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Abstract
Infant sitting postural sway provides a window into motor development at an early age. The
approximate entropy, a measure of randomness, in the postural sway was used to assess
developmental delay, as occurs in cerebral palsy. Parameters used for the calculation of
approximate entropy were investigated, and approximate entropy of postural sway in early sitting
was found to be lower for infants with developmental delay in the anterior-posterior axis, but not
in the medial-lateral axis. Spectral analysis showed higher frequency features in the postural sway
of early sitting of infants with typical development, suggesting a faster control mechanism is
active in infants with typical development as compared to infants with delayed development,
perhaps activated by near-fall events.
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1. Introduction
Cerebral palsy occurs because of brain injury sustained very early in life, either before,
during, or shortly after birth, and is characterized by motor dysfunction. Identifying affected
infants when they are very young allows for physical therapy to be started early when brain
plasticity is maximal (Ballantyne, Spilkin, Hesselink, Trauner, 2008), with the goal of
improving the long-term outcome for these infants (Blauw-Hospers, Hadders-Algra, 2005;
Blauw-Hospers, de Graaf-Peters, Dirks, Bos, Hadders-Algra, 2007; de Graaf-Peters, Blauw-
Hospers, Dirks, Bakker, Bos, & Hadders-Algra, 2007). Sitting is a motor skill acquired early
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in life, typically at about age 4–9 months, and thus can serve as a window into the
development of motor skills in very young infants (Harbourne & Stergiou, 2003). Studying
sitting dynamics affords the possibility of objectively quantifying motor coordination in
order to identify infants who might benefit from physical therapy, and to assess
improvements as therapy progresses, even in infants who cannot yet stand. Because cerebral
palsy is difficult to diagnose in young infants, we have described the infants in our study as
“developmentally delayed” since we can confirm they were developmentally delayed.
However, the developmentally delayed infants in our study were either diagnosed with
cerebral palsy or at risk for cerebral palsy, and not a general sampling of infants with all
types of developmental delay.

Lack of general movement complexity in young infants may be a useful indicator of cerebral
palsy and that therapeutic intervention is appropriate (Hadders-Algra, 2004), but it is not yet
clear how best to objectively quantify movement complexity in very young infants.
Hadders-Algra’s (2004) discussion of complexity is focused on the quality of general
movements, which are the frequent and varied movements of all parts of the body, and that
the healthy infant produces highly varied movement patterns. Conversely, infants with
cerebral palsy display less complex movement patterns, perhaps as a result of damage to the
cortical subplate (Hadders-Algra, 2007). Hadders-Algra’s (2004) method of quantifying
general movement complexity from video recordings requires two days of training, and
requires further practice to become a skilled observer. Another way to quantify body
movements is to record time series data from a force plate. However, to quantify the
dynamics of infant sitting postural sway using force plate data, a measure of time series
dynamics is needed that is sensitive to differences between affected and unaffected infants.
This measure needs to be robust to experimental noise and robust to shorter time series
segments since many infants cannot sit for extended periods of time. The long term goal of
this work is to develop a measure that can assess developmental delay early in life, is
sensitive enough that it can be used to monitor the effectiveness of a course of therapy, and
is robust enough to real-world data limitations such as noise and limited time for analysis,
that it could someday be applied in a clinical setting.

Approximate entropy was developed by Pincus (1991) as a measure of “complexity” for
time series data, where “complexity” is defined as being low for time series with a repetitive
pattern such as a sine function, high for a random variable, and intermediate for systems
with chaotic dynamics. Alternatively, it can be described as a measure of “regularity” where
time series data with repeated patterns have low approximate entropy and high regularity
(Pincus & Goldberger, 1994), i.e. approximate entropy is a measure of lack of regularity.
Because approximate entropy is sensitive to the system dynamics, it is a potentially useful
measure for a wide range of medical conditions that alter physiological or motor control
dynamics. There are a number of medical fields where the use of approximate entropy has
been investigated, including cardiology (Pincus & Goldberger, 1994; Kaplan, Furman,
Pincus, Ryan, Lipsitz & Goldberger, 1991), endocrinology (Liu, Iranmanesh, Keenan,
Pincus, and Veldhuis, 2007; Veldhuis, Keenan, & Pincus, 2008), anesthesiology (Kumar,
Anand, Chari, Yaddanapudi, & Srivastava, 2007), traumatic brain injury (Cavanaugh,
Guskiewicz, Giuliani, Marshall, Mercer, & Stergiou, 2005, Cavanaugh, Guskiewicz,
Giuliani, Marshall, Mercer, & Stergiou, 2006), Parkinson’s disease (Morrison, Kerr, Newell,
& Silburn, 2008), and orthopedics (Georgoulis, Moraiti, Ristanis, Stergiou, 2006). Two
hypotheses that have been advanced to explain the impact of pathology on control dynamics
in humans, the loss of complexity hypothesis, which suggests that complexity will decrease
with pathology, (Goldberger, Peng, & Lipsitz, 2002), and the optimal movement variability
hypothesis, which suggests that complexity may either increase or decrease from an
intermediate optimal value (Stergiou, Harbourne, & Cavanaugh, 2006). Both the loss of
complexity hypothesis (Goldberger, Peng, & Lipsitz, 2002) and the optimal movement
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variability hypothesis (Stergiou, Harbourne, & Cavanaugh, 2006) suggest that approximate
entropy of time series data from physiological systems may be clinically useful, as
pathology can shift the regularity of system dynamics away from the optimal values. A
measure like approximate entropy, with the ability to quantify regularity of system
dynamics, may someday be used clinically to discriminate typically developing children
from those with pathology, help assess severity of pathology, and assess efficacy of
treatment.

One interpretation of approximate entropy as applied to postural sway is as an indication of
the level of attention directed at postural control, with low attention automatic control
having higher entropy (Donker, Ledebt, Roerdink, Savelsbergh, & Beck, 2008). If attention
is diverted to another task, then postural control becomes more automatic and entropy
increases (Cavanaugh, Mercer, & Stergiou, 2007; Donker, Roerdink, Greven, & Beek,
2007). Conversely if neurological injury makes postural control more difficult, then more
attention is required to be focused on control and postural sway becomes more regular, as in
stroke (Roerdink, De Haart, Daffertshofer, Donker, Geurts, & Beek, 2006) or in mild
traumatic brain injury (Cavanaugh, Guskiewicz, Giuliani, Marshall, Mercer, & Stergiou,
2005; Cavanaugh, Guskiewicz, Giuliani, Marshall, Mercer, & Stergiou, 2006)). Based on
this precedence, we hypothesize that cerebral palsy, being a neurological injury, would
result in less automatic control of posture, and thus a lower entropy.

Despite the wide range of research applications of approximate entropy, the methodology of
application of the approximate entropy algorithm to experimental data has yet to be fully
optimized for widespread clinical implementation. Experimentally measured time series data
is necessarily of limited length, and often, if not always, corrupted by experimental noise of
unknown dynamics. Experimental noise is often assumed to be white noise, or independent
and identically distributed error, allowing for statistical treatment based on these
assumptions. The reality is that the measurement noise is generated by physical processes
that have certain dynamics associated with them, which may lead to noise dynamics being
something other than the statistical ideal of white noise. For example, time series data
acquired at high enough frequency will often have a 60 Hz noise component due to electrical
power distribution using 60 Hz frequency (or 50 Hz in Europe). The 60 Hz noise is certainly
not well represented as white noise. The dynamics of the noise may not be important if the
measure used on the time series data is range or standard deviation, but in using measures of
the dynamics of the time series, including approximate entropy, the dynamics of the noise
may interfere with the measurement of the dynamics of the system under study. One way the
impact of noise can be studied is to add in computer generated white noise to time series
data, and investigate the impact that the added white noise has on the approximate entropy
analysis. However, this method leaves open the possibility that real experimental noise,
which is not pure white noise, may have a different effect on the analysis.

Another approach to understanding the impact of experimental noise on measures of system
dynamics is to use a model system that has known dynamics, and see if the dynamical
analysis gives a result in reasonable agreement with the known dynamics. For example, a
mechanical single pendulum has limit cycle dynamics, and thus would be expected to have a
low value for the approximate entropy. Higher values of approximate entropy from
experimental measurements of the dynamics of a single pendulum are likely a result of
contamination of the measured signal with experimental noise with more complex
dynamics. Data acquired from the single pendulum with the same experimental equipment
as the infant sitting data would be contaminated with noise having the same dynamics as
noise contaminating the infant sitting data. Thus it is possible to select analysis parameters
for the approximate entropy analysis using pendulum data that minimize the impact of
experimental noise on the analysis. A double pendulum is a pendulum with two linked
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segments that are each free to rotate, giving a system with enough degrees of freedom to
display chaotic dynamics (Shinbrot, Grebogi, Wisdom, & Yorke, 1992). If the experimental
limitations of the data are minor enough to not interfere with the analysis, then approximate
entropy should be able to distinguish between data from these two mechanical systems.
Thus mechanical pendulums can act as model systems to investigate the effect of the
experimental noise on the analysis of system dynamics.

The approximate entropy algorithm has been described in detail elsewhere (Pincus, 1991;
Pincus & Goldberger, 1994). As implemented (Kaplan & Staffin, 1996), the algorithm
creates vectors of length m, and length m+1. The points in the vector are drawn from the
time series with a specific lag value. For example, lag=1 indicates the points are
consecutive, whereas lag=2 indicates that every other point is skipped in creating the length
m vector. It then counts vectors of time series data of length m that are similar to each of the
vectors of length m. Subsequently, counts how many of those similar m length vectors are
also similar at length m+1 and normalizes based on the number of vectors being compared
(N-m-1 vectors of length m, and N-m vectors of length m_1).

Where N is the length of the time series, m is the length of the comparison vector, and Cm
i is

the count of vectors of length m similar to vector i, and Cm+1
i is the count of vectors of

length m+1 similar to vector i. Similarity is defined below. Approximate entropy is then the
difference between the two normalized log counts.

Thus repeated patterns in the data give rise to lower approximate entropy values, because
two vectors similar at length m will also be similar at length m+1 due to the repeating
pattern, resulting in a ratio near 1, the log of which is then near zero. For this reason, time
series with repeated patterns have approximate entropy near zero.

An important aspect of the approximate entropy calculation is determining how similar
vectors are defined. The approximate entropy algorithm uses a parameter r to define similar
vectors. If each point in a vector is within a distance r of the corresponding point in the other
vector, then the two vectors are counted as similar. If r is too large, vectors are counted as
being similar when they are not; if r is too small, then vectors that should be considered as
similar are not counted as being similar. The time series data will have some measurement
error, as is typical of experimentally derived data, and the r parameter allows for two vectors
to be counted as similar, even if the experimental noise results in the values not being
identical. A value for “R” is selected for all the time series in the analysis, and this value is
multiplied by the standard deviation of each individual time series data in order to define the
r for that time series; ri=R*std(Datai) for each time series i. While a range of 0.1 to 0.25 for
R is suggested in early work (Pincus & Goldberger, 1994), Veldhuis, Keenan, and Pincus
(2008) suggest that R be set at 0.2 for biological applications, i.e. ri=0.2*std(Datai). While
the r parameter may serve to filter experimental noise, it also filters the biological signal,
and thus serves to select the length scale of the system dynamics that is being probed by the
approximate entropy analysis. It is not clear whether the most important function of the r
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parameter is simply to reduce the sensitivity of the analysis to experimental noise, or if it has
a more important function relevant to the length scale of the dynamics of biological system.

If the function of the r value is simply to reduce the sensitivity of the analysis to
experimental noise, then basing the r value on the noise, ri=R*std(Noisei), might be
preferred. Pincus and Goldberger (1994) suggest that r must be chosen to be larger than the
noise, but fail to give exact guidelines other than to suggest that a value of three times the
estimated mean noise has worked well in their clinical studies. Thus one might expect that
selecting the r value based on some estimation of the noise in the data might be a useful
approach. Alternatively, other authors have suggested that r should be selected to maximize
the entropy result (Castiglioni & Di Rienzo, 2008; Lu, Chen, Kanters, Soloman, & Chon,
2008). Both of these possibilities were investigated in this work. Understanding the impact
of experimental noise (i.e. measurement error) on results is often difficult, since the actual
signal and noise are not known a priori. One method to address this is to use the
measurement technique on a known system, i.e. on a model system with known dynamics.
Because we are making mechanical measurements on the infant postural sway, we used
mechanical systems with known dynamics to test the analysis. Two such mechanical
systems were used, 1) the single pendulum, which exhibits simple limit-cycle dynamics, and
2) the double pendulum, which exhibits chaotic dynamics when launched from appropriate
initial conditions.

The purpose of this work is to examine the impact of the parameters used in the approximate
entropy analysis to better understand the dynamics of infant sitting postural sway. We
utilized COP data from single and double pendulums, in order to guide us in the analysis of
the infant sitting data. The long-term goal of the work is to discover differences between
postural sway of infants with typical development and infants with delayed development.
Measures sensitive to these differences might be useful in a clinical setting to help assess
alterations in infants motor control skills due to pathologies such as cerebral palsy, and to
assess progress due to various therapeutic interventions.

2. Methods
2.1. Infant Participants

Thirty infants with developmental delay (age = 14.05 months, std = 5.33 months, for early
sitting and age = 18.06 months, std = 5.09 months, for advanced sitting), with a third being
born prematurely, and age corrected for premature birth. Additionally, 33 infants with
typical development (age = 4.92 months, std = 0.57 months, for early sitting, and age = 7.92
months, std = 0.60 months, for advanced sitting) participated in the study. Recruitment was
done through newsletters, flyers, and pediatric physical therapists employed at the
University. Infants in the developmentally delayed group were diagnosed with cerebral
palsy, or else were developmentally delayed and at risk for cerebral palsy. Obtaining a firm
diagnosis of cerebral palsy at this young age is often not possible. Because a definitive
diagnosis of cerebral palsy had not been made, we refer to these infants as developmentally
delayed, because all scored below 1.5 standard deviations below the mean for their corrected
age on the Peabody Gross Motor Scale (Folio & Fewell, 2000). However, the development
is likely not just delayed, but also atypical (Chen & Woollacott, 2007). A consent form was
signed by a parent or guardian of all infant participants, and all procedures were approved
by the University of Nebraska Medical Center Institutional Review Board.

Inclusion criteria for entry into the study for the typically developing infants were: a score
on the Peabody Gross Motor Scale of greater than 0.5 SD below the mean, age of five
months at the time of initial data collection, and sitting skills as described below in early
sitting. Exclusion criteria for the sample of infants who are typically developing were: a
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score on the Peabody Gross Motor Scales less than 0.5 SD below the mean, diagnosed visual
deficits, or diagnosed musculoskeletal problems. If a typically developing infant was found
to be less than 0.5 SD below the mean, and did not qualify for the study, the parents were
informed of the score, the possibility of error in the measurement, and advised to have the
infant re-evaluated within the next 3 months. Operational definitions of early sitting were
used to determine the child’s readiness for entry into the study. Early sitting was defined as
(a) head control such that when trunk is supported at the mid-trunk, head is maintained for
over one minute without bobbing; (b) infant can track an object across midline without
losing head control; (c) infant may prop hands on floor or legs to lean on arms, but should
not be able to reach and maintain balance in the prop sit position; (d) when supported in
sitting can reach for toy; (e) can prop on elbows in the prone position for at least 30 seconds.
Each infant was tested when they entered into the study based on the ability to sit for about
10 s, and then again 3–4 months later.

For the infants with developmental delay the inclusion and exclusion criteria were as
follows. Inclusion criteria were: age from five months to two years, score less than 1.5 SD
below the mean for their corrected age on the Peabody Gross Motor Scales, and sitting skills
as described above for early sitting. Exclusion criteria were: age over two years, a score
greater than 1.5 SD below the mean for their corrected age on the Peabody Gross Motor
Scale, a diagnosed visual impairment, or a diagnosed hip dislocation or subluxation greater
than 50%.

The study design was longitudinal, with the infants returning 3–4 months after the initial
data collection to assess development that occurred in that time. Note that “early” and
“advanced” sitting are labels indicating that the sitting was either close to the time the infant
was able to achieve about 10 seconds of upright sitting (early), or the sitting behavior that
was displayed 3–4 months later (advanced). The “early” label means that the infants had just
achieved ability to sit for 10 seconds, so the comparison between groups was between
infants at a similar stage of development, not at a similar age. The “advanced” label means
that the sitting skills had advanced by several months, and is not an indication of either
similar skill level or similar age in the two groups. For the infants with typical development,
the advanced sitting was also well controlled sitting. For the infants with developmental
delay, the sitting behavior studied as advanced sitting was not necessarily well controlled
sitting behavior, especially in infants who were more severely affected. The comparison
between “early” and “advanced” should be understood as advancement in behavior with
time, and not that the skill level had improved equally between the two groups. Thus the
change in the measures of posture control might be expected to change less for the infants
with delayed development than for those with typical development.

2.2. Pendulums
Two pendulums were used in the study (Figure 1). The first was a single pendulum,
constructed from steel bar (1″ × .125″ × 3′) and mounted to swing freely on a rigid structure,
using Bones Reds 608 Precision Skate Bearings (Bones Bearings, Santa Barbara, CA) to
reduce friction as the pendulum swings. The pendulum arm length was selected to give the
pendulum a frequency of approximately 0.7 Hz, because maximum power in the power
spectra of the infant sitting was of a similar frequency. Weights were clamped on the
pendulum arm to simulate the weight of an infant. Amplitude of the pendulum swing was
varied from trial to trial. The second pendulum was a double pendulum, purchased
commercially (www.chaoticpendulums.com), and could be mounted on the same mounting
structure as the single pendulum. The double pendulum also had metal bearings to reduce
friction.
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2.3. Data Collections
Data collections for both infants and pendulums were performed with the same equipment,
using all the same data acquisition parameters. For data acquisition (Figure 1), a pendulum
or infant was placed on an AMTI force plate (Watertown, MA), interfaced to a computer
system running Vicon data acquisition software (Lake Forest, CA). Markers can be seen on
the back of the pelvis and thorax of the infant in Figure 1, and kinematic data was also
collected, but is not discussed in this paper. The time series data collected is center of
pressure (COP) data, which is the position of the resultant vector where it intersects the
surface of the force plate. Thus the time series data is position data, although it is derived
from the forces measured by the force plate. The COP time series were acquired through the
Vicon software at 240 Hz, in order to have a sampling frequency 10 times above the highest
frequency found the time series from in a pilot study.

For all data collection sessions, the infants were allowed time to get used to the laboratory
setting, and were at their parent’s side or on their lap for preparation and data collection.
Infants were provided with a standard set of infant toys for distraction and comfort. All
attempts were made to maintain a calm, alert state by allowing the infant to eat if hungry, be
held by a parent for comforting, or adapting the temperature of the room to the infant’s
comfort level. Testing was only proceeded when the infant was in a calm and relaxed state,
not crying or otherwise making extended vocalization. A soft cloth was placed over the plate
for warmth and was securely adhered with tape on the force plate. The investigator and the
parent remained at one side and in front of the infant respectively during all data collection,
to assure the infant did not fall or became insecure. The child was held at the trunk for
support, and gradually the infant was guided into a prop sitting position while being
distracted by toys presented by the parent. Once the examiner could completely let go of the
infant, data were collected for 10 seconds while the child attempted to maintain sitting
postural control. Trials were performed until we had collected three trials that are acceptable
for our criteria, or until the infant was indicating that they were done. At any time the child
became irritated; the session was halted for comforting by the parent or a chance for feeding,
and then resumed only when the child was again in a calm state. In some cases, if the infant
was crying for a long period of time, then data was not collected at that session. Infants
came to the lab twice within a single week, and we attempted to get three trials in each of
the two sessions.

Segments of usable (described below) data were analyzed using custom MatLab software
(MathWorks, Nantick, MA). No filtering was performed on the data in order to not alter the
nonlinear results (Rapp, Albano, Schmah, & Farwell, 1993). Trials were recorded including
force plate data and video data from the back and side views. Afterwards segments were
selected by viewing the corresponding video. Segments of data with 2000 time steps (8.3
seconds at 240 Hz) were selected from these trials by examination of the video. Acceptable
segments were required to have no crying or long vocalization, no extraneous items (e.g.
toys) on the force platform, neither the assistant nor the mother were touching the infant, the
infant was not engaged in rhythmic behavior (e.g. flapping arms), and the infant had to be
sitting and could not be in the process of falling.

For the single pendulum, long time series could be collected (limited by the storage capacity
of the computer), and then these were divided into 2000 time step segments (i.e. N=2001) to
match the infant sitting data. Segments matching the infant sitting based on signal-to-noise
(discussed below) were selected for analysis. For the data collection with the double
pendulum, to ensure initial conditions that would lead to chaotic motion, the double
pendulum was restarted before each data collection. The first 8.3 seconds of data (2000 time
steps, N=2001) were selected for analysis.
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2.4. Data Analysis
Signal-to-noise—During the course of data analysis, it became apparent that some time
series had better signal-to-noise than other time series, and that this was affecting the
approximate entropy analysis. For the single pendulum, the equation of motion can be
solved using the small angle approximation, resulting in a sine function for the solution to
the equation of motion. As expected, the COP data obtained from the single pendulum
appeared to be a sine function for small amplitudes of displacement, but appeared to have a
noise component in addition to the expected sine wave. Based on this observation, we
estimated the signal-to-noise for our time series data. Here “signal” refers to the true data if
no experimental noise were present in the time series data. Signal-to-noise is defined as the
ratio of the variances of the signal and noise (Manolakis, Ingle, & Kogon, 2005); signal-to-
noise = ss

2/sn
2, where ss indicates the standard deviation calculated from the smoothed time

series (estimated signal), and sn is the standard deviation of the difference between the
unsmoothed time series and smoothed time series (estimated noise).

Because we wanted to estimate the signal-to-noise in both periodic data and chaotic data, we
used a sine function and a numerical solution to the Lorenz attractor, each with different
levels of added random noise, as test pseudo-data sets, where “pseudo-” indicates data was
generated in MatLab, not acquired with the force plate. By generating pseudo-signal and
pseudo-noise separately before adding them to make pseudo-data, time series pseudo-data
were generated with known signal-to-noise, allowing the result of the signal-to-noise
detection algorithm to be verified. Sampling rate, spectral frequencies, and apparent signal-
to-noise of the pseudo-data were chosen to be similar to the infant sitting data. An estimate
of the signal in each of the pseudo-data sets was made by smoothing the noisy data, and then
the noise was estimated by the difference of the pseudo-data and the estimated signal.
Smoothing was accomplished with a Savitsky-Golay polynomial smooth, using the
parameters of a polynomial order = 8, and window size = 121 (0.5 s). The double pendulum
has much higher signal-to-noise than the other data types, and these parameters for
estimation of signal-to-noise did not appear to work for the double pendulum data.
Application of this method to single pendulum data and infant sitting data appeared to give
reasonable results (Deffeyes, 2009), and the result from the single pendulum is especially
encouraging because the solution to the equation of motion is expected to be a sine function,
and the estimated signal, i.e. the smoothed data, closely resembles a sine function.

Approximate entropy—The approximate entropy calculation was described in the
introduction. Pincus (1991), Pincus and Goldberger (1994), and Kaplan & Staffin (1996) are
good resources for additional discussion of the method. Approximate entropy, and all other
calculations for this work, were done using MatLab (version R2007a).

Spectral analysis—Periodograms were calculated using MatLab to estimate the power
spectrum for each trial using a Hann window function. Periodograms were averaged for all
trials in each of 4 categories, 2 subject types (infants with typical or delayed development),
at 2 sitting ages (early or advanced sitting). Sharp peaks were observed at 30 Hz, 60 Hz, and
90 Hz, the largest of which was at 60 Hz, and were thought to be related to power
transmission at 60 Hz, and not features of the infant sitting postural sway.

Statistical analysis—A statistic of interest in this analysis is the effect size in comparing
two populations. Many estimators of effect size assume a normally distributed data, but the
approximate entropy values in this study were observed to have a non-symmetric
distribution, and the distribution was skewed to high side. Thus, we used the nonparametric
Wilcoxon rank sum test (Mann-Whitney U test) to perform comparisons. This has the
advantage of allowing comparison of the p value obtained to a critical p value to assess if the
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approximate entropy (ApEn) analysis were likely significant (p<pcritical), or if the difference
in approximate entropy values were likely not significant (p>pcritical). The reported p values
are for three different comparisons: 1) comparisons of the n=30 infants with developmental
delay compared with the n=33 infants with typical development, for approximate entropy
analysis of postural sway in the anterior-posterior (front-to-back) axis, 2) comparisons of the
n=30 infants with developmental delay compared with the n=33 infants with typical
development, for approximate entropy analysis of postural sway in the medial-lateral (side-
to-side) axis, and 3) comparisons of n=100 trials of single pendulum with n=100 trials of
double pendulum. For comparisons 1 and 2 (infant sitting) up to 3 trials for each infant were
averaged (sometimes the infant was crying, and fewer than 3 trials were collected).
Hundreds of comparisons were made using different parameters for the approximate entropy
calculation, but these are not independent comparisons, e.g. the ApEn (m=2, r=1, N=2001)
is correlated with ApEn (m=2, r=1, N=1001). Thus in correcting our significance level for
multiple comparisons, we used a Bonferroni type correction considering three independent
comparisons (infant sitting anterior-posterior axis, infant sitting medial-lateral axis, and
pendulum comparisons), and set the significance level at alpha=0.05/3=0.017.

Repeated measures ANOVA analysis, comparing ApEn (m=1, r=std(Data),
t=8.33s@240Hz, lag=8) of sitting postural sway for infants with typical development and
delayed development (between subjects), for early sitting and advanced sitting (within
subjects) was performed using SPSS Statistics (GradPack 17.0). Post-hoc paired t-tests were
performed comparing early and advanced sitting, for infants with typical development and
also for infants with delayed development.

3. Results
Typical parameters used in many studies for calculating approximate entropy are m=2,
r=0.2* std(data), and lag=1; so we used these parameters as our starting point. To see the
effect of noise on the approximate entropy result, we examined the relationship between
approximate entropy using standard parameters ApEn(m=2, r=.2*std(data), N=8.33 s
acquired at 240 Hz, lag=1), and estimated signal-to-noise (Figure 2), and found that
approximate entropy is systematically higher for poor signal-to-noise for single pendulum
data, as well as infant sitting in both anterior-posterior (front-to-back) and medial-lateral
(side-to-side) directions. Compensating for the effect of poor signal-to-noise is critical,
because most of the variability in the approximate entropy is due to signal-to-noise.

Proper selection of the r parameter would be expected to improve the performance of the
algorithm on data contaminated by experimental noise, since this parameter is thought to act
as a filter parameter (Pincus, 1991; Pincus & Goldberger, 1994). Conceptually, if the r
parameter is larger than the experimental noise, then the effect of the experimental noise on
the analysis should be reduced. Thus we investigated the performance of the approximate
entropy algorithm as a function of the r parameter. Typically, r is defined for each time
series as some multiple of the standard deviation of the time series data, ri=R*std(datai),
where R is constant for a given analysis, but r varies for each time series i in the analysis
because the standard deviation of each time series is different. Some authors have suggested
that the best choice for the r parameter is to select one that maximizes the entropy calculated
(Castiglioni & Di Rienzo, 2008; Lu, Chen, Kanters, Solomon, and Chon, 2008). Using
r=R*std(data) for each time series, and varying R, we found that infant sitting and single
pendulum data have maximum entropy with lowest values of r (Deffeyes, 2009). For these
data, there is no maximum in entropy with changes in R, so that selecting R based on
maximizing the time series is not feasible. The maximum in entropy for the double
pendulum data down-sampled to 60 Hz, lag=1, occurs at R=0.25 (Lower left plot) and at
R=0.15 for the 240 Hz data, lag=4. Perhaps the reason that the double pendulum has a
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maximum other than at the lowest R value is because the double pendulum data had better
signal-to-noise than the infant sitting data and better than the single pendulum data, since
trials of single pendulum data were chosen to match the infant sitting data in signal-to-noise.
If maximizing the entropy were the best criteria, then the standard selection of R=0.2
appears to be near optimal for this better signal-to-noise data of the double pendulum.

However, the goal of the approximate entropy analysis on the infant postural sway data is to
distinguish between infants with delayed motor development and the infants with typical
development, with the notion that pathologic development could lead to more regularity in
postural sway (Goldberger, Peng, & Lipsitz, 2002; Stergiou, Harbourne, & Cavanaugh,
2006). The corresponding goal of the pendulum analysis is to take a system with known
high regularity (the single pendulum), and a system with known chaotic behavior (the
double pendulum), and see how well the approximate entropy algorithm can be tuned to
distinguish between these two systems. Thus the measure of interest is a measure of
comparison between two groups, and we have used the p value from a Wilcoxon rank sum
comparison. To investigate the effect of the r parameter on the analysis, three types of
comparisons were made: 1) infant sitting anterior-posterior postural sway (delayed
development versus typical development), 2) infant sitting medial-lateral postural sway
(delayed development versus typical development), and 3) pendulum reaction forces (single
versus double pendulums). These 3 comparisons were repeated for various R values in the
approximate entropy calculation, and for the data sampled at 240 Hz using lag=1, data
sampled at 240 Hz using lag=4, and the 240 Hz down-sampled to 60 Hz using lag=1 (Figure
3a). The comparison of single and double pendulum data showed that the dynamics are
significantly different between these two systems, and that for the pendulum comparison,
the difference is statistically significant for a wide range of parameters. For the comparisons
of infant sitting postural sway data, choice of analysis parameters was more critical, with the
data acquired at 240 Hz and analyzed at lag=1 (Black symbols in Figure 3a and 3b), no
value of R was successful in producing a significant p value for the comparisons of infants
with typical development and infants with delayed development. For the infant sitting
postural sway comparisons, no comparisons in the medial-lateral axis (squares) were
significant. For the postural sway in the anterior-posterior axis (circles), and for the time
series data down-sampled to 60 Hz (white symbols) and for the 240 Hz data analyzed using
lag=4 (grey symbols), the comparison was statistically significant, with minimum p values
in the range R=1 to R=1.5.

Since it has been suggested that the function of the r parameter is to act as a noise filter
(Pincus, 1991; Pincus & Goldberger, 1994), and since we have an estimate of the noise for
each time series in our analysis, we investigated the use of the noise estimate to calculate the
r parameter for each analysis. In this analysis, ri=R*std(Noisei), where Noisei is the
estimated noise time series based on subtracting the Savitsky-Golay fit to the data, as
described in “signal-to-noise” methods section. Comparisons were again made using the
infant sitting postural sway data (Figure 3c), but even though the result can be considered
significant for the anterior-posterior sway (circles) for the 240 Hz data using lag=4 analysis,
the p values obtained were an order of magnitude higher than for the analysis based on
ri=R*std(Datai). Thus even though one function of the r parameter is to act as filter
parameter and to reduce the sensitivity of the analysis to experimental noise, basing the
value of the r parameter on the estimated experimental noise does not work as well as basing
the r parameter on the standard deviation of the time series data. This result shows the
importance of the r parameter as length scale for the system dynamics, not merely a filter for
experimental noise. Based on these results, we have chosen to use ri=R*std(Datai) where
R=1, for the rest of our analyses.
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While the r parameter is related to the y axis of the time series (amplitude of data), several
parameters affect the approximate entropy analysis in the x axis (time axis of data). The
length of data acquisition, sampling rate, and length of the comparison vectors (m
parameter) all potentially interact to affect the results of the analysis. Using similar
methodology to the investigation of the r parameter above, we investigated the effects of
other parameters on the analysis, and found the combination of approximate entropy
parameters that provides the best distinction between postural sway of early sitting for
infants with typical development versus infants with delayed development. The importance
of lag=4, and multiples of 4, in lag values or sampling rate is likely due to 60 Hz electrical
noise and sampling at 240 Hz, so that the 60 Hz noise cycles once every 4 data points. The
longer time series are better, as these give a more complete sampling of the sitting dynamics.
We found that ApEn(m=1, r=std(Data), t=8.33s@240Hz, lag=8) works best for our data set
for distinguishing between the two groups using the early sitting postural sway data
(Deffeyes, 2009).

Repeated measures 2×2 ANOVA analysis was performed on the infant sitting data using
ApEn(m=1, r=std(Data), t=8.33s@240Hz, lag=8) with data from the early sitting and
advanced sitting. In the anterior-posterior axis, the development comparison was significant
(F=15.623, p<.001), the group difference was significant (F=6.908, p=.034), and the
interaction was significant (F=4.723, p=.011). Post hoc paired t-tests showed that
approximate entropy of anterior-posterior sitting postural sway decreases significantly with
development for infants with typical development (p<.001), while the change with
development for infants with delayed development was not significant (p=.33) (Figure 4).
The post hoc paired comparisons for postural sway in the medial-lateral axis were not
significant (p=.098 for typical development; p=0.783 for delayed development).

The finding that approximate entropy calculations using m=1 and lag=8 found differences
between the two groups suggested that events must be occurring on a short time scale on the
order of 33 milliseconds (lag 8 * 1/240 Hz = 33 ms). To investigate this, spectral analysis
was performed on the same time series data as the approximate entropy analyses. Spectral
analysis confirms there are differences in the 10–30 Hz range, especially in the anterior-
posterior axis data (Figure 5). The broad features seen in the power spectra from early sitting
postural sway of infants with typical development in the 10–30 Hz region (Figure 5c) are
greatly reduced in intensity in the advanced sitting of these infants (Figure 5d), and are not
seen in the power spectra of postural sway from infants with delayed development, for either
early (Figure 5a) or advanced (Figure 5b) sitting. The higher intensity seen in the power
spectrum between 10–30 Hz is also seen in the medial-lateral postural sway of infants with
typical development (Figure 6c,d) as compared to infants with delayed development (Figure
6,a,b), but it appears to lower in the medal later axis than in the anterior posterior axis
(Figure 5c,d). The narrow peak at 30 Hz in these spectra is an artifact related to the 60 Hz
power, as a larger narrow peak is seen at 60 Hz. Note that the power spectra are plotted on a
semi-log axis, so the intensity in these high frequency features is small compared to the
intensity of the lower frequency features.

4. Discussion
The use of measures of nonlinear dynamics in medicine and physiology research is
appealing because there are pathologies that alter system dynamics (Goldberger, Peng, &
Lipsitz, 2002; Stergiou, Harbourne & Cavanaugh, 2006), and these measures have the
capability to quantify the changes in dynamics. Approximate entropy was developed to be
robust when applied to experimental data, but appropriate choice of parameters used in the
algorithm needs to be made. Methods for selection of the r parameter based on experimental
noise and on maximizing the approximate entropy value did not prove to be useful in our
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analysis. Use of a single and double pendulum as model systems provided to be of limited
benefit, as the difference in the dynamics between these systems was so large, that the
analysis was not sensitive to the choice of parameters used in the approximate entropy
analysis. The analysis of infant postural sway, on the other hand, did depend on the choice
of parameters. The discussion below is in two sections, one on the implementation of the
approximate entropy algorithm, followed by a discussion infant sitting postural sway.

4.1 Discussion of implementation of the approximate entropy algorithm
For comparing systems with vastly different dynamics, such as the single and double
pendulum, approximate entropy is not terribly sensitive to the choice of analysis parameters.
Statistically significant differences between the single pendulum, a strictly periodic system,
and the double pendulum, a known chaotic system, were found for a wide variety of
parameters. However, for comparing systems with similar dynamics, such as infants with
typical development and infants with motor development delay, the analysis benefits from
more careful attention to the parameters used. Based on our results, we made some practical
recommendations for performing approximate entropy analysis on flow data:

1. The r parameter in the approximate entropy algorithm is designed to compensate
for experimental noise in the measured time series data, and many authors set the r
parameter as r=0.2 * std(Data), i.e. 0.2 times the standard deviation of the time
series. With our data set, use of the standard parameters ApEn(m=2, r=.
2*std(Data), t @ 240 Hz, lag=1) leads to the conclusion that there is no significant
difference between these two groups of infants, and use of ApEn(m=1,
r=1.0*std(Data), t @ 240 Hz, lag=8) leads to the conclusion that there are
significant differences between these two groups of infants in early sitting in the
anterior-posterior axis. In previous work (Deffeyes, Harbourne, DeJong,
Kyvelidou, Stuberg, & Stergiou, 2009) we found that the use of ApEn(m=2,
r=3.0*std(Data), t @ 240 Hz, lag=4) leads to the conclusion that there are
significant differences between these two groups of infants in advanced sitting in
the medial-lateral axis. The r parameter is not simply a filter for experimental noise,
but also adjusts the analysis to be sensitive to the magnitude of changes that are
characteristic of the dynamics of the system. An a priori prediction of the most
useful r value is difficult, and we suggest exploring the effect of this parameter on
the analysis. Using the standard approach of .2*std(Data) may not be the best
choice for certain types of data, such as our infant sitting postural sway data, but for
systems with large differences in the dynamics, such as the periodic single
pendulum and the chaotic double pendulum, the standard choice of r may be
appropriate.

2. The sampling frequency and lag are two ways to adjust the time constant to which
the analysis is sensitive. A lag value of 1 is often used, and this may be a good
choice for many data sets. However, for our postural sway data, the adjustment of
the lag parameter can improve the analysis. For our analysis, 33–50 milliseconds
between data points had the best sensitivity to differences between the infants with
typical versus delayed development. Selection of a sampling frequency and lag
value that makes comparisons on this time scale provided the best separation
between the two groups. Spectral analysis can be done first to help determine
frequencies at which there are differences between populations of interest, and lag
values of interest can be determined. If periodic noise is present, then selection of
the lag value based on the repeat of the periodic noise may be beneficial. For
example, we sampled at 240 Hz, and have 60 Hz noise from the power distribution
frequency, which means the 60 Hz noise repeats every 4 data points. Thus selecting
a lag value of 4, 8, 12, 16, etc. results in all the points in the comparison vector
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being acquired at the same point in the noise cycle, to help reduce the impact of the
periodic noise on the analysis.

3. The m parameter is the length of the comparison vectors formed from the time
series data. A comparison vector length of m=2 is commonly used, meaning that
similar vectors of length 2 are tested to see if they are still similar at length 3. For
more intricate patterns, longer comparison vectors may be beneficial to include in
the analysis, but for our analysis, the m value was less critical than some of the
other parameters. One reason to choose a smaller m value is that approximate
entropy analysis with larger m values takes more time to run.

4. The length of the time series is important to the analysis, but verification that the
length of the time series is appropriate is not as easy as we might have assumed at
the outset. A commonly used criterion for the length of the time series data for
approximate entropy analysis is that N, the number of data points in the time series,
needs to be N> 10m, or N>30m if possible (Pincus, 1991; Pincus & Goldberger,
1994). For our choice of m=1, in theory we would only need 10 to 30 data points.
One issue is that N does not give the complete answer about the necessary length of
the time series because the sampling rate also needs to be considered. For example,
with our sampling at 240 Hz, we could have met the N> 30m criteria with a data
collection of 125 ms. However, we found that at least 3 seconds of data was needed
to find significant differences between infants with typical versus delayed
development, and that the analysis improved for even longer data sets (Deffeyes,
2009). Thus the length of the time series needs to be set based on sampling the
complete dynamics of the system, and not set based on getting a certain number of
data points. One way to examine if the time series is long enough is to perform the
analysis on increasingly longer lengths of time series data, and see if increasing the
length of the time series used in the analysis changes the results.

5. Specify the parameters used in the analysis in discussing the results. The
parameters that were selected for calculation of the approximate entropy in this
study were based on maximizing the p value for a rank sum test involving early
infant sitting. In this study, we found no significant effect in the data from the
medial-lateral direction, only in the anterior-posterior direction, using ApEn(m=1,
r=1.0*std(Data), t @ 240 Hz, lag=8). These parameters were optimized for
comparing the early sitting data. A somewhat similar approximate entropy analysis
was performed using a subset of this data, but the parameters were optimized using
the data from advanced sitting (Deffeyes, Harbourne, DeJong, Kyvelidou, Stuberg,
& Stergiou, 2009). This analysis found a significant difference between
ApEn(m=2, r=3*std(Data), t=8.33s@240Hz, lag=4) sitting postural sway for
infants with developmental delay and infants with typical development, but in the
medial-lateral direction and not in the anterior-posterior direction. A third study
with a subset of this data used nearly standard parameters ApEn(m=2,
r=0.2*std(Data), t=8.33s@240Hz, lag=4) and found no significant difference
between postural sway of infants with delayed development and infants with
typical development (Deffeyes, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009).
Because of the different results with different parameters, it is incorrect to say that
the approximate entropy of one condition/group is different than another condition/
group, but rather the parameters must be specified, i.e. that the ApEn(r,m,t @ Hz,
lag) is different for the condition/group. Pincus (1991) has described the
approximate entropy as a family of statistics, with members varying by r and m
values. We point out that different family members may on occasion arrive at
different conclusions.
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4.2. Discussion of the infant sitting postural sway results
An important result from this work is that using a lag value of 8 or 12 in the approximate
entropy analysis gave the best separation of early sitting between infants with typical
development and infants with delayed development, and that the difference was only for
postural sway in the anterior-posterior direction. ANOVA analysis of the ApEn(m=1,
r=std(Data), t=8.33s@240Hz, lag=8) results found a significant interaction between sitting
development and subject group only for the anterior-posterior axis. A lag value of 8
corresponds to a time lag of 33 ms, or a frequency of 30 Hz; a lag value of 12 corresponds to
a time lag of 50 ms, or a frequency of 20 Hz. Spectral analysis confirmed that there are
features in the 20–30 Hz range in the early sitting of infants with typical development that
are greatly reduced in mature sitting, and these features are not seen in either early or
advanced sitting of infants with delayed development. These features are apparent in the
anterior-posterior data, but not in the medial-lateral data. The importance of these 20–30 Hz
features is not that they are the largest features in the power spectra, but rather that they are
more prominent for postural sway in the anterior-posterior axis in infants with typical
development in early sitting, the same group/condition where the ApEn(m=1, r=std(Data),
t=8.33s@240Hz, lag=8) was higher. As discussed in more detail below, our results suggest a
contribution from a fast acting (20–30 Hz) control mechanism in early (~4.9 months of age)
sitting of typical infants. This fast mechanism is greatly reduced in their postural control in
advanced (~7.9 months) sitting, presumably because better control from other mechanisms
has become active.

Our sitting postural sway results in typically developing infants fit well with results reported
of infant sitting by Hadders-Algra (2005), as the author reported a change in postural
variability that occurs at about 6 months of age, so that our early sitting is before the
transition and the advanced sitting is after the transition. The transition that occurs at 6
months of age (Hadders-Algra, 2005) is a transition from “primary variability” in postural
activity characterized by high variability and only poorly adapted to environmental
constraints, to a more well-coordinated “secondary variability.” The “secondary variability”
that emerges in infants at about age 6 months Hadders-Algra (2005) describes as being
related to the infants refining the ability to successfully incorporate multiple sensory
systems, such as somatosensory, visual, and vestibular, into the postural control (Hadders-
Algra, 2005). Muscle response to external perturbations while sitting becomes better tuned
to correcting for the perturbation from ages 5–6 months to ages 9–10 months (Hadders-
Algra, Brogen, & Forssberg, 1996). In our study, higher entropy postural sway in early
sitting corresponds to the more poorly controlled “primary variability” described by
Hadders-Algra (2005), which the author says it serves the function of using trial and error to
explore different patterns to establish better control head position in space. As the ability to
incorporate more types of sensory information into the postural control improves, the
apparent contribution of this control mechanism to postural sway declines and the advanced
sitting with the lower contribution corresponds to the “secondary variability” described by
Hadders-Algra (2005).

There are a number of changes occurring developmentally that may alter postural control.
For example, muscle fibers are inherently fast twitch, but convert to slow twitch with
development, polyinnervation of muscles converts to monoinnervation, and dendrites
organize into dendritic bundles (Ijkema-Paassen & Gramsbergen, 2005). Additionally,
myelination in the brain is ongoing (Paus, Collins, Evans, Leonard, Pike, & Zijdenbos,
2001). In the vocabulary of dynamic systems theory as a control parameter changes, the
attractor changes resulting in the emergence of a new behavior, such as the emergence of
sitting. While we have not elucidated the control parameter for the transition in infant
sitting, candidates include improved neurological control, as described above, physical
growth, muscle strength gains, or learning due to interaction with the environment that alters
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central nervous system connectivity based on neural plasticity mechanisms. While certainly
neural myelination is an ongoing process during infancy, and physical growth and strength
gains are apparent, Hadders-Aldra (2005) describes the emergence of the secondary
variability from primary variability in infant sitting as being related to motor learning, and
the increased use of appropriate motor synergies, while acknowledging that some of the
other control parameters may also be contributing. If an important control parameter is
increased experience, how is that translated into more appropriate motor synergies? What is
it that an infant learns when learning to sit? One possibility is that the internal model of the
infant is refined to the point that correct control decisions can be made, allowing the
emergence of the new behavior (Chen, Metcalfe, Jeka, & Clark, 2007). The description of an
improved internal model is somewhat of a mechanistic description of the changing attractor
landscape, where the internal model is thought to be associated with cerebellar function
(Ebner & Pasalar, 2008). Development of the internal model can alternatively be described
as training networks to respond to environmental stimuli based on statistical inference
(Fiser, Berkes, Orban, & Lengyel, 2010). Hadders-Algra (2005) studied the response to
postural perturbations to arrive at these conclusions that the transition allows better response
to external perturbations with “secondary variability” in postural control than with the
“primary variability” found in younger infants. Our study did not include perturbations in
the protocol, but internal perturbations, such as breathing movements, are present. If the
infant’s internal model of the body is not well refined, then response to a perturbation, even
if it is simply the breathing of the infants, will not be as well controlled as it would be with a
better internal model. Sitting postural sway in infants has been shown to increase with the
acquisition of walking skills, which was interpreted as being due to changes of the infant’s
internal model of the body with walking (Chen, Metcalfe, Jeka, & Clark, 2007), showing
that infants are actively refining their internal model, and that sitting postural sway can
change based on changes in the internal model. To the extent that the younger infant’s
internal model of their own body is not yet well developed, the movement of any part of
their body may act as an unexpected perturbation to sitting posture. The infants in our study
at age 7.9 months likely have not only a better ability to deal with unexpected perturbations
than the infants at age 4.9 months, as Hadders-Algra (2005) data on response to external
perturbations would suggest, but also a more refined internal model of their body so that
they would be expected to encounter fewer unexpected internal perturbations.

Our data comparing sitting behavior of infants with typical development to infants with
delayed development also fits well with other reported entropy results. We found differences
between early sitting postural sway of infants with typical development compared to infants
with delayed development, with the ApEn(m=1, r=std(Data), t=8.33s@240Hz, lag=8) being
lower in the postural sway of infants with delayed development. Our result of higher
approximate entropy for postural sway of infants with typical development is consistent with
the results of Donker, Ledebt, Roerdink, Savelsbergh & Beek (2008) who found lower
sample entropy, a measure very similar to approximate entropy, for standing postural sway
in infants with cerebral palsy. Approximate entropy has been described as a measure of
complexity (Pincus, 1991). Infants with typical development have been described as having
more complex movements than infants with cerebral palsy, perhaps due to impaired cerebral
connectivity (Hadders-Algra, 2008). If approximate entropy is a measure of complexity,
then the higher ApEn(m=1, r=std(Data), t=8.33s@240Hz, lag=8) values we found for
postural sway of infants with typical development are consistent with the reported higher
complexity. We see the high values for ApEn(m=1, r=std(Data), t=8.33s@240Hz, lag=8)
decrease with development, whereas Hadders-Algra (2008) hypothesizes that complexity
should always be higher for infants with typical development, regardless of age. However,
Hadders-Algra (2007) reports different types of movement complexity, including “pre-
term”, “writhing”, and “fidgety”, depending upon the age of the infant. Our particular
analysis may only be sensitive to one particular type of movement complexity that is
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prevalent in infants when they are 5 months old, i.e. the early sitting in our study. Infants
with cerebral palsy may have inappropriate muscle sequencing, even in older children
(Wollacott & Shumway-Cook, 2005; van der Heide & Hadders-Algra, 2005), which we can
believe may result in more periodic movement if a series of corrections are needed after an
incorrect movement. Future work is needed to address how different measures of complexity
are related, and explore if our approximate entropy measure relates with other types of
complexity assessments.

The development of motor skills has also been considered from a developmental psychology
perspective, where the development of locomotion has been described as initiating a
psychological reorganization that is wide ranging and impacts perception, spatial cognition,
and social and emotional development (Campos, Anderson, Barbu-Roth, Hubbard,
Hertenstein, & Witherington, 2000). While locomotor development may occur in synchrony
with cognitive performance, the unilateral focus of Campos, Anderson, Barbu-Roth,
Hubbard, Hertenstein, and Witherington (2000) on motor skills as the cause of cognitive
change is unfortunate given that cognitive change is likely driving motor skill acquisition
just as much as motor skill acquisition is driving cognitive change (Bushnell, 2000).
However, Campos, Anderson, Barbu-Roth, Hubbard, Hertenstein, and Witherington (2000)
make an interesting point that locomotion allows the infant to explore the environment by
moving to and exploring objects of interest, thereby engaging cognitive function that might
not otherwise be active. Relating this speculation to our study, sitting likely affords some of
the same cognitive benefits as locomotion because the visual exploration of the environment
is enabled by a stable sitting posture, and reaching to nearby objects is enabled by a stable
sitting posture.

While we found infants with typical development have less periodic, more random
movement, what benefit is there to moving in a random manner? Fractal movements, such
as Lévy flights, are more random than periodic movements, and are a good search method.
For example, such flights are used by animals for searching an area for food or mates
(Reynolds & Rhodes, 2009). Infants sitting postural sway has been shown to be fractal
(Deffeyes, Kochi, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009). Highly varied
movements that give rise to higher entropy postural sway may be an adaptive method for
exploring various postural positions. It seems counterintuitive that a young infant with poor
postural control skills would attempt to use a wide range of different postures, as adopting
new challenging postures may result in falls. However, unlike falling in adults that may
cause injury, infants’ falling is typically inconsequential from an injury standpoint, and is
instead part of the exploratory behavior of an infant as they learn new motor skills such as
sitting, crawling, cruising, and walking, and learn to use these skills in novel environments
(Adolph, 2008). The biological interpretation of the large value of the r parameter used in
the analysis is that large excursions of the COP are required to be counted as non-matches
by the approximate entropy algorithm. Near fall events, where the infant nearly falls but
then recovers balance, might give rise to large excursions in the COP. Actual falling events
were not included in the data, the infant must be sitting in order for the trial to be used.
Higher entropy for early sitting infants with typical development might then reflect more
near fall events, as compared to more developed and thus more skilled sitting. Higher
entropy for infants with typical development as compared to infants with delayed
development may indicate an increased willingness to engage in behaviors that result in near
fall events as they explore various control strategies. The linear measures of variability,
including range of motion and sway path length found no significant differences between the
two groups (Deffeyes, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009). This is probably
because one infant may have movement due to poor control, while another has movement
due to wanting to explore the environment. It is the temporal organization of the movement,
rather than the amount of movement, that is different between these two groups.
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Adults have difficulty in producing random movement patterns even when requested to do
so (Newell, Deutsch, & Morrision, 2000), so it is perhaps not surprising that the typical
infants sitting behavior loses much, but not all, of its random quality in becoming more
adult-like. The optimal movement variability theory (Stergiou, Harbourne, & Cavanaugh,
2006) suggests that there is an optimal randomness in human movement variability.
Movement that is too rigidly structured does not allow for adaptability to changes in the
environment, where as movement that is too random does not achieve the intended goal.
Early sitting in infants with typical development may have too high a randomness compared
to optimal adult values, with a subsequent loss of variability with development. However,
this study only assesses infant sitting at two points in time, and there is no reason to believe
that the development of infant sitting is a linear progression towards adult sitting (Adolph,
Young, Robinson, Gill-Alvarez, 2008; Harbourne & Stergiou, 2003). While some authors
suggest daily evaluation of a motor skill in order to assess developmental nuances (Adolph,
Young, Robinson, Gill-Alvarez, 2008), a major goal of this work was to understand the
parameters necessary for the approximate entropy analysis, rather than mapping out the
shape of the developmental trajectory.

An interesting aspect of the postural sway features that we found are the high frequencies of
the COP movements. The features in the 20–30 Hz range are at a higher frequency than is
typically found in postural sway data, or even in other types of human movement data.
Human clapping can be maintained as fast as 7 to 8 Hz (Morrison, Hong, & Newell, 2009),
and the world’s fastest drummer can perform tapping movements no faster than 10 Hz
(Fujii, Kudo, Ohtsuki, & Oda, 2009). Because of their high frequency, these COP
movements are not thought to be related to any type of voluntary movement of the infants,
and trials with observable repetitive movements, such as clapping or flapping the arms, were
excluded from our analysis. Faster movements may be accomplished by reflexes, in
particular the short latency reflexes that result from stretch reflex mechanism. Although
different authors adopt different definitions of short latency, one definition is a latency less
than 60 ms is short latency (Taube, Schubert, Gruber, Beck, Faist, & Gollhofer, 2006), and
we would classify the features 33 to 50 ms as being short latency, if they are in fact due to
reflex activity. For comparison, in adult sitting the stretch reflex of the paraspinal muscles,
which help stabilize the spine in upright sitting, has a mean latency of 30.7 (+/− 21.3) ms in
response to external perturbations (Granata, Slota, & Bennett, 2004). The response latency is
the time from the perturbation until electromyography detects activation of the muscle. It
does not include time for the muscle to reach full activation, which in adults was an
additional 71.3 (27.7) ms (Granata, Slota, & Bennett, 2004). Thus the fastest reflex response
might be fast enough to contribute to the 20–30 Hz, 50–33 ms features that we found in the
anterior-posterior sitting postural sway of typically developing infant. As a comparison,
normal finger tremor includes a 20–25 Hz component that is produced by the stretch reflex
loop (Deutsch & Newell, 2006). However, for this tremor the frequency depends on the
inertial properties and the stiffness properties of the limb, and to the best of our knowledge,
the frequency for infant trunk movements has not been reported, but might be considerably
different than the reported 20–25 Hz range for finger movement. It is possible that the near-
fall events, where the infant nearly falls but recovers (discussed above), result in high
frequency components of the COP. Perhaps this occurs by exciting a stretch reflex, or from
high accelerations associated with the fall and/or recovery resulting in tissue vibrations in
the high frequency range.

Is it reasonable to propose stretch reflexes are active in unperturbed infant sitting?
Historically, reflexes were thought to be the main posture control mechanism, but more
recent work has shown posture control is a more complex sensory motor integration problem
(Horak, 2006). Additionally, the small movements in well-controlled postural balance do not
seem capable of exciting a stretch reflex. Proposing stretch reflexes in a sitting posture study
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seems unlikely from this perspective, but sitting in young infants is not as well controlled as
in adults. Postural control in adult standing has been much more widely studied than infant
sitting, and one might hypothesize that similar control mechanisms are operative in infant
sitting. Because stretch reflexes likely play only a small role in unperturbed adult standing
postural control (Bove, Trompetto, Abbruzzese, & Schieppati, 2006), it might be argued that
stretch reflexes are not active in early infant sitting. However, while stretch reflexes are not
the main mechanism for control of sitting posture, evidence for stretch reflexes making
some contribution to infant sitting postural sway has also been reported by Hadders-Algra,
Brogren, and Forssberg (1996). Stretch reflexes are certainly important in generating a quick
response to an external perturbation in adult sitting (Granata, Slota, & Bennett, 2004), but
may not be activated in unperturbed sitting in adults. There are some important differences
between adult postural control and young infants postural control. Adult postural control can
potentially use information from a wide array of different sensory modalities, including
visual information, vestibular information, joint proprioceptive information, cutaneous
information from the plantar surface of the feet, as well as sensory information from the
muscles. Some of these sensory modalities are not as well developed in the infant compared
to adults or even older infants, and sensory integration capabilities are not as well
developed. Children do not achieve fully adult-like sensory integration until they are 12
years old (Peterson, Christou, Rosengren, 2006). Using an oscillating moving-room
experimental paradigm, infants’ sitting postural sway was found to become more strongly
entrained to the visual stimuli as they reached the age where they learned to sit (Bertenthal,
Rose, & Bai, 1997), and infant sensitivity to optic flow in contraction (meaning the image
appears to be moving away from the infant) increased from 2 to 8 months, but still had not
attained adult values (Brosseau-Lachaine, Casanova, & Faubert, 2008). The vestibular-
ocular reflex matures as infants learn to walk (Wiener-Vacher, Toupet, & Narcy, 1996).
Thus the younger, typically developing infants in our study did not have the full spectrum of
sensory information to use for posture control. One might speculate that, as a result of not
having fully developed sensory input to the postural control, postural sway carries the body
to more extreme positions, sufficient to trigger stretch reflexes. Additionally, infants in early
sitting more often adopt a posture where they lean forward and place their hands on the
ground or on their legs, and support some of their upper body weight with their arms.
Perhaps because of the forward leaning, the hamstring muscles are closer to being stretched
to the threshold that can trigger a stretch reflex, and thus smaller amounts of postural sway
in the anterior direction may be capable of triggering a stretch reflex. The differences found
in our study were only significant in the anterior-posterior direction, not in the medial lateral
direction, consistent with a stretch reflex of the hamstring muscles being triggered more
often from a forward leaning posture. These results do not indicate that stretch reflexes are
the main control mechanism for the infant controlling postural sway, but merely that the
differences between the infants with developmental delay and those with typical
development are more pronounced on time scales that are associated with reflex control.

If the features are related to a stretch reflex, why then would higher ApEn(m=1, r=std(Data),
t=8.33s@240Hz, lag=8) values be associated with the movement? The stretch reflex in
adults is well tuned, with the muscle stretch inducing contraction in the muscle that was
stretched, and inhibition of the antagonist muscle. However, in infants the stretch reflex
sensory neurons project to a number of different motor muscles, as the connections have not
yet been optimally tuned (Myklebust & Gottlieb, 1993; Lichtman & Colman, 2000). Thus
when any given muscle is stretched, a variety of muscles contract, generating movement in a
direction that is not entirely appropriate. Thus the higher entropy values in postural sway of
early sitting of typically developing infants are consistent with the occasional occurrence of
a movement that triggers a stretch reflex, in conjunction with the poorly organized postural
sway as result of reflex irradiation that is present in these younger infants. ApEn(m=1,
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r=std(Data), t=8.33s@240Hz, lag=8) decreases as the infants develop, consistent with better
coordinated reflex activity.

If the features we observe in the early sitting postural sway data from infants with typical
development are indeed due to a stretch reflex, then why do the infants with delayed
development not have these features in their postural sway data? One potential reason for
not seeing stretch reflexes in the data from infants with delayed development is that if the
infant moves enough to trigger a stretch reflex, the reflex may be poorly coordinated and
cause the infant to lose balance and fall. We did not use data in our analysis where the infant
was falling, which may have resulted in not including data where stretch reflex was
activated in infants with delayed development.

A second potential reason is that the emergent behavior in infants with cerebral palsy is
different than in infants with typical development because the neuromuscular control
constraints are different, and the optimal behavior for each system is different. For example,
muscle firing patterns in walking that emerge in infants with Down’s syndrome are longer
than in infants with typical development, and this emergent pattern is thought to be adaptive
in these infants in order to help stabilize lax joints (Chang, Kubo, & Ulrich, 2009). In some
cases, spasticity in limbs associated with cerebral palsy may be a result of an altered stretch
reflex (van Doornik, Kukke, & Sanger, 2009). Children with cerebral palsy have hyperactive
stretch reflexes (Poon & Hui-Chan, 2009), although the functional implications of the
altered reflexes are not entirely clear (Matiello & Wollacott, 1997). Movement tends to be
controlled by agonist/antagonist pairs. If one is stretched and then overcompensates by
contacting too much (i.e. is hyperactive), then the resulting movement will be to stretch the
antagonist, which if it also over compensates, leads to the first being stretched, and an
oscillation ensues. This oscillation would be periodic, and thus have low entropy. This type
of oscillation is a common problem in negative feedback controllers, for example if the gain
is set too high. The infants with delayed development use a more forward leaning sitting
posture in early sitting, as do many of the infants with typical development. However, unlike
the infants with typical development, some infants with delayed development maintain this
posture in advanced sitting. It may be that these high frequency features are not seen in the
sitting postural of infants with delayed development because the infants with developmental
delay do not exhibit as much movement as those with typical development, and therefore are
less likely to trigger a stretch reflex. A previous analysis of this data set, minus a few
subjects who had not yet finished the study, found the infants with typical development had
slightly more postural sway than infants with delayed development, although the difference
was not statistically significant (Deffeyes, Harbourne, Kyvelidou, Stuberg, & Stergiou,
2009). Given the nonlinear response of the stretch reflex, that small difference measured in
amount of movement may be more important than the linear statistical analysis used in that
study would indicate. Additionally, if the infant has learned through experience that certain
behavior triggers a stretch reflex, and if that poorly coordinated stretch reflex results in a
fall, the infant may adapt their behavior to avoid triggering a stretch reflex. Sitting still may
be an adaptive response to an altered stretch reflex in these infants. Children with CP are
reported to use more of a top-down postural control (van der Heide & Hadders-Algra, 2005),
perhaps because reflexive control is less functional in these children.

A third potential reason for not seeing a stretch reflex response in the postural sway data is
that it may be related to some unknown parameter that changes with normal development of
the infants, rather than to typical or delayed developmental. As an example, the stepping
reflex seen in young infants appears to disappear with development. If young infants are
held over a moving treadmill, their feet will make stepping motions on the treadmill surface
(Thelen, Fisher, & Ridley-Johnson, 1984). As the infants developed, they no longer make
these stepping movements. Thelen, Fisher, and Ridley-Johnson (1984) found the reflex had
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not disappeared, but rather the infants had gained mass due to growth, and the muscle
strength had not yet caught up. If the infants’ legs were submerged in water, such that the
buoyancy force helped support the infant’s mass, the stepping movements were again
observed. A weakness of our experimental design is that, even though both the infants with
typical development and the infants with delayed development were just learning to sit, the
infants with delayed development were necessarily older than the infants with typical
development. Typically developing infants in our study had an average age of 4.9 months at
early sitting and an average age of 7.9 months at advanced sitting, as compared to the infants
with delayed development, who had an average age of 14.1 months at early sitting and an
average age of 18.1 months at advanced sitting. So, these infants were delayed in their
development, but they were also older than the typically developing infants.

There is also the possibility that the high frequency features are due to some cause other
than a stretch reflex. While stretch reflexes are fast for control of movement, the fast
movements we see in our study may not be controlled movements. Often gait data is low
pass filtered in order to remove high frequency contributions from tissue vibrations that
occur on impact of foot with the ground. There is a possibility that the high frequency
features found in this study are some type of tissue vibration. Perhaps a rapid change of
direction might be able to cause enough vibration of soft tissue for the vibration to be
detectable. However, in sitting there are no impacts with the ground to excite tissue
vibrations. Vibrations could be excited by quick movements in the anterior-posterior axis,
accounting for the high frequency features in the anterior-posterior COP data. However,
root-mean-square and range of movement did not differ significantly between infants with
developmental delay and infants with typical development in the anterior-posterior axis
(Deffeyes, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009), so differences in vibration
would perhaps be due to differences in mass distribution or tissue elasticity between the two
groups. Infants with cerebral palsy may have eating difficulties (Sleigh, Sullivan, &
Thomas, 2004), prevented adequate nutrient intake during development and thereby
reducing the adipose tissue compared to infants with typical development (Kuzawa, 1998).

4.3 Opportunities for further work
One area that was not investigated was the use of filtering to remove noise. Filtering data for
linear analysis or spectral analysis is a well developed area of signal processing, but filtering
for nonlinear analysis is not as well developed. Use of filters designed for linear or spectral
analysis prior to nonlinear analysis may be problematic (Rapp, Albano, Schmah, & Farwell,
1993; Schreiber & Katz, 1995; Theiler & Eubank, 1993) as the filters have been designed to
preserve certain linear and spectral aspects of the data, and may not preserve nonlinear
features that are of interest in nonlinear analysis. However, many researchers use standard
filter techniques on standing postural sway data, such as a low pass Butterworth filter
(Donker, Ledebt, Roerdink, Savelsbergh, & Beek, 2008; Hong, James, & Newell, 2008;
Stins, Michielson, Roerdink, & Beek, 2009; ), Savitsky-Golay smoothing (Hong, Manor, &
Li, (2007), and some authors use detrending methods which effectively serve as filters for
the data (Costa, Priplata, Lipsitz, Wu, Huang, Goldberger, & Peng, 2007). Our results
suggest that down-sampling or appropriate choice of a lag value may be a good alternative
to filtering noisy data, but we did not investigate filtering, so a test of this hypothesis is
needed. Another approach to removing noise from the data is to use equipment for data
collection that gives high signal-to-noise data, so that the dynamics of the system under
study can be more readily quantified without filtering. Future studies from our laboratory on
infant sitting will use force plate equipment with a dynamic range selected specifically for
infant sitting postural analysis.

There are a number opportunities for further exploration of the approximate entropy
algorithm and related measures. Attempting to select the one best set of parameters for
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approximate entropy misses the opportunity to use multiple sets of parameters to
characterize a data set. For example, values of approximate entropy both using low and high
values for the r parameter may provide a useful contrast, if the data has different dynamics at
different length scales, such as our data that has differences with r=1*std(Data) versus
r=3*std(Data). Similarly, differences could exist on different time scales, and multiscale
entropy could be used to more rigorously investigate the entropy of dynamics that occur on
multiple time scales (Costa, Goldberger, & Peng, 2002; Costa, Priplata, Lipsitz, Wu, Huang,
Goldberger, & Peng, 2007). Postural sway data is not necessarily stationary (Schumann,
Redfern, Furman, el-Jaroudi, Chaparro, 1995), and these high frequency features are likely
not occurring all the time, but may be occurring only sporadically in the sitting position.
Time frequency analysis (Schumann, Redfern, Furman, el-Jaroudi, Chaparro, 1995) or
wavelet analysis might give more insight into the occurrence of these features. Additionally,
using techniques such as electromyography to monitor muscle reflex activity after
perturbation of sitting, and accelerometers to monitor tissue vibration, might shed light on
the origins of the 20–30 Hz spectral features. There are other measures of complexity in
infant movement (e.g. Hadders-Algra, 2008), and while we believe them to be related,
analysis of a common data set with these multiple techniques would allow comparison of the
results.

4.4. Summary
The use of standard parameters, ApEn(r=.2*std(Data),m=2, N, lag=1), for the approximate
entropy analysis may work well for comparing systems with very different dynamics, but to
detect more subtle differences, the standard parameters may not be optimal. A useful
pragmatic finding of this work for researchers who use nonlinear measures is that spectral
analysis can be used as a guide to select lag parameters for approximate entropy analysis.
From a clinical perspective, this work is of interest because the design of an infant postural
analysis system, coupled with computer for data analysis, may one day bring this technology
to the clinical setting for a more sensitive analysis of postural control than is currently
available. From a developmental neuroscience perspective, this work is of interest because it
suggests the possibility that a short latency reflex for control of sitting posture is operative,
perhaps triggered by near-falls. However, we did not measure reflex response, and thus can
only speculate about source of the higher frequency, short time scale response, in our data.
More work is needed to elucidate the importance of the specific control mechanisms
identified in early sitting postural control, and to understand the differences in postural
control between infants with developmental delay and those with typical development.
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Figure 1.
All data acquisition used the same force plate, which is built into the floor as is typical in a
gait laboratory. a. single pendulum, b. double pendulum, c. infant sitting.
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Figure 2.
Plot of approximate entropy using “standard” parameters (m=2, r=0.2*std(Data), N=8.3 sec
@240 Hz, lag=1) versus estimated signal-to-noise. Signal-to-noise is the ratio of the
variances of the estimated signal and estimated noise (σs

2/σn
2).
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Figure 3.
Effect of R-parameter. Wilcoxon rank sum (Mann-Whitney U test) p values for comparison
of approximate entropy(m=2,r,t=8.3 sec, lag) for single versus double pendulums (triangles),
infants with cerebral palsy versus typical development in anterior-posterior axis (circles) and
in medial-lateral axis (squares), plotted versus R value used in the calculation of
approximate entropy. Similarity of points in comparison vectors r is determined by
R*std(Data) in plots a and b, and by R*std(estimated noise) in plot c. Plot b is an expanded
plot of the infant sitting data in a, for comparison with plot c using the same y axis scale as
plot c, but note x axes differ between plots b and c.
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Figure 4.
Mean values of ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) for postural sway of
early and advanced infant sitting in the anterior-posterior(AP) axis (a) and in the medial-
lateral(ML) axis (b). Groups were infants with typical development (TD) and infants with
delayed development (DD). Error bars indicate +/− 1 std.
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Figure 5.
Spectral analysis of infant sitting postural sway in the anterior-posterior axis. Plotted in
black is the average periodogram for all trials for infants with developmental delay, early
sitting (a), advanced sitting (b), and infants with typical development, early sitting (c) and
advanced sitting (d). To aid in visual comparison, plotted in grey on all four plots is the
average periodogram for all trials of the developmentally delayed, early sitting. Artifacts
seen at 30 Hz are due to electrical power distribution, and are not related to infant sitting.
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Figure 6.
Spectral analysis of infant sitting postural sway in the medial-lateral axis. Plotted in black is
the average periodogram for all trials for infants with developmental delay, early sitting (a),
advanced sitting (b), and infants with typical development, early sitting (c) and advanced
sitting (d). To aid in visual comparison, plotted in grey on all four plots is the average
periodogram for all trials of the developmentally delayed, early sitting. Artifacts seen at 30
Hz are due to electrical power distribution, and are not related to infant sitting.
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