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Summary
We consider the problem of estimating the effect of exposure on multiple continuous outcomes,
when the outcomes are measured on different scales and are nested within multiple outcome
classes, or “domains”. Our Bayesian model extends the linear mixed models approach to allow the
exposure effect to differ across domains and across outcomes within domains. Our model can be
parameterized to allow shrinkage of the effects within the different levels of nesting, or to allow
fixed domain-specific effects with no shrinkage. Our model also allows covariate effects to differ
across outcomes and domains. Our methodology is applied to data on prenatal methylmercury
exposure and multiple outcomes in four domains measured at 9 years of age on children enrolled
in the Seychelles Child Development Study. We use three different priors and found that our main
conclusions were not sensitive to the choice of prior. Simulation studies examine the model
performance under alternative scenarios. Our results demonstrate that a sizeable increase in power
is possible.
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1 Introduction
There is a need for more powerful methodologies to detect small but potentially important
effects of low-dose exposure on multiple correlated outcomes, such as those that
characterize childhood thinking, remembering, language, and behavior. Typically, studies
that aim to assess exposure effects on multiple outcomes estimate these effects from models
fit separately to each outcome. However if the effects are similar across outcomes, separate
models lack power to detect an overall exposure effect. Another complication is that the
multiple outcomes may be manifestations of a smaller number of broad outcome classes, or
“domains”. For example a neurodevelopmental test battery typically contains multiple tests,
some of which measure motor function, while others measure cognition, sensory or
perceptual functions or other aspects of human behavior. Estimation of the global and
domain-specific exposure effects may also be of interest. Ours is the first paper to introduce
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a general and flexible methodology for directly modeling domain-specific effects on
multiple outcomes. A related approach using structural equation models is taken by Budtz-
Jorgensen and colleagues [2].

A number of papers have addressed multiple correlated outcomes within a single model. In
these papers, the outcomes are typically treated as belonging to a single group or “domain”.
These papers have generally adopted one of two general approaches. In one approach, one
or more latent variables are introduced and the outcomes are viewed as multiple
manifestations of the latent variables [21,10,2,3,23]. This approach can be extended to
model a mixture of continuous and categorical outcomes [16,10], but results can be very
sensitive to model misspecification [22]. The second general approach uses generalized
linear mixed models to model the effect of exposure on the outcomes directly [21,15,19,7].
Correlations between outcomes measured on the same subject are induced through the
random subject-specific effects. When the multiple outcomes are continuous and are
measured on different scales, the outcomes require rescaling so that the estimated overall
effect is not dominated by outcomes with the largest scales [21].

Our approach to modeling multiple outcomes uses the second general approach, but we also
incorporate information about the clustering of outcomes within domains. This clustering is
also handled by Budtz-Jorgensen and colleagues in their application [2], using the first
general approach. We develop a Bayesian model to allow the exposure effects to differ
across outcomes within domains and also across domains, by introducing domain-specific
and outcome-specific deviations. Using frequentist terminology, our model can treat these
deviations either as “random” or “fixed” effects, although in both cases the deviations have a
prior distribution since we use a fully Bayesian approach. When treated as “random” effects,
we assume that the deviations arise from a common distribution and we specify a prior
distribution on their common variance component. This hierarchical structure results in a
borrowing of strength of the effects across levels of nesting and can increase power. When
treated as “fixed” effects, each deviation has an independent and diffuse prior so there is no
borrowing of strength by shrinkage towards a common value. Treatment of the covariate
effects can be as flexible as treatment of the exposure effects.

We apply our model to data from the Seychelles Child Development Study (SCDS). We
investigate the relationship between prenatal exposure to methylmercury (MeHg) and
multiple neurodevelopmental outcomes measured on children at 9 years of age [17].
Estimates of the prenatal MeHg effect on neurodevelopmental outcomes are often small
with large standard errors. The significance of the estimated MeHg effect varies not only
across outcomes [17], but also across studies using the same outcomes [1]. Being able to
estimate these effects with more precision may be important for future policy decisions
concerning MeHg and fish consumption.

The outcomes in the SCDS cluster into several broad neurodevelopmental domains, and the
effect of prenatal MeHg exposure is believed to be similar both within and across domains.
Our primary focus here is to estimate the overall MeHg effect and the outcome-specific
effects, from a model that allows for a similarity of MeHg effects and takes advantage of the
correlation between outcomes, within and across domains. Using an alternative prior
structure our model is well-suited to address questions such as “Does MeHg affect motor
function?”, or “Is the effect of MeHg on motor function different than its effect on sustained
attention?” Our Bayesian model is easily extended to handle missing outcome data, thereby
allowing exposure effect comparisons on the same subjects. We illustrate this in the SCDS
application.
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In Section 2 we describe a model for multiple outcomes, first for a single domain and then
for multiple domains. In Section 3 we discuss the SCDS and give results from fitting our
model to this dataset. Simulation results are presented in Section 4. We conclude with some
discussion in Section 5.

2 Our models
2.1 Model for a single domain

Our model for multiple continuous outcomes in a single domain resembles models used by
Sammel et al. [21], Lin et al. [15] and Roy et al. [19]. When the outcomes are not on a
common scale, this linear mixed model (LMM) approach divides each observed outcome by
an outcome-specific scale factor, so that the scale of the common exposure effect is
meaningful. We also center the outcomes. The scale factors used in these papers are the
marginal outcome-specific standard deviation (SD) [21], the outcome-specific SD
conditional on covariates and random effects [15], or the outcome-specific SD conditional
only on covariates [19].

We use the marginal outcome-specific SD as scale factors. We also center and scale the
exposure and all covariates. The scaling implies that the regression coefficients are partial
correlation coefficients and that the variances of the residual errors are partial variances. The
centering affects the intercepts, which we treat as nuisance parameters, but not the slopes.
Centering all variables implies that the overall intercept and all domain-specific and
outcome-specific deviations are zero. An advantage of a model without intercepts is that
fewer model parameters (that are not of particular interest) need to be estimated. When
necessary, the sign of some outcomes should be reversed so that larger values of all
outcomes are associated with better (or worse) performance, allowing a common exposure
effect that is interpretable. Our model is not appropriate if subjects with better performance
on one outcome tend to have worse performance on other outcomes. When it is reasonable
to model all outcome-specific deviations as random effects, our model for the single domain
case is

(1)

where  is the scaled and centered jth outcome for the ith subject, for i = 1, …, n, and j = 1,
…, J. Here xi is the scaled and centered exposure, and Si are the p covariates (also centered
and scaled, and not including exposure). The “x” and “S” subscripts refer to the slope for
exposure, and slope for covariates. Also βx is the overall effect of exposure on the scaled
outcomes, and bj, x, j = 1, …, J are the outcome-specific deviations from the overall
exposure effect. Similarly βS is the vector of covariate-specific effects and bj, S is the vector
of outcome-specific deviations from the overall covariate-specific effects. The ri, i = 1, …, n
are the subject-specific random effects, which reflect the fact that some individuals tend to
perform better on most outcomes than predicted by the model, while others tend to perform
less well. Finally, ∊i, j are the residual errors, i.e. the differences in the scaled outcomes from
those predicted from the model.

We assume that the outcome-specific deviations, , subject-specific random
effects, ri and residual errors, ∊i,1, …, ∊i,J are mutually independent and are normally
distributed. These are typical assumptions for LMMs, and are also assumed by Lin et al.
[15] and Roy et al. [19]. The treatment of bj as random effects implies that it is reasonable to
assume a similarity of exposure effects and covariate effects across the multiple outcomes
after scaling. Our model is complete upon specifying priors for β and all variance
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components. Of note, we allow Var(∊i,j) to differ across outcomes, which is not a typical
feature of scaled multiple outcome models. However the set of partial correlations between
an outcome and the model covariates can differ across outcomes, implying that the partial
variances of the residual errors will also differ. Var(∊i,j) will be almost one for outcomes that
are essentially uncorrelated with the covariates, and substantially smaller for outcomes that
are highly correlated with the model covariates. In our application the partial variances from
separate regression models varied substantially between outcomes, necessitating this model
expansion.

2.2 Model for multiple domains
Model (1) can be expanded to allow domain-specific effects and outcomes-specific effects
within domains. We assume that the J outcomes are grouped in D domains such that each
outcome is nested in a single domain. Because individual subjects may do better on some
domains than others, in addition to the overall subject-specific random effects ri, our model
includes domain-specific random subject effects, , for d = 1, …, D. For clarity we
sometimes refer to  as  where d(j) is the domain to which the jth outcome belongs.
The “ ” and “ ” in subscripts indicate “domain-level effct” and “outcome-level effect”
respectively. Assuming it is reasonable to model both domain-specific and outcome-specific
covariate effects and exposure effects as random, model (1) becomes

(2)

for i = 1, …, n and j = 1, …, J, where  and  are adjustments to the overall
exposure effect and covariate effects respectively, for domain d, and  and  are further
adjustments specific to the jth outcome, which is in domain d(j). The jth outcome-specific
slope, ( ), can easily be converted to the original scale by multiplying it by
syj/Sx, for comparison with the separate regression on the original scale.

Model (2) gives one version of our model for multiple domains, but our model encompasses
many model variants. If the outcome-specific covariate effects are not needed,  can be
deleted from the model. In some applications it may be more reasonable to model the
domain-specific covariate effects and/or exposure effects as fixed effects. If all domain-
specific covariate effects are treated as fixed effects,  in (2) would not be present, and
instead the definition of Si would be expanded to allow domain-specific slopes for each
covariate. Our model allows some domain-specific covariate effects to be treated as fixed
and others as random. Fixed domain-specific covariate or exposure effects may differ among
sets of outcomes within a domain, with a further expansion of the definition of Si.

Model (2) and all model variants mentioned above can be expressed for all subjects and
outcomes together using a more general model formulation:

(3)

where F(⊗) denotes the fixed effects for exposure and covariates,  the domain-specific
random effects,  the outcome-specific random effects, R the overall subject-specific
random effects, and  the domain-specific random subject effects. We define this notation
more specifically in Web Appendix A.
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Our model assumptions imply a positive correlation structure between the outcomes
conditional on model covariates. In (3), we have also assumed that the overall and domain-
specific random subject effects are sufficient to capture the correlations between the
multiple outcomes measured on the same subject. However our model can be expanded to
allow further flexibility. If a subset of outcomes within a domain are more highly correlated
with each other than model (3) implies, another random subject effect can be added which is
non-zero only for this cluster of outcomes.

2.3 Model assumptions
We assume that all the random effects, , , , and r, are independent, are independent of
β and ε, and are normally distributed. Specifically for d = 1, …, D, j = 1, …, J, and i = 1, …,

n, we assume , , , , and ∊i ~

N(0,Σ∊), where , , and in our application

 and . As will be explained in Section 3.1, in our application we did not
have  or . Should these terms be necessary they would be treated in the same way as

 and .

Our priors are β ~ N(β0, Σ0), , ,

, , and ,
where IG denotes the inverse gamma distribution. We use hyperparameter values that
correspond to weakly informative priors. We use three different priors to examine the
sensitivity of model results to the prior choise. For our primary prior, “Prior A”, we take β0

= 0, , , 
and B0,∊ = 0.0005. “Prior B” differs from “prior A” is using 0.1 for all shape
hyperparameters. “Prior C” is an improper uniform prior on all the standard deviations. This
prior is suggested by Gelman [12], is the same as an IG(−0.5, 0) prior on the variances, and
requires J > 2 and D > 2 in order for the posteriors to be proper [12]. Further discussion of
the inverse gamma prior is given in Appendix E.

2.4 Sampling from the joint posterior, missing data, and model checking
We use Markov Chain Monte Carlo (MCMC) to sample from the joint posterior distribution
of all model parameters. We do this using Gibbs sampling, in which we sample iteratively
from the conditional posterior distribution of each model parameter (or group of model
parameters), conditional on the data and on all other model parameters, thereby obtaining
samples from the joint posterior distribution of all parameters. We give the conditional
posterior distributions of model parameters in Web Appendix B. We programmed the
MCMC algorithm in Matlab.

Missing outcome data were handled using data augmentation [24], which adds an additional
step to the Gibbs sampler. In this step we draw a sample of missing outcome values from
their posterior distribution, conditional on the observed data and on the most recent draws of
all model parameters. These sampled values are then treated as fixed for the next MCMC
draw of the model parameters. We give further details in Web Appendix D.

For each prior (“A”, “B”, and “C”), we ran 10 MCMC chains using overdispersed starting
values (Appendix E). The MCMC samples were read into R for assessing convergence of
the 77 parameters. Our diagnostics for multiple chains included (a) visual examination of all
traceplots; (b) the Gelman-Rubin diagnostic  [11], and (c) mcgibbsit [28]; and for single
chains the Raftery-Lewis diagnostic [18]. Model results are reported using every 5th draw
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from all 10 chains (10,000 draws total). We also examined the posterior predictive
distribution to assess whether our model was consistent with the observed data (Appendix
E).

3 Seychelles Child Development Study (SCDS) and model results
3.1 Background and descriptive data analysis

The SCDS was begun in 1989 to examine the possible effects of low level prenatal MeHg
exposure on childhood cognition, memory, language and behavior among a cohort for whom
the source of MeHg was primarily fish consumption. Average maternal hair MeHg during
pregnancy was used as a biomarker for fetal brain MeHg level. For the observations used in
this paper, MeHg averaged 6.83 ppm (range: 0.54 to 23.09 ppm). In the primary paper
reporting on the 9-year outcomes, Myers et al. [17] used separate regression models to
examine the covariate-adjusted MeHg effects on 21 outcomes. MeHg exposure was
associated with a significantly worse performance for one outcome, better performance for
another, and no significant relationships were found for the remaining outcomes.

Exposure to high doses of MeHg during the in utero period is known to cause damage
throughout the brain [27]. The nature of the damage, as seen in autopsies from Iraq [5],
suggests that cellular functions associated with very basic brain development are altered by
in utero MeHg exposure [6]. Therefore a similarity of prenatal MeHg exposure effects on
outcomes in different domains is to be expected, motivating our treatment of domain-
specific exposure effects as random. In contrast, there is no a priori reason to expect
covariates to have a similarity of effects across domains. Our models adjusted for six
covariates that were significant in more than one of the separate regression models: sex
(1=male, 0=female), maternal age, HOME score (a measure of the home environment), K-
BIT (a measure of the mother's IQ), Hollingshead socio-economic status, and the child's test
age. We treated all model covariates except sex as continuous variables.

Our model was fit using 20 SCDS outcomes nested within four broad developmental or
behavioral domains: cognition, memory, motor, and social behavior. The nesting of
outcomes within domains was determined a priori by the third author. The 20 outcomes
were chosen from a longer list of outcomes, from which we excluded one domain containing
only two outcomes each of which was subject to substantial missingness, one domain in
which a substantial fraction of subjects were missing data on all three outcomes, and two
outcomes that were uncorrelated with all other outcomes within their domain. Five subjects
who had measurements of only one outcome in a domain were deleted. Our final sample
consisted of 533 eligible subjects with complete covariate data and measurements of two or
more outcomes in each of the four domains. Three hundred ninety-one of the subjects had
complete outcome data, 128 were missing one outcome, 12 were missing two outcomes, and
2 were missing 4 outcomes. Before fitting our model we fit separate regression models for
each outcome and checked regression assumptions. Six outcomes were log-transformed in
order to better satisfy regression assumptions. A linear relationship between MeHg and all
outcomes was reasonable. Based on subject-matter knowledge of the outcomes by the third
author, the sign of seven outcomes was reversed so that a larger outcome value always
implies a better performance.

Table 1 lists the 20 outcomes, their nesting within domains, and some summary statistics.
Several conclusions emerge. First, correlations between MeHg and outcomes are generally
close to zero, and the sign of the correlations is inconsistent even within domains. This
suggests that (a) the MeHg effects are small, and (b) we have no empirical evidence that
these correlations or the MeHg effects are of the same sign. Secondly, the regression
coefficients for MeHg in separate scaled models are generally very similar to the
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correlations, suggesting that the covariates did not strongly modify the MeHg effect. Third,
the residual variances from the separate scaled regressions varied substantially, underscoring
the importance of allowing the residual error to vary across outcomes. Finally, the pattern of
covariate effects was generally similar within domains, but differed across domains.
However, not evident in this table is the fact that the sign of the sex effect was inconsistent
within the motor domain (see Figure 1).

In the motor domain, being a male was associated with significantly better performance on
nearly all outcomes, except for trailmaking A and B (y14 and y15). These outcomes measure
time to accurately draw connecting lines between sequential numbers (trailmaking A) or
alternating sequential numbers and letters (trailmaking B). The component of number and
letter recognition is not part of other motor domain outcomes, which may explain why these
two outcomes are different.

We modified our multiple outcomes model for the Seychelles data to allow the effect of sex
on trailmaking A and B to differ from its effect on the other outcomes in the motor domain,
by expanding the definition of Si (see Web Appendix A). The dissimilarity of covariate
effects across domains and similarity within domains (except for sex), suggests that domain-
specific covariate effects should be modeled as fixed effects, and that outcome-specific
deviations within a domain for covariates are less important. Therefore our model, as
expressed generally in (3), differs from model (2) by not including  or .

3.2 Model results
Our results are given in Table 2 under the “Prior A” column. The mean overall exposure
effect was 0.02, and Pr(βx > 0 | data) = 0.81, giving some evidence for a small beneficial
MeHg effect. Because we had reason to treat the domain-specific deviations as random
effects, thus shrinking them towards each other, estimation of these effects and their
differences are not of as much interest as they would have been had we treated them as fixed
effects. Of more interest in this application are each of the J outcome-specific exposure
effects ( ). Figure 2 shows that the 95% posterior intervals for these effects
are substantially smaller than the corresponding 95% confidence intervals from separate
regressions, demonstrating a considerable increase in power. Shrinkage of the effects
towards the domain-specific average, and towards the overall effect are also evident. Figure
1, which shows the sex effects, also demonstrates some increase in power from our model,
despite our treatment of these as fixed effects. The similarity of outcome-specific exposure
effects is also reflected in the extremely small posterior variances of the domain-specific and
outcome-specific deviations (Table 2), and suggests that a model with a common slope for
MeHg might be adequate. However we did not consider such a model here, because we are
specifically interested in allowing the exposure effects to differ across domains and
outcomes, while borrowing strength across the two levels of nesting.

The large posterior median for  (see Table 2, which gives posterior SDs) reflects the

substantial overall within-subject correlations between outcomes. Also , are
relatively large, indicating greater correlation between outcomes on a single subject within

domains than across domains. The residual variances from the model, , (Table
2, which gives SDs) are all smaller than from separate regressions (second to last column in
Table 1), indicating that the subject-specific effects can reduce the residual error in our
Bayesian model as compared to separate regressions.

The posterior means and medians under priors “B” and “C” (Table 2, last two columns)
were extremely similar to those under “prior A”. The only noticeable differences were (a)
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the domain-specific deviations for the exposure effect were somewhat farther from zero

under priors “B” and “C” than under “prior A”, and consequently the median of  was
larger; and (b) the posterior intervals for the fixed effects and domain- and outcome-specific
random effects were somewhat wider under priors “B” and “C” than “A”. In summary, as
the prior became less informative the posterior intervals for effects of interest became wider,
but the overall conclusions about these model parameters were essentially the same.

A comparison of summary statistics from the posterior predictive distribution (Appendix E)
to the corresponding SCDS values suggests that our treatment of outcomes within a domain
as exchangeable (except for sex effects in the motor domain) is an oversimplification.
Including additional random subject effects for subsets of outcomes within domains might
provide a more accurate representation of the data. Nonetheless, we anticipate that this
adjustment would not have much effect on the exposure effect estimates in this application.

4 Simulations
We present results from two small simulations. Each uses “prior A” and sets true parameter
values to their posterior means (or medians for variance components) from the MCMC on
the SCDS data but uses different values for slopes relating exposure to the outcomes. Both
simulations take βx = 0.05. The first simulation (Web Table 1) uses relatively large domain-
specific deviations of  and outcome-specific deviations that
are all zero. The second simulation (Web Table 2) uses small domain-specific deviations of

, and small outcome-specific deviations of ±0.005 or ±0.01.

We sampled 50 datasets of size 533 × 20 for each simulation, conditional on the observed
values of MeHg and covariates from the SCDS data. We used a single MCMC chain with
reasonable starting values. We ran the MCMC 6,000 times for each simulated dataset, saved
the last 5000 draws for inference, and present results averaged over datasets within a
simulation. The overall slope for exposure was estimated well under both simulations.
Shrinkage of the domain-specific effects towards each other is evident from these
simulations, with more shrinkage for the model with smaller domain-specific deviations
(Web Table 2). For both simulations, posterior intervals for outcome-specific slopes are
noticeably smaller and have smaller MSE under our model as compared to the 95% intervals
based on separate regressions, showing an increase in power under our model.

5 Discussion
We modeled the effect of exposure on multiple correlated outcomes nested within domains
using a Bayesian framework, motivated by data from the SCDS. Our model allows
shrinkage of the outcome-specific exposure effects within a domain towards each other, and
shrinkage of the domain-specific effects towards an overall effect. As motivated by our
application, covariate effects were treated as fixed effects which were allowed to differ
across domains. Our model also includes overall and domain-specific random subject
effects. As expected from the exploratory analysis, the overall, domain-specific and
outcome-specific exposure effects for the scaled outcomes were all very small. Results from
our application and two simulations showed that a substantial increase in power is possible
under our model as compared to separate models for each outcome.

Our model is appropriate for situations in which nesting of outcomes within domains is
known in advance. In our application similar domain-specific exposure effects are expected.
By treating domain-specific exposure effects as random, our model allows a borrowing of
strength across outcomes and domains. However this shrinkage of effects means that their
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differences will be shrunk towards zero. If estimation of the domain-specific effects and
their differences is a primary focus, it may be more reasonable to treat these as fixed effects.

Our model for multiple outcomes nested in domains resembles and extends the LMM
approach for multiple outcomes within a single domain as discussed in [21,15,19]. However
we take a Bayesian approach in which we use MCMC to iteratively sample from the
conditional posterior distributions of all model parameters. It would be impossible to
estimate the model parameters non-iteratively. To do so would require inverting (ZTZ),

where , but (ZTZ) is not invertible (Web Appendix F).

Although not significantly different from zero, our results suggest that there is slightly
beneficial overall effect of MeHg exposure on neurodevelopmental outcomes at age 9 in the
Seychelles Islands, consistent with earlier results [17]. However MeHg is a known
neurotoxicant, and results from a cohort of children in the Faeroe Islands have consistently
indicated adverse MeHg effects [13,14]. Two recent papers used Bayesian hierarchical
random-effects models on the regression coefficients and their standard errors to relate
MeHg to multiple IQ outcomes from Seychelles, Faeroe Islands, and New Zealand cohorts
[1,20]. The model includes random effects for studies and endpoints, which assumes
shrinkage of these effects is reasonable. A similarity of estimated exposure effects on IQ
across studies was seen. These effects were small and were significant for the Faeroe Island
cohort, but not the SCDS [1]. This illustrates the importance of being able to estimate small,
but important, effects with greater precision, such as can potentially be achieved with the
methods presented in this paper.

The major difference between the Seychelles and Faeroes cohorts is the primary dietary
source of MeHg, which is pilot whale in the Faeroes [13] and fish in Seychelles. Fish
contain many beneficial nutrients including long chain polyunsaturated fatty acids
(LCPUFA), which are essential to fetal brain growth and development [8,25]. Pilot whales
are not a rich source of LCPUFA, and often contain PCBs and pesticides. A more recent
cohort of Seychelles children included measurements of pregnancy LCPUFA levels [9,26],
and results from this cohort indicated an adverse MeHg effect after adjusting for LCPUFA.
A more detrimental MeHg effect after adjustment for fish consumption has also been
reported in the Faeroes cohort [4]. We could not adjust for LCPUFA in this dataset, and the
estimated MeHg effects here may represent a combination of a direct, presumed adverse,
MeHg effect, and an indirect, presumed beneficial, effect of LCPUFA. The models
presented in this paper would work well for the more recent Seychelles cohort dataset, when
LCPUFA are included as additional covariates.

Our model shares many features with a structural equations model (SEM) fit using data from
the Faeroe Islands. Budtz-Jorgensen and colleagues [2] examined the effect of MeHg on
multiple outcomes within two neurobehavioral functions: motor and verbal. Their inclusion
of standardized latent variables for each function allows estimation of the MeHg effect on
the functions directly, as our model does for multiple domains. Factor loadings in the SEM
relate the scaled latent variable to the outcomes on the original scale, and allow different
exposure effects. Unlike our model approach as illustrated for the SCDS data, these factor
loadings are not shrunk towards each other. Results from either the SEM or our LMM
approach may be sensitive to model misspecification. By taking a Bayesian approach we can
check for model misspecification by comparing summary statistics of the posterior
predictive distribution to their corresponding values in the data. Substantial discrepancies
may suggest different model variants, or possibly model improvements. Further
comparisons of an SEM model and a multiple outcomes model based on the LMM such as
our model will be of interest, especially when the model contains multiple domains or
functions.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A comparison of the sex effect on outcomes within domains. The left panel shows the
posterior means and 95% posterior intervals from the Bayesian model, and the right panel
shows the point estimate and 95% confidence interval from separate scaled regressions for
each outcome. Domain and outcome numbers are shown in Table 1.
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Figure 2.
A comparison of the mercury effect on outcomes within domains. The left panel shows the
posterior means and 95% posterior intervals from the Bayesian model, and the right panel
shows the point estimate and 95% confidence interval from separate scaled regressions for
each outcome. Domain and outcome numbers are shown in Table 1.
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