than 1.0
are assumed to span the noise subspace. Namely, p is the largest number such that λp>1
(Sekihara 2008).

Since the goal of spatial filtering is to minimize the output variance, we specifically look for
a spatial filter operating on the noise with minimal output. This rationale leads to the
eLCMV spatial filter as the solution of the following optimization problem:

(16)

Each row of WT was subject to the linear constraint:

(17)

, where  and  represent the ith row of WT and the ith column of AW, respectively.

The regularized spatial filter can be derived in a similar fashion from Eq. (7)-(10):

(18)

, where

(19)

, and the scalar ε is defined in Eq. (9).

Accordingly, the baseline-normalized spatial filter  can be calculated:

(20)

, and the InI data are reconstructed similar to Eq. (12).
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Linearly Constrained Minimum Amplitude (LCMA) Beamformer
We propose a new beamformer based on the ℓ1-norm minimization of the amplitude of
source output. The objective function below is used to derive the LCMA spatial filter
WLCMA:

(21)

Each row of WT was subject to the linear constraint:

(22)

, where  and  represent the ith row of WT and the ith column of AW, respectively.

Here ∥ ■ ∥1 denotes the ℓ1-norm, and

(23)

Since the solution to the cost function in (21) does not have an analytical form, we solve
WLCMA by using linear programming (LP). Accordingly, noise-normalized LCMA
beamformer  can be derived similar to Eq. (11):

(24)

Given the , we can reconstruct InI data time point by time point using this time-
invariant spatial filter.

Eigenspace Linearly Constrained Minimum Amplitude (eLCMA) Beamformer
Following the rationale of eigenspace projection, we now propose the eLCMA spatial filter
WeLCMA as the solution to minimize the following objective function:

(25)

Each row of WT was subject to the linear constraint:

(26)

, where  and  represent the ith row of WT and the ith column of AW, respectively, and

(27)
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, where UN is the matrix consisting of noise subspace singular vectors and  is a
diagonal matrix whose diagonal entries are the square roots of the noise subspace singular
values.

After solving WeLCMA numerically by linear programming (LP), the noise-normalized
eLCMA beamformer  can be derived similar to Eq. (11):

(28)

The reconstructed InI data for each time frame are obtained by multiplying the whitened
measurements yw(tk) by .

Simulation
We used simulation to test the localization accuracy and the spatial resolution of the
designed spatial filters. Specifically, we simulated two regions of interest (ROIs): one at the
visual cortex around the Calcarine fissure, and the other one at the sensorimotor cortex
across the central sulcus. The locations of these two ROIs were based on the realistic
anatomy from high resolution MRI data. The simulated source vector x had a unit amplitude
in all voxels within the ROI and zero otherwise. The noiseless measurement yorig was then
computed by multiplying x by the forward solution A. To account for the spatial correlation
among receiving coils, the “colored” additive noise n was then simulated from the white
Gaussian noise nw multiplied by a “coloring matrix” C1/2, where C is the noise variance
matrix. C1/2 = U · Σ1/2, U and Σ have been defined in equation (2). The magnitudes of the
noiseless measurement yorig and the contaminating noise n received at each receiving coil
need to be scaled properly to match the pre-assumed SNR in our simulation. The signal
power at each coil was calculated by the diagonal entries in the correlation matrix

, while the power of noise at each coil was calculated by the diagonal entries in
the noise covariance matrix C. The estimated SNR of each coil is then the square root of the
ratio between the signal power and the noise power in each coil. The noiseless
measurements yorig were scaled by the assumed SNR coil by coil, with SNR varied
parametrically from 1,5,10, to 30. The scaled noiseless measurements and the noise were
then added together to simulate the data y contaminated by spatially correlated noise. The
source reconstruction using spatial filters with noise normalization were then implemented
by the procedures and equations described in the sections above.

The reconstruction performance for LCMV, eLCMV, LCMA, and eLCMA beamformers
were then analyzed and compared. We used the averaged point spread function (APSF) and
the SHIFT metrics reported in our previous study (Lin, Witzel et al. 2008b) to quantify the
spatial resolution and the localization accuracy of different spatial filters. Specifically,

(29)

where |di(ρ ̄)| indicates the distance between source location i and source location ρ̄. xi

represents the source vector entry in the beamformer reconstruction x̄(ρ̄) whose magnitude
exceeds 0.5.
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(30)

where W is the designed spatial filter. l is the number of voxels to be spatially resolved by
the InI reconstructions. This procedure allows estimation of the full-width-half-maximum
(FWHM) of the point spread function. Quantification of localization accuracy was done by
calculating the shift between the center of mass of InI reconstruction and the simulated
source:

(31)

The data processing and image reconstruction for both simulated and empirical data analysis
were implemented in Matlab (Mathworks, Natick, MA), and the solution to WLCMA and
WeLCMA for ℓ1-norm minimization was estimated by a software called CVX, a Matlab-
based modeling toolbox for discipline convex programming. Specifically, WLCMA and
WeLCMA are obtained by the interior point method implemented in the CVX program
(Grant and Boyd 2009).

RESULTS
The spatial distributions of the simulated sources and the reconstructed values for different
noise normalized spatial filters at different simulated SNR’s are shown in Figure 1.

Figure 1 shows that the eLCMA beamformer can reconstruct most sources within the visual
and sensorimotor cortex ROIs with higher statistical values than the sources reconstructed
by the LCMV, eLCMV and LCMA spatial filters across different SNR’s. The ratio between
the peak reconstruction statistics from spatial filters and that from the LCMV are listed in
Table 1. The peak of eLCMA beamformer is about 30% higher than the peak of LCMV,
while both the peaks of LCMA and the eLCMV beamfomers have approximately 10%
higher than the peak of LCMV reconstructions.

The location accuracy of the reconstructed sources was quantified by the APSF and SHIFT
metrics, which were both calculated from the linearly scaled InI reconstruction between 0
and 1. Maps of APSF and SHIFT for simulated sources at the visual and sensorimotor cortex
ROIs were shown in Figure 2. Across different SNR’s in both visual and sensorimotor
cortex ROIs, we found that sources reconstructed by the eLCMA and LCMA beamformers
have lower APSFs which indicate less signal spread than the sources reconstructed by
LCMV and the eLCMV beamfromers which are spatial filters based on the minimum ℓ2-
norm cost functions. Sources estimated by the eLCMA and LCMA beamformers, however,
have slightly larger shift than other two beamformers in terms of the location of the center-
of-mass in ROI. Nevertheless, the combined averaged signal spreads and shifts
reconstructed by our proposed eLCMA and LCMA beamformer across different SNR’s are
about half of the voxel size (4 mm). This implies that the localization for the reconstructed
sources using the ℓ1-norm minimization is still fairly accurate with modest localization
uncertainty. The localization uncertainty for the sources reconstructed by LCMV and the
eLCMV spatial filters is about one voxel. Considering those two factors jointly, it can be
argued that the eLCMA and LCMA spatial filters outperform other two ℓ2-norm based
beamformers in terms of the accuracy of the source localizations. The APSF and SHIFT
metrics for all four spatial filters under different SNR’s were reported in Table 2. Intuitively,
a smaller APSF metric is expected at a higher SNR for all spatial filters. However,

Liou et al. Page 11

Neuroimage. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



considering the noise sensitivity of the L1-minimization procedure, we did not observe
monotonic decrease in APSF at a higher SNR in, for example, eLCMA. Such variability was
actually observed in APSF for LCMA filters at different SNRs, too. We found that as SNR
varied between 1 and 30, APSF in LCMA filters can vary between 1.0 and 1.6 (Table 2).
Considering such variability, it might not be straight-forward to conclude that the APSF was
significantly larger at higher SNR.

Moreover, we found that there were “ghost” blobs at the other side of the Calcarine sulcus in
Figures 1 and 2. These artifacts can be due to the rendering of volumetric reconstruction
onto cortical surface. All reconstructions of four spatial filters generated such a “ghost”
blob. However, Figure 1 shows results thresholded at a t statistics (t = 5) common to all
reconstructions, while Figure 2 shows individually scaled reconstructions. Taken Figures 1
and 2 together, the sources reconstructed by our proposed eLCMA spatial filter, therefore,
has higher statistical values and better localization accuracy than other three spatial filters
explored in this study.

To examine the spatial resolution along the InI encoding axis for our proposed
reconstruction methods, two temporally uncorrelated point sources with unit amplitudes
around the motor area are placed along the InI encoding direction (anterior-posterior
direction in this study) and separated by one, two, and three voxels, respectively. We choose
SNR=5, and sources reconstructed by eLCMA, LCMA, eLCMV, and LCMV are shown in
Figure 3. It can be observed in our simulation that eLCMA/LCMA can identify two
separated sources as long as two point sources are located two voxels away or farther, while
eLCMV/LCMV can only identify two sources when they are separated by three or more
voxels. This result, therefore, shows that eLCMA and LCMA offer better spatial resolution
than eLCMV/LCMV along the InI encoding direction.

Spatiotemporal localization of visuomotor hemodynamic responses
The functional areas on the cortical surface in response to the visuomotor task were
examined after choosing a critical threshold for the t-statistics of 5 (Bonferroni corrected p-
value < 0.01). The Bonferroni correction is a rather conservative correction for the t
statistics considering the spatial smoothness of the reconstruction. Specifically, this
correction was made by inflating the p values by 64, since each InI inverse problems
involves 64 unknowns. The lateral view of the spatiotemporal reconstructed InI t statistic
maps from the group analysis (n = 9) is shown in Figure 4. Figure 4 clearly demonstrates
that the BOLD response estimated by eLCMA beamformer has a higher t statistic peak than
those estimated by LCMV, eLCMV, and LCMA beamformers. Especially, reconstructed
sources around the central sulcus by the eLCMA spatial filter have higher statistical values.

The medial view of the reconstructed spatiotemporal InI t statistic map from the group
analysis (n = 9) for rendering the BOLD activity in the visual cortex is also shown in Figure
4. Similar to the results in the sensorimotor area, the source estimated by eLCMA
beamformer have a higher t statistic peak than the peak t statistics estimated by the LCMA,
LCMV, and eLCMV beamformers.

The group-averaged sources within the visual and sensorimotor cortex ROIs can be further
compared. Sources reconstructed by four different spatial filters were linearly scaled
between 0 and 1. To be consistent between simulation (Figure 2) and in vivo data analysis,
we used the same threshold to render results. The spatial distributions of the scaled InI
reconstructions at the time reaching maximal value are shown in Figure 5. It can be
observed that sources reconstructed by the eLCMA and LCMA beamformers have less
spread than the sources reconstructed by the other two beamformers. Importantly, the visual
cortex activity estimated by the eLCMA and LCMA beamformers show good alignment
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with the Calcarine sulcus, while the reconstructions by LCMV and eLCMV beamformers
report significant hemodynamic responses covering the two adjacent banks of the calcarine
sulcus. Similarly, the BOLD responses at the sensorimotor area estimated by the
beamformers using the ℓ1 norm minimizations are more spatially focal than those estimated
by the beamformers using the ℓ2 norm minimizations. Consistent with our simulations, these
results support that the eLCMA beamformer offers a higher spatial resolution.

The time-courses for all four spatial filters in the sensorimotor and visual cortex areas are
shown in Figure 6. In the sensorimotor and visual cortex ROIs, Figure 6a and 6b show that
the peak t-value reconstructed by the eigenspace minimum ℓ1-norm beamformer are about
20-30% higher than the peak t-values reconstructed by other three beamformers. This is
consistent with the simulations shown in Figure 5.

The visual and motor average response reconstructed by eLCMA beamformer can be
analyzed further. The averaged hemodynamic responses of motor and visual areas were first
linearly scaled between 0 and 1 and then fitted by the model proposed in (Glover 1999),
respectively. The scaled and fitted BOLD time courses in both visual and sensorimotor
cortex areas are shown in Figure 7. We are interested in inferring the relative timing
between these two BOLD time courses and used the time reaching 0.5 (time-to-half, TTH)
and the time reaching the peak (time-to-peak, TTP) as the relevant latency indices. We
found the TTH is 2.0s for the visual cortex area and 2.9s for the motor cortex area, and TTPs
is 3.8s and 4.7s for the visual and sensorimotor cortex areas, respectively.

To compare beamformer results with fully gradient encoded data, we report results of a
separate experiment using photic stimulation with traditional multi-slice EPI and InI
reconstructed by four beamformers in this revision. This data set was previously used in our
InI study (Lin, Witzel et al. 2008a). The group average results (n = 6) are shown in Figure 8.
Figure 8a shows the linearly scaled hemodynamic responses within the visual ROI. The
normalized time course for the EPI and InI are qualitatively similar in onset, time to peak,
and post-stimulus undershoot. Based on Figure 8a, Figure 8b shows the temporally averaged
hemodynamic responses within [2s 8s] for EPI and InI reconstructed by different
beamformers around the posterior part of the Calcarine sulcus. Quantitatively, the center of
mass of LCMV, eLCMV, LCMA, and eLCMA shifted away from the center of mass of EPI
results by 8.9, 8.2, 3.3, and 5.6 mm respectively. This demonstrates that the InI data
reconstructed by beamformers are close to the EPI spatiotemporally.

The selection of the threshold for separating the signal and noise subspaces has been
discussed in detail previously in the context of signal processing (Van Trees 2002) and brain
imaging (Sekihara 2008). As explained above, we chose this threshold to be equal to one,
because the baseline “noise” has a unit power after spatial whitening. Subjectively, we
considered the whitened data eigenvectors with power higher than one to be “signal”.
Different eigenspace thresholds may affect the performance of the spatial filtering. Figure 9a
and 9b show the average time courses of the visual and sensorimotor cortices using the
eLCMA beamformer at different eigenspace thresholds. We found that the performance of
the eLCMA beamformer is only marginally affected by the chosen threshold as long as the
threshold is set to one or larger. To further support this observation, we plotted the
descending-order eigenvalues of the data correlation matrix from the measurements for a
subject in Figure 10. It can be observed from Figure 10 that eigenvalues did not change
dramatically around the chosen (λ>=1) threshold. Importantly, a large proportion of
eigenvalues and eigenvectors were preserved even at a high threshold, i.e. λ>=9. A higher
threshold also ensures a larger rank of the noise subspace. When using a smaller threshold
(for example, λ = 0.5), the rank of the noise subspace is too small to generate versatile
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spatial filters tailored for localizing distinct sources accurately. This is illustrated in the time
course with a smaller peak t statistic using λ = 0.5 in Figure 9.

DISCUSSION
Our paper presents two features of processing the dynamic InI data using spatial filtering:
eigenspace projection and the ℓ1-norm minimization. Our simulations and in vivo fMRI data
analysis consistently show that the eigenspace projection can lead to higher reconstructed
values statistically, while the ℓ1-norm minimization can offer better spatial resolution
compared with the spatial filters using the ℓ2-norm minimization. Considering the
alternatives of either minimizing the ℓ1-norm or the ℓ2-norm of the spatial filter output and
the flexibility of employing eigenspace projection or not, the sources reconstructed by the
eLCMA beamformer have the highest t statistics and spatial resolution among the studied
spatial filters.

The basic concept behind spatial filtering using a multi-channel array is to pass the desired
signals through the filters with unit gain while rejecting other unwanted disturbances. To
achieve more accurate localization of the unknown sources, the total number of receiving
channels in a coil array is required to be larger than the total number of the desired sources
(Van Trees 2002). This requirement is explicitly expressed in the required data correlation
matrix inversion in Eq. (7). The design of LCMV spatial filters can be potentially
problematic when the data correlation matrix is ill-conditioned. Regularized LCMV
beamformer with a diagonal loading (Eq. (8)) can remedy such a degenerated case using a
static SNR. Realistically, the SNR is a dynamic parameter in time series measurements.
Thus it is difficult to justify any choice of SNR to provide the most appropriate
regularization. On the contrary, using the minimum ℓ1-norm in the cost function can avoid
this necessity of choosing a regularization parameter, since no matrix inversion is needed in
the minimization of the cost function (see Eqs. (21) and (25)). Given the fact that the
measurement SNR is dynamic, it is possible to develop the optimal strategy of time-varying
regularization in order to obtain the higher localization accuracy and/or sensitivity of
detecting brain activity. This will be explored in the future work.

Different from the beamformers based on ℓ2-norm minimization suppressing the output
noise power, such as LCMV and eLCMV, the eLCMA beamformer aims to suppress the
output noise amplitude. In reality, noise amplitudes are unknown and we propose to use the

square root of the correlation matrix  as the noise estimation. For comparison, we also
investigated the performance of the LCMA beamformer based on D1/2. Simulation and in
vivo data analysis both show that the ℓ 1-norm minimization can also reconstruct functional
imaging spatiotemporally with the similar sensitivity and provide better spatial resolution
than using spatial filters based on the ℓ 2-norm minimization.

Intuitively, one may contemplate the possibility of replacing the noise subspace data matrix
DN with the noise covariance matrix C in designing the LCMA beamformer. Therefore, it is
perhaps useful to clarify the difference of spatial whitening by C and the eigenspace
projection by DN. The spatial whitening by C ensures that the measurements are
contaminated by spatially uncorrelated unit-variance noises. After spatial whitening, the
measurements still contain the contaminating noises, but in a different coordinate system.
The subsequent eigenspace projection aims to separate the measurements into “signal” and
“noise” components. In fact, the whitening procedure motivates the choice of threshold λ =
1 between the signal and noise subspaces, stemming from the whitening of the measurement
noise to unit variance.
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The regularization can affect the performance of LCMV reconstruction. Similarly, the
selection of the threshold for separating the signal and noise subspaces can alter the
performance of eLCMA and LCMA outputs. Our previous paper on LCMV has studied the
effect of regularization parameters: either amplifying or diminishing the regularization
parameter by 10 fold changes the LCMV results marginally (Lin, Witzel et al. 2008b). In
Figures 9 and 10 we specifically investigated the effect of different thresholds for separating
signal and noise subspaces. Our results suggest that the eLCMA is rather insensitive to λ, as
long as the rank of the noise subspace is large enough to generate versatile spatial filters
tailored for localizing distinct sources accurately.

Compared to the spatial filter derived from the ℓ2-norm minimization, the spatial filter
obtained from the eLCMA and LCMA will be sparser due to the nature of the ℓ1-norm
minimization. Since InI reconstruction is the product between the whitened measurements
and the spatial filter, it is likely to have a sparse characteristic accordingly. This is different
from other approaches targeting at minimizing the ℓ1-norm of the unknown and thus getting
a sparse estimate. Hypothetically, constructing a spatial filter subjected to the minimal ℓ1-
norm constraint can prune more noisy channels and hence obtain better SNR. In fact, our
simulation and in vivo data analysis support this hypothesis.

In summary, a new eigenspace beamformer based on the ℓ1-norm minimization is proposed
in this paper. The simulation and group data analysis all demonstrate that this spatial filter
produces accurate spatiotemporal reconstructions of InI data probing fast functional tasks.
Moreover, the source estimates reconstructed by our newly proposed linearly constrained
minimum amplitude (eLCMA) beamformer has high statistical values during the periods of
the functional activations, and both eLCMA and LCMA beamformers can provide accurate
source localization. With dynamic InI acquisitions, this tool can offer high spatiotemporal
resolution characterization of hemodynamic responses in functional brain mapping
experiments.
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Figure 1.
Spatial distribution for simulated sources and reconstructed InI for the eLCMA, LCMA,
eLCMV, and LCMV beamformers for different SNR’s in the sensorimotor and visual area.
The display threshold for t-value was 5 (Bonferroni corrected p < 0.01).
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Figure 2.
Spatial distribution for the simulated sources and scaled reconstructed InI for the eLCMA,
LCMA, eLCMV, and LCMV beamformers for different SNR’s in the sensorimotor and
visual cortex areas.
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Figure 3.
Spatial resolution simulation for two point sources with unit amplitudes (SNR=5) along InI
encoding axis separated by one voxel (1st row), two voxels (2nd row), and three voxels (3rd

row): (from left to right) eLCMA (1st column), LCMA (2nd column), eLCMV (3rd column),
and LCMV beamformer (4th column).
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Figure 4.
Group analysis for InI reconstruction data around the sensorimotor area on the left
hemisphere (lateral view): (from left to right) eLCMA (1st column), LCMA (2nd column),
eLCMV (3rd column), and LCMV beamformer (4th column), and InI reconstruction data
around the visual area on the left hemisphere (medial view): eLCMA (5th column), LCMA
(6th column), eLCMV (7th column), and LCMV beamformer (8th column).
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Figure 5.
Scaled spatiotemporal reconstruction within ROI at the maximum activation time point for
all spatial filters (from left to right): eLCMA (1st column), LCMA (2nd column), eLCMV
(3rd column), and LCMV beamformer (4th column).
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Figure 6.
A: averaged time-course result for group analysis around the sensorimotor area: eLCMA
(red), LCMA (magenta), eLCMV (green), and LCMV (blue). B: averaged time-course result
for group analysis around the visual area: eLCMA (red), LCMA (magenta), eLCMV
(green), and LCMV (blue).
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Figure 7.
Normalized averaged and fitted time-course plots for both motor and visual cortex response
reconstructed by eLCMA beamformer: Fitted normalized motor cortex hemodynamic
response (red), and fitted normalized visual cortex hemodynamic response (blue).
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Figure 8.
A. Normalized group averaged time course plots within ROI for EPI and InI reconstructed
by four spatial filters: EPI (black), eLCMA (red), LCMA (magneta), eLCMV (green),
LCMV (blue). B. Normalized spatiotemporal reconstruction for EPI and InI averaged
between 2 s and 8 s for all spatial filters (from left to right): EPI (1st column), eLCMA (2nd

column), LCMA (3rd column), eLCMV (4th column), and LCMV beamformer (5th column).
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Figure 9.
A: group averaged time course plots for different thresholds (λ=0.5, 1, 4, and 9) in the motor
cortex area. B: group averaged time course plots for different thresholds (λ=0.5, 1, 4, and 9)
in the visual cortex area.
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Figure 10.
Eigenvalue plot of the data correlation matrix for a single subject with the line indicating the
threshold is set to one.
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Table 1

Simulated quantitative analysis for reconstructed sources: Averaged peak signal gain ratio comparison for the
eLCMA, LCMA, eLCMV, and LCMV beamformers.

Motor area:

Averaged Peak Signal Gain Ratio

SNR eLCMA LCMA eLCMV LCMV

1 1.3 1.1 1.0 1.0

5 1.2 1.1 1.1 1.0

10 1.3 1.1 1.1 1.0

30 1.2 1.2 1.2 1.0

Average 1.3 1.1 1.1 1.0

Visual area:

Averaged Peak Signal Gain Ratio

SNR eLCMA LCMA eLCMV LCMV

1 1.3 1.0 1.0 1.0

5 1.4 1.1 1.1 1.0

10 1.3 1.2 1.2 1.0

30 1.3 1.2 1.2 1.0

Average 1.3 1.1 1.1 1.0
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