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Powerful SNP-Set Analysis for Case-Control
Genome-wide Association Studies

Michael C. Wu,1 Peter Kraft,2,3 Michael P. Epstein,4 Deanne M. Taylor,2 Stephen J. Chanock,5

David J. Hunter,3 and Xihong Lin2,*

GWAS have emerged as popular tools for identifying genetic variants that are associated with disease risk. Standard analysis of a

case-control GWAS involves assessing the association between each individual genotyped SNP and disease risk. However, this approach

suffers from limited reproducibility and difficulties in detecting multi-SNP and epistatic effects. As an alternative analytical strategy, we

propose grouping SNPs together into SNP sets on the basis of proximity to genomic features such as genes or haplotype blocks, then

testing the joint effect of each SNP set. Testing of each SNP set proceeds via the logistic kernel-machine-based test, which is based on

a statistical framework that allows for flexible modeling of epistatic and nonlinear SNP effects. This flexibility and the ability to naturally

adjust for covariate effects are important features of our test that make it appealing in comparison to individual SNP tests and existing

multimarker tests. Using simulated data based on the International HapMap Project, we show that SNP-set testing can have improved

power over standard individual-SNP analysis under a wide range of settings. In particular, we find that our approach has higher power

than individual-SNP analysis when the median correlation between the disease-susceptibility variant and the genotyped SNPs is

moderate to high. When the correlation is low, both individual-SNP analysis and the SNP-set analysis tend to have low power. We apply

SNP-set analysis to analyze the Cancer Genetic Markers of Susceptibility (CGEMS) breast cancer GWAS discovery-phase data.
Introduction

The identification of SNPs that are associated with risk

for developing complex disease is an important goal of

modern genetics studies. The hope is that such knowledge

can ultimately be used both for understanding the biolog-

ical mechanisms underlying these diseases and for gener-

ating individualized risk profiles that are useful in a public

health context. To this end, GWAS have emerged as a

popular tool for identifying common genetic variants for

complex disease. A standard case-control GWAS for identi-

fying SNPs associated with disease susceptibility involves

genotyping a large number of SNPs, on the order of

hundreds of thousands, in thousands of individuals with

the disease (cases) and thousands of healthy controls,

with the goal of identifying individual loci that are associ-

ated with the outcome. Such studies have been success-

fully used to identify SNPs associated with susceptability

to diseases such as breast cancer1,2 (MIM 114480), prostate

cancer3–5 (MIM 176807), and type 2 diabetes6–8 (MIM

125853).

A typical GWAS consists a discovery phase, in which an

initial set of promising susceptibility loci are identified,

followed by a validation stage, in which the SNPs identified

in the initial discovery phase are replicated in a separate

study cohort.9 The standard approach for analyzing

GWAS in the discovery phase involves individual-SNP

analysis. This mode of analysis often involves regressing

the phenotype onto each individual typed SNP and gener-

ating a parametric p value. The SNPs are then ranked on

the basis of their individual p values, and a threshold is set
1Department of Biostatistics, The University of North Carolina at Chapel Hill, C

Public Health, Boston, MA 02115, USA; 3Department of Epidemiology, Harvar

Genetics, Emory University, Atlanta, GA 30322, USA; 5Division of Cancer Epide

*Correspondence: xlin@hsph.harvard.edu

DOI 10.1016/j.ajhg.2010.05.002. ª2010 by The American Society of Human

The Ame
such that all SNPs with a p value less than that threshold

will be pushed forward for validation. The threshold can

be based on reaching a multiple-comparison-adjusted sig-

nificance level or a level based on nonanalytical means.

Although the use of individual-SNP analysis has proven

useful in identifying many disease-susceptibility variants,

this mode of analysis may be limited in some settings

because of difficulty in reaching genome-wide significance.

More specifically, in order to control the overall type I error

rate, the level at which each test is conducted must be

adjusted. Because of the large number of considered

hypotheses, the threshold for genome-wide signficance

can be very extreme and difficult to attain: for a GWAS

examining the effects of 500,000 SNPs, each test is con-

ducted at the a ¼ 10�7 level, which is very stringent.

Additionally, individual-SNP analysis is often limited by

poor reproduceability; many of the highly ranked SNPs

in the discovery phase are false positives and cannot be

validated. This is largely due to the restricted power for

detecting SNPs with small effects that are truly associated

with the outcome. In particular, individual SNPs that are

genotyped on GWAS platforms often show only modest

effects. One explanation for this is that the true causal

SNP is rarely genotyped but there are typed SNPs that are

in linkage disequilibrium (LD) with the causal SNP. In

this case, when individual-SNP analysis is used, the typed

SNPs in LD with the causal SNP will each show only

moderate effects because each typed SNP serves as an

imperfect surrogate for the causal SNP. Thus, it could be

advantageous to consider the joint effect of multiple

SNPs in analysis,10 because it is probable that several of
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these markers are in LD with the causal SNP and could

capture the true effect more effectively than could indi-

vidual-SNP analysis. Finally, individual-SNP analysis

considers only the marginal effect of each SNP and there-

fore fails to accommodate epistatic effects. Epistatic interac-

tions between SNPs can contribute to disease susceptibility

such that individual SNPs may show little individual effect

but their interactions may have a much larger effect. Indi-

vidual-SNP analysis will not be able to detect such effects,

which, more generally, are difficult to find because of the

large number of potential interactions.11

As an alternative strategy for analysis, we propose

grouping SNPs together into SNP sets along the genome

and performing genome-wide tests for individual SNP

sets instead of individual SNPs. SNP-set-based analysis

borrows information from different but correlated SNPs

that are grouped on the basis of prior biological knowledge

and hence has the possibility of providing results with

improved reproducibility and increased power, especially

when individual-SNP effects are moderate, as well as

improved interpretability. This mode of analysis proceeds

via a two-step procedure. First, SNPs are assigned to SNP

sets on the basis of some meaningful biological criteria

(genomic features); e.g., genes. Then, tests for the associa-

tion between each genomic feature and a disease pheno-

type are performed with the use of a logistic kernel-

machine-based multilocus test, across the genome.

SNP-set analysis can prove advantageous over the

standard analysis of individual SNPs. By forming SNP sets

and testing each SNP set as a unit, we are reducing the

number of hypotheses being tested and thus relaxing the

stringent conditions for reaching genome-wide signifi-

cance. Grouping SNPs together properly, we will have

improved power in settings where SNPs are individually

only moderately significant. In particular, though any

single SNP may serve as a poor surrogate for an untyped

causal SNP, by considering multiple typed SNPs, we will

be better able to capture the true effect of the untyped

causal SNP. Furthermore, if there are multiple independent

causal SNPs, by considering their joint effects, we will have

power to detect their joint activity.

To test each SNP set within a case-control GWAS, we

propose a general semiparametric kernel-based testing

procedure that is tailored toward high-dimensional genetic

data. Specifically, this test will combine the logistic kernel-

machine testing approach of Liu et al.12 with the kernel

framework suggested by Kwee et al.13 As we will show, the

logistic kernel machine has appealing features for SNP-set

analyses. The testing framework is powerful and allows for

great flexibility in the functional relationship between the

SNPs in a SNP set and the outcome. Thus, the method can

easily account for complex SNP interactions and nonlinear

effects. Combined with the ability to seamlessly adjust for

covariate effects and the fast computational efficiency of

our method, this flexibility gives the logistic kernel-

machine-based test significant advantages over both

individual SNP tests and existing multimarker tests.
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Broadly speaking, our work advances the field in three

important ways. First, we develop SNP-set analysis as an

alternative to standard individual-SNP analysis and discuss

principled approaches for forming SNP sets based on

genomic features. Second, we develop a powerful statistical

modeling and testing framework for genetic effects, which

has a number of practical advantages over other multi-

marker tests: our approach is computationally efficient

and naturally accommodates covariate adjustment,

nonlinear effects, and epistasis. Third, we will demonstrate

through thorough numerical studies and data applications

that our approach can have substantially improved power

over standard individual-SNP testing and, by extension,

over the many multimarker tests that individual-SNP

testing tends to dominate.

The remainder of this article is organized as follows. In

the next section, we describe our proposed SNP-set analysis

framework, including how to form SNP sets and how to

subsequently test SNP sets. Then we will present simula-

tion results comparing our approach to individual-SNP

analysis and two existing multi-SNP tests. Finally, we will

apply logistic kernel-machine-based SNP-set analysis to

the Cancer Genetic Markers of Susceptibility (CGEMS)

breast cancer data from the discovery phase. We will

conclude with a brief discussion.
Material and Methods

SNP-set-based analysis borrows information from different but

correlated SNPs that are grouped on the basis of prior biological

knowledge and hence provides results with improved reproduc-

ibility and increased power, especially when individual-SNP effects

are moderate. This mode of analysis proceeds via a two step proce-

dure. First, across the genome, SNPs are assigned to a SNP sets on the

basis of some meaningful biological criteria such as proximity to

genomic features—SNP sets of a single SNP are possible. If we

wished to perform genome-wide SNP-set analysis of a GWAS con-

ducted on the Illumina HumanHap500 array by grouping SNPs

on the basis of genes, we could generate approximately 18,000

SNP sets, each of which consisted of the SNPs within a single

gene. For example, the 14 genotyped SNPs within the ASAH1

(MIM 228000) gene could be assigned to a single SNP set and the

four genotyped SNPs within the NAT2 (MIM 612182) gene could

be assigned to another SNP set, and so on. After the groupings are

made, each of the 18,000 SNP sets is tested with the use of a multi-

locus test, and the genome-wide significance of the SNP set, e.g.,

each gene, is calculated. Although a number of tests have been

proposed,14,15 we consider an extension of the logistic kernel-

machine test, which was developed in the gene-expression-

profiling setting, which we tailor for analysis of GWAS. In this

section, we describe possible methods for grouping SNPs in

a genome-wide scan into SNP sets and then we present the logistic

kernel-machine test for evaluating the significance of each SNP set.

Forming SNP Sets
A key aspect of our proposed approach is the formation of mean-

ingful SNP sets. In principle, a SNP set may be formed via any

grouping of SNPs, and our testing approach is still valid in the

sense that the type I error rate will always be protected. However,
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better groupings can be made on the basis of prior biological

knowledge and, if done properly, can lead to additional gains in

power. In particular, the key advantages of our approach may be

found in the ability to reduce the number of multiple compari-

sons, to harness correlation between SNPs, to measure the joint

effect of independent SNPs, and to make a direct inference on a

biologically meaningful genomic feature. Some natural ways of

forming SNP sets that can capitalize on these advantages include

grouping SNPs on the basis of genomic features. We describe

below some natural grouping structures.

A natural grouping strategy is to take all SNPs that are located in

or near a gene, a fundamental unit of the genome, and group

them to form a SNP set. In particular, one can take all SNPs

between the start and end of transcription as well as SNPs that

are upstream and downstream of the gene, in order to capture

regulatory regions, as a single SNP set. In grouping on the basis

of known genes, we can significantly reduce the number of

multiple comparisons. The SNPs on the Illumina HumanHap

500 array correspond to approximately 17,800 genes in contrast

to the original 530,000 SNPs. Because we take the entire gene

region, not just exonic regions, we expect to have many typed

SNPs that are correlated, and thus the logistic kernel-machine

test will have good power to detect a significant SNP-set effect.

We could also expect multiple SNPs within a gene to be associated

with disease risk, and this grouping structure would allow us to

detect this effect. Testing gene-based SNP sets also makes a direct

inference on the association between the gene and the case-

control status.

An extension of gene-based SNP-set analysis is to group SNPs on

the basis of whether they are located within a gene pathway from

the Kyoto Encyclopedia of Genes and Genomes (KEGG)16 or a

Gene Ontology Consortium functional category.17 Making infer-

ence on a pathway further reduces the number of multiple

comparisons and still allows inference on a biologically meaning-

ful unit. The logistic kernel-machine test will be able to harness

local LD to have power and will, additionally, be able to capture

true pathway effects when several SNPs in multiple genes are

related to the disease.

Although many variants associated with disease have been

identified within gene regions, many lie outside of the boundaries

of known genes (and hence pathways). To augment coverage of

the genome, a possible strategy would be to group SNPs within

evolutionarily conserved regions. Increased evolutionary conser-

vation of a genomic region is suggestive of increased importance

or functionality.18 Significance of such a SNP set would potentially

indicate that there is a genomic feature present that is related to

disease risk, even if the feature is not well understood.

Finally, approaches to forming SNP sets that can achieve full

coverage of the genome by placing all SNPs into SNP sets include

grouping SNPs via a moving window or via haplotype blocks. For

example, one could divide the genome into a fixed number of

adjacent regions, purely on the basis of length, and treat all

SNPs within a region as a SNP set. Alternatively, one could build

SNP sets based on haplotype blocks, such as through Haploview.19

Both approaches will still allow us to harness local correlation to

capture the effect of untyped SNPs.

An important limitation of employing a gene- or pathway-based

approach is the omission of intergenic regions. However, use of

additional grouping strategies, e.g., conserved regions, can

augment coverage, and using the moving window and haplotype

block can provide comprehensive coverage of the entire genome.

Although we wish to group SNPs that are near one another to
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harness correlation, this does not allow us to capture multi-SNP

or epistatic effects among SNPs in separate SNP sets. Using gene-

pathway-based SNP sets could ameliorate this issue, because this

looks across individual continuous regions. Groupings based on

strategies beyond the ones that we have considered are also

possible.

As noted above, we emphasize that although well-formed SNP

sets can optimize the power and interpretability of our SNP-set

testing strategy, our logistic kernel-machine testing approach is

statistically valid irrespective of the grouping scheme. For illustra-

tion, we will focus on SNP sets formed on the basis of proximity to

each of 18,000 known genes.
Genome-wide SNP-Set Testing
Although we propose our strategy as a genome-wide approach, we

will present the testing procedure by focusing on testing a single

SNP set.

In this paper, we assume that a population-based case-control

GWAS was conducted in which n independent subjects were

genotyped. To employ our SNP-set analysis approach, we first

group the SNPs into SNP sets across the genome. Then, for a given

SNP set containing p SNPs, let zi1, zi2, ., zip be genotype values for

the SNPs in the SNP set for the ith subject (i ¼ 1,.,n). The case-

control status for the ith subject is denoted by yi (yi ¼ 1 for cases,

and yi ¼ 0 for controls). We assume without loss of generality

that the SNPs are coded in a trinary fashion, with zij ¼ 0, 1, 2

corresponding to homozygotes for the major allele, heterozygotes,

and homozygotes for the minor allele, respectively. This corre-

sponds to the commonly employed additive model of allelic

effect, but we note that alternative models, such as the dominant

and recessive models, are also possible and can be tested within

our framework. We further assume that for each individual,

an additional set of m demographic, environmental, or other

confounding variables is collected. For the ith subject, we let

xi1, xi2, ., xim denote the values of the covariates that we would

like to adjust for. The goal of SNP-set analysis is then to test the

global null of whether any of the p SNPs are related to the outcome

while adjusting for the additional covariates.

In principle, many multilocus testing approaches could be used

for evaluating the significance of the SNPs in the SNP set, but to

harness correlation and accommodate complex relationships

between the SNPs and the outcome and epistatic effects, we

propose a new approach of testing the SNP set by modeling each

SNP set’s effect in a flexible fashion while adjusting for additional

covariate effects. At the same time, to overcome the issue of the

large number of degrees of freedom, our strategy will employ a

test that adaptively estimates the degrees of freedom by

accounting for correlation (LD) among the SNPs. Specifically, we

will choose to use the logistic kernel-machine regression modeling

framework and a corresponding score test.12

Logistic Kernel-Machine Model

In evaluating the significance of a SNP set, we need to employ a

strategy that allows us to model, and subsequently test, the effects

of multiple SNPs that have been grouped in a biologically mean-

ingful fashion. The kernel-machine framework has become very

popular for modeling high-dimensional biomedical data because

of its ability to allow for complex/nonlinear relationships between

the dependent and independent variables20,21 while adjusting for

covariate effects. We consider a logistic kernel-machine regression

model for the joint effect of the SNPs in the SNP set and the

additional covariates that we would like to adjust for. Under the
rican Journal of Human Genetics 86, 929–942, June 11, 2010 931



notation above, for the ith individual, we have the semiparametric

model given by

logit P
�
yi ¼ 1

�
¼ a0 þ a1xi1 þ.þ amxim þ h

�
zi1,zi2,.zip

�
,

(Equation 1)

in which a0 is an intercept term and a1, ., am are regression coef-

ficients corresponding to the environmental and demographic

covariates. The SNPs, zi1, ., zip, influence yi through the general

function h($), which is an arbitrary function that that has a form

defined only by a positive, semidefinite kernel function K($, $).

Our primary aim is to adequately model the SNPs and evaluate

their effect, so h($) is the model component in which we have

primary interest because it fully determines the relationship

between genotypes of the SNPs in the SNP set and disease risk.

Leaving h($) only generally specified permits a modeling frame-

work that accommodates complex relationships between the

SNPs and risk as well as epistatic effects.

We omit the mathematical details, but when using the repre-

senter theorem,22 we note that h(zi1, zi2, ., zip) in Equation 1 is

equal to hi ¼ hðZiÞ ¼
Pn

i0¼1gi0KðZi,Zi0 Þ for some g1, ., gn. This

shows that h($) is fully defined by the kernel function K($, $).

Details on the mathematical relationships and estimation may

be found in Liu et al.12 and Cristianini et al.,20 but the key is

that by choosing different kernel functions, we can specify

different, possibly complex, bases and corresponding models.

For example, if we define K($, $) to be the linear kernel such that

KðZi,Zi0 Þ ¼
Pp

j¼1zijzi0 j then we are implicitly assuming the simple

logistic model defined by

logit P
�
yi ¼ 1

�
¼ a0 þ a1xi1 þ.þ amxim þ b1zi1 þ b2zi2.þ bpzip,

in which bj is a regression coefficient corresponding to the jth SNP.

To specify a more complicated model, we need only change our

choice of K($, $).

From the above, it is apparent that the choice of kernel changes

the underlying basis for the nonparametric function governing

the relationship between case-control status and the SNPs in the

SNP set. Essentially, K($, $) is a function that projects the genotype

data from the original space to another space and then h($) is

modeled linearly in this new space, such that if one considers h

on the original space, it can be highly nonlinear. More intuitively,

however, K(Zi, Zi0) can be viewed as a function that measures the

similarity between two individuals, the ith and i0th subject, on the

basis of the genotypes of the SNPs in the SNP set. Taking this

perspective, many choices for K are possible. Some specific kernel

functions that we can consider include the linear, identical-by-

state (IBS), and weighted IBS kernels.

The linear kernel is KðZi,Zi0 Þ ¼
Pp

j¼1zijzi0 j which is the usual

inner product between the covariate vectors for subject i and i0.

As described earlier, this kernel assumes a set of basis functions

that spans the original covariate space such that one is implying

a linear relationship between the logit of the probability of being

a case and the genotypes of the SNPs in the SNP set; i.e., the usual

multiple-logistic-regression model.

The Gaussian kernel is KðZi,Zi0 ; dÞ ¼ exp{�
Pp

j¼1ðzij � zi0 jÞ2=d}
and assumes the radial basis, which is difficult to characterize

with the use of an explicit set of basis functions. The class of

models generated by the Gaussian kernel can be very broad

and includes the linear model as a special case. Here, d is

a parameter that approximately controls curvature of the kernel

function, such that larger values of d correspond to smoother h

functions.
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The IBS kernel is KðZi,Zi0 Þ¼
Pp

j¼1 2Iðzij¼ zi0 jÞ þ Iðjzij � zi0 jj¼
�

1Þ =2pg . In genetics, a possible metric for evaluating distance

between individuals on the basis of genotype information is the

number of alleles with IBS sharing by a pair.15 As shown by

Kwee et al.,13 this may also be used as a valid kernel function.

The weighted IBS kernel is KðZi,Zi0 ; wÞ ¼
Pp

j¼1wj 2Iðzij ¼ zi0 jÞþ
�

Iðjzij � zi0 jj ¼ 1Þ =2pg , in which wj ¼ 1=
ffiffiffiffi
qj
p

and qj is the minor allele

frequency (MAF) for the jth SNP in the SNP set. The weighted IBS

kernel is an extension of the IBS kernel that up-weights for simi-

larity in rare alleles. The idea is that similarity in rare alleles is

more informative than similarity in common alleles.

The ability to model data by using the Gaussian and IBS kernels

is an advantage of using the kernel-machine framework, because

formulating an explicit set of basis functions can be difficult.

Alternative kernel functions, such as those discussed in Wei and

Schaid23 and in Mukhopadhyay et al.,24 are possible and can be

designed for specific data sets. To be a valid kernel function,

K($, $) needs to be positive and semidefinite and to satisfy the

conditions of Mercer’s theorem.20

Logistic Kernel-Machine Test

Here, our focus is on hypothesis testing, for which we need only to

estimate a under the null hypothesis that h(Zi) ¼ 0. Therefore, we

omit the technical details on estimating the genetic effect, h(Z),

from the SNP set and refer the reader to Liu et al.12

The above modeling framework leads naturally to a powerful

test for association between the SNPs in the SNP set and the

case-control status. Note that the probability that the ith subject

is a case depends on the SNPs only through the function h(Zi).

Thus, in order to test whether there is a true SNP-set effect, we

can consider the null hypothesis that

H0 : hðzÞ ¼ 0 (Equation 2)

against the general alternative. To test this hypothesis, Liu et al.12

exploit the connection between the kernel-machine framework

and generalized linear mixed models (GLMM). Specifically, letting

K be the n 3 n matrix with the (i, i0)th element equal to K(Zi, Zi0), it

is straightforward to see that h¼K g, in which h¼ [h1, ., hn]0. We

can treat h as a subject-specific random effect, then via the GLMM

connection, h follows an arbitrary distribution F with a mean of

zero and a variance of tK. Note that t indexes the effect of the

SNPs in the SNP set such that

H0 : hðZÞ ¼ 05H0 : t ¼ 0:

Thus, we need only to test whether the indexing parameter t is

significantly different than zero. This can proceed via the variance-

component score test of Zhang and Lin25 using the statistic

Q ¼
�
y� bp0

�0K�y� bp0

�
2

: (Equation 3)

in which logit bp0i
¼ ba0 þ ba1xi1 þ ba2xi2 þ/þ bamxim. Because this

is a score test, ba0 and baj are estimated under the null model, which

does not contain h, so we can use the standard estimate from the

logistic-regression model without the genotypes. To compute a

p value for significance, we can compare Q to a scaled c2 distribu-

tion with scale parameter k and degrees of freedom n. Details on

calculating k and n are found in Appendix A.

The adaptive estimation of the degrees of freedom, n, constitutes

a key advantage of the logistic kernel-machine test. In particular, if

the R2 between the SNPs in the SNP set increases, then n decreases

such that if all the SNPs are perfectly correlated, n/1. It follows

that for a given h($), higher correlation is likely to lead to higher
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power, suggesting that the logistic kernel-machine test improves

the power for SNP-set testing by harnessing the correlation

between SNPs and adaptively estimating n.

In general, it can be difficult to identify a priori whether it is the

minor allele or the major allele that is associated with increased

disease risk and, equivalently, whether the minor allele is protective

or deleterious. The logistic kernel-machine test is not affected by

the directionality of effect, and its power is robust to whether the

minor alleles of the causal SNP are protective or deleterious (or

a combination of both in settings with multiple causal variants).

The testing framework considered here has similarities to those

of Schaid et al.,10 Mukhopadhyay et al.,24 and Wessel and

Schork,15 which we describe below in that all three approaches

are based on genetic distances among subjects. However, the

kernel framework allows for improved flexibility in the functional

relationship.

Existing Multi-SNP Tests

Although other multi-SNP tests could be used for evaluating the

significance of each SNP set, the kernel machine has advantages

over each of these. Here, we briefly discuss some alternative tests

that fall into several different categories.

The first class of multi-SNP test encompasses the multimarker

methods that are based on individual-SNP analysis. In particular,

a common approach for evaluation the significance of a set of

markers is to apply individual-SNP analysis by testing the indi-

vidual significance of each SNP, using the most significant p value

as the p value for the set of loci, and then correcting for having

done multiple tests via Monte Carlo methods26 or by estimating

the effective number of tests.27–29 Alternatively, the test statistics

from each of the individual tests can be combined.30 However,

such tests still rely strongly on individual-SNP analysis, and

when the individual SNPs are not in high LD with the causal

variant, they may have low power, because they do not borrow

information across SNPs that are frequently correlated. Further-

more, they cannot accommodate complex genetic effects and

interactions. Our simulations will verify that the logistic kernel-

machine test often has improved power over this class of test.

Omnibus tests for multiple SNPs or haplotypes via multivariate

regression10,31 allow for simultaneous analysis of all SNPs, but

studies have shown that such methods often offer little benefit

over methods based on individual-SNP analysis,32,33 because

they are based on a large number of degrees of freedom. To reduce

the degrees of freedom, a set of multimarker tests that compare

pairwise genetic similarity with pairwise trait similarity were

proposed by Schaid et al.,14 Wessel and Schork,15 and Mukhopad-

hyay et al.24 All three approaches are attractive; however, as noted

by Mukhopadyay et al., an important limitation of Schaid et al.’s

approach is that it assumes all variants have the same direction

of effect, i.e., all the minor alleles for each SNP increase risk or

all minor alleles decrease risk. Although the methods of Wessel

and Schork and Mukhopadhyay et al. are robust to directionality,

both evaluate significance via computationally expensive permu-

tation which may be impractical for some GWAS settings. None of

the three similarity based methods allow for easy covariate adjust-

ment. The logistic kernel-machine test also considers pairwise

similarity and shares the attractive nonparametric SNP effects

model, but in addition to using a computationally efficient score

test and being robust to directionality, the logistic kernel-machine

model naturally incorporates covariate effects, an important

feature. Beyond adjusting for confounders and population struc-

ture, it is often necessary to adjust for highly significant SNPs in

GWAS to distinguish between settings where a particular signifi-
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cant marker is the causal SNP (or a SNP in high LD with the causal

SNP), versus settings where additional independent markers that

are associated with disease are present. A third similarity based

approach by Tzeng and Zhang34 can be seen as a special case of

the more general logistic kernel-machine test that focuses exclu-

sively on haplotype similarity. The need to phase sample haplo-

types from genotype data incurs additional computational

expense and variability—particularly for larger SNP sets.

A final class of multimarker tests consists of methods that

leverage explicit population-genetics models to pinpoint the

causal locus. Many involve reconstructing the sample phylogeny

to guide the analysis and infer the causal mutation.35,36 If the

population-genetics model assumed is realistic and correct, such

problem-specific methods should have high power. However, it

is difficult to validate the assumed models, and most procedures

are computationally intensive, such that in real applications the

models need to be simplified. Once again, these models usually

fail to allow for covariate adjustment. Computational efficiency

and ease of covariate adjustment give a practical advantage to

the logistic kernel-machine regression test.
Simulations
To evaluate the performance of our SNP-set analysis approach, we

study the logistic kernel-machine test in the genetics framework

by considering its empirical performance under a variety of

settings. For simplicity of implementation, all causal SNPs in our

simulations are assumed to increase disease risk, but it is important

to note that none of the methods that we consider are affected by

the direction of effect.

Simulations Based on the ASAH1 Gene

We first investigate the size and power of the kernel-machine

testing framework under a setting in which the SNP set is gener-

ated on the basis of the LD structure of a single gene, which will

allow us to better understand under which settings our SNP-set

analysis approach is most advantageous. We considered the

ASAH1, NAT2, and FGFR2 (MIM 176943) genes, but for clarity,

we present only the simulation configurations and the results

based on the ASAH1 gene. The simulations and results from use

of the NAT2 and FGFR2 genes were qualitatively similar.

ASAH1, acid ceramidase 1, is a 28.5-kb-long gene with 86

HapMap SNPs and is located at 8p21.3-p22. Expression is associ-

ated with prostate cancer,37 and mutations in the gene are known

to be associated with Farber disease38 (MIM 228000). We based our

gene-specific simulations on the LD structure of the ASAH1 gene

and used HAPGEN39 and the CEU sample (CEPH [Utah residents

with ancestry from northern and western Europe]) of the Interna-

tional HapMap Project40 to generate SNP genotype data at each of

the 86 loci.41 A total of 14 out of 86 SNPs are genotyped with the

use of the Illumina HumanHap500 array. These will be the ‘‘typed’’

SNPs that we use for our simulated analysis.

We first conducted simulations to verify that the logistic kernel-

machine test properly controls the type I error rate. To investigate

the empirical size of our test, we conducted simulations in which

we generated n/2 cases and n/2 controls under the null logistic

model in which disease risk does not depend on the genotype:

logit P
�
yi ¼ 1 jXi

�
¼ a0 þ a

0Xi, (Equation 4)

in which Xi is a vector of covariates. We considered n¼ 1000, 2000

and also considered the use of the linear, IBS, and weighted IBS

kernels. For each choice of n and kernel function, we generated

5000 data sets by using HAPGEN. To ensure that our simulations
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are realistic, although our simulations generated all 86 HapMap

SNPs, we apply our testing approach only to the 14 typed SNPs.

Specifically, we group the 14 SNPs as a SNP set based on the

ASAH1 gene and then we apply the logistic kernel-machine test

to compute a p value evaluating the effect of the SNPs in the SNP

set while adjusting for covariates in X. For comparison, we also

analyzed the 14 typed SNPs as we would have done under an indi-

vidual-SNP analysis: we tested the significance of each of the 14

SNPs individually, while again adjusting for covariates in X, and

then adjusted the individual p values via a modified Bonferroni

correction in which the effective number of tests was computed

via two approaches. First, we used the method of Moskvina

et al.29 Second, we estimated the effective number of tests as the

number of principal components necessary to account for 99% of

the variability.42 The two approaches were approximately concor-

dant. The smallest p value, corrected for the effective number of

tests, was taken as the p value for the entire SNP set. The size for indi-

vidual-SNP analysis testing was again the proportion of p values less

than a ¼ 0.05.

To compute the empirical power for a SNP set, we generated data

sets with n/2 cases and n/2 controls under the alternative logistic

model:

log it P
�
yi ¼ 1 jXi

�
¼ a0 þ a

0Xi þ bczc
i , (Equation 5)

in which zi
c is the genotype for the ‘‘causal’’ SNP, bc is the log

genetic odds ratio (OR) for the causal SNP, and Xi are a vector of

additional covariates. Note that under each simulation configura-

tion we allow only a single causal SNP. Each of the 86 HapMap

SNPs was set to be the ‘‘causal’’ SNP in turn. Setting bc¼ 0.2, which

corresponds to a genetic OR of 1.22, we again considered sample

sizes n ¼ 1000, 2000. For each choice of n, and for each of the

86 causal SNPs, we generated 2000 data sets. We again applied

our testing approach to each data set by grouping the 14 typed

SNPs and computing a p value for the significance of the SNP set,

while adjusting for covariates in X, via the logistic kernel-machine

test under a linear kernel. We emphasize that only the 14 typed

SNPs were used so the causal SNP is unobserved under most

configurations. For each configuration, we then computed the test

power as the proportion of p values less than the a level ¼ 0.05.

This was compared with the power based on the individual-SNP

analysis with the modified Bonferroni correction approach

described above.

Simulations Based on Randomly Sampled Genes

We also evaluate the power of our approach under settings in

which the LD structure of the simulated SNP sets varied across a

wide range of possible genes. Specifically, we generated 20,000

SNP sets by using HAPGEN, in which each SNP set is based on a

real gene on chromosome 10. This allows for 670 possible SNP

sets. Within each SNP set, we randomly selected one HapMap

SNP to be the causal SNP and again generated n/2 cases and n/2

controls based on a model given by Equation 5, with bc again fixed

at 0.2 (OR ¼ 1.22). Again treating the SNPs on the Illumina

HumanHap 500K array as the typed SNPs, we tested the signifi-

cance of the SNP set by using the logistic kernel-machine test

under a linear kernel. We also apply the individual-SNP analysis

testing procedure described above. Thus, for both our method

and the competing individual-SNP analysis test, we computed

20,000 p values for significance.

Comparisons with Alternative Multi-SNP Tests

As discussed previously, in principle, any multi-SNP test can be

used to test the significance of a SNP set. However, the kernel-
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machine test is advantageous in that it adaptively finds the degrees

of freedom of the test statistic in order to account for LD between

genotyped markers, can permit complex relationships between

the SNPs and the outcome, naturally allows for covariate adjust-

ment, and is computationally efficient because no permutation

is required. To provide additional empirical results, we compare

the logistic kernel-machine test to the similarity-based testing

approach of Mukhopadhyay et al.24 and the approach of Wessel

and Schork,15 which has been found to perform well relative to

other multi-SNP tests.23 We assessed the power under five models

and the test size under two additional models. For each of the five

models examining power, 500 simulations were conducted, and

1000 simulations were conducted under the two models exam-

ining the test size. For all seven models, we assumed sample sizes

of 500 cases and 500 controls, 1000 permutations were used to

compute the p values for the methods of Wessel and Schork and

Mukhopadhyay et al., and power and size were computed as the

proportion of p values less than 0.05.

We first compare the power of the methods under four alternative

models using SNP sets based on the ASAH1 gene. Under model 1, the

data sets were simulated under the alternative logistic model based

on Equation 5, in which the causal variant was fixed to be rs3810

(the third in the SNP set), one of the 14 typed SNPs, with bc again

fixed at 0.2 (OR ¼ 1.22). Model 2 was similar to model 1, except

that we change the causal SNP to be rs7825389 (the 69th SNP), an un-

typed SNP. Model 3 was again similar to the earlier models, except

that we allow for two causal variants, rs10105871 and rs7825389,

which are the 63rd and 69th SNPs in the ASAH1 SNP set, respectively.

Both SNPs are in the same LD block, and rs10105871 is typed

whereas rs7825389 is untyped. The effect size for both causal SNPs

was set at 0.2. Model 4 is identical to model 3, but here we have

two untyped causal SNPs that are in different LD blocks, rs4377998

and rs7825389, which are the 43rd and 69th SNPs, respectively.

Under model 5, we compared the power under the setting

considered by Mukhopadhyay et al., in which ten independent

markers in Hardy-Weinberg equilibirium with MAF ¼ 0.05 are

simulated. Two of the ten markers were causal, with relative risks

of 1.25 under an additive model, and all ten markers were consid-

ered to be genotyped. No additional covariates are present.

We compare the type I error rate control of the logistic kernel-

machine test and the approaches by Wessel and Schork and

Mukhopadhyay et al. Specifically, under model 6, we simulated

null data sets based on Equation 2 and the ASAH1 gene. We

applied both approaches to each of the data sets to estimate

p values for the significance of the SNPs in the SNP set, and the

size for each approach was estimated as the proportion of p values

less than the 0.05 significance level. Model 7 is similar to model 6,

but we generate an additional demographic covariate that is corre-

lated with rs3810 (r ¼ 0.065), the third SNP in the SNP set.

CGEMS Breast Cancer Data
To demonstrate the applicability and power of our approach on

real data, we apply SNP-set analysis to real GWAS data and contrast

our results with those found under individual-SNP analysis.

The Cancer Genetic Markers of Susceptibility (CGEMS) breast

cancer study1 was conducted to identify individual SNPs associ-

ated with breast cancer risk. To this end, in the discovery phase,

1145 cases with invasive breast cancer and 1142 controls were

genotyped at 528,173 loci with the use of an Illumina Human-

Hap500 array. All subjects were postmenopausal women of Euro-

pean ancestry recruited from the Nurses Health Study. The results

of the top SNPs from the discovery phase are given in Table 1. In
2010



Table 1. Top Results from the Discovery Phase of the CGEMS
Breast Cancer GWAS

SNP Chromosome Gene p Value

rs10510126 10 2.0 3 10�6

rs12505080 4 8.0 3 10�6

rs17157903 7 RELN 9.0 3 10�6

rs1219648 10 FGFR2 1.2 3 10�5

rs7696175 4 TLR1, TLR6 1.4 3 10�5

rs2420946 10 FGFR2 1.5 3 10�5

rs2107349 7 AZGP1, AZGP1P2 1.7 3 10�5

rs6497337 16 SYT17 2.0 3 10�5

rs1250255 2 FN1 3.4 3 10�5

rs10804287 2 3.8 3 10�5

Table 2. Empirical Type I Error Rates at a ¼ 0.05 for the Logistic
Kernel-Machine Test and Individual-SNP Analysis when Applied to
SNP Sets Simulated from the ASAH1 Gene

Logististic Kernel-Machine Test

n
Individual-SNP
Analysis

Linear
Kernel IBS Kernel

Weighted
IBS Kernel

1000 0.049 0.052 0.046 0.055

2000 0.048 0.047 0.053 0.052
the initial validation study, the top six SNPs as well as two others

in the FGFR2 gene were genotyped in an independent set of 1776

cases and 2072 controls. A SNP within FGFR2 was validated and

found to be associated with risk of breast cancer. Note that the

SNPs in FGFR2 were not the top-ranked variants and that the vari-

ants within FGFR2 do not reach genome-wide significance with

the use of either the Bonferroni correction or a false discovery

rate (FDR) correction in the initial scan.

To evaluate the performance of SNP-set analysis with the logistic

kernel-machine-based test, we applied it to reanalysis of the

CGEMS breast cancer data. Specifically, we formed SNP sets by

grouping SNPs that lie within the same gene. To ensure that

SNPs with possible gene-regulatory roles were also included in

the SNP sets, we grouped all SNPs from 20 kb upstream of a gene

to 20 kb downstream of a gene. Using these criteria, we were

able to assemble a total of 17,774 SNP sets that consisted of

310,219 unique typed SNPs. We tested each of the gene-based

SNP sets by using the logistic kernel-machine test under the linear

kernel, the IBS kernel, and the weighted IBS kernel. SNPs were

coded in the additive mode, and we adjusted for parametric effects

of age group, whether the individual had hormone therapy, and

the first four principal components of genetic variation to control

for population stratification.43
Results

Empirical Size and Power Based on the ASAH1 Gene

The size results for the logistic kernel-machine test and

individual-SNP analysis are presented in Table 2. On the

basis of our simulations, the logistic kernel-machine test

has correct size for the kernels and has sample sizes cor-

rected, and therefore, our overall strategy of logistic

kernel-machine-based SNP-set analysis protects the type I

error rate. Individual-SNP analysis with modified Bonfer-

roni correction also has correct size. As expected, the

average effective number of tests over the 5000 replicates

was stable irrespective of sample size: 8.22 for n ¼ 1000

and 8.23 for n ¼ 2000.

We present the empirical power results for simulation

based on the ASAH1 gene in the top panel of Figure 1.

The power for each testing approach and sample size is
The Ame
shown for each of the 86 HapMap SNPs acting as the causal

SNP. On the basis of Figure 1, we can see that both methods

have power when the causal SNP is in moderate or high LD

with the 14 typed SNPs. In these settings, the power for our

logistic kernel-machine SNP-set analysis approach tends to

dominate individual-SNP analysis for both considered

sample sizes, suggesting that our testing approach is an

attractive alternative or auxiliary method to individual-

SNP analysis. For settings in which the causal SNP was

not in LD with the typed SNPs, the power was approxi-

mately at the type I error rate, as we would expect.

For the purpose of clarifying the optimal conditions for

our testing approach, Figure 2 shows the power for each

testing approach, and sample size is again presented, but

here the causal SNPs on the horizontal axis are ordered

by the median R2 of the causal SNP with the 14 typed

SNPs. The median R2 between the causal SNP and the 14

typed SNPs is plotted in the bottom panel. It is evident

from the plots that the power for both testing approaches

grows as a function of the median R2 between the causal

SNP and the typed SNPs. On the right side of the plot

where the median R2 is moderate to high, the kernel-

machine-based testing tends to have dramatically

improved power over individual-SNP analysis even when

the causal SNP is genotyped. When the median R2 is low,

neither approach has much power. We emphasize that

we consider the median R2 and not the maximum R2 and

note that the power for the kernel-machine test is not

necessarily the highest for situations in which the causal

SNP is typed.

We repeated the size and power calculations based on

the ASAH1 gene for SNPs coded in a dominant model

(results not shown). We also repeated power calculations

for SNP sets with LD structure based on the FGFR2 and

NAT2 genes. The size was again correct, and power plots

are qualitatively similar.

The empirical studies show that logistic kernel-machine-

based SNP-set analysis protects the type I error rate. Further-

more, except for the causal SNPs in low LD with the

genotyped SNPs (for which neither method has any power

beyond the type I error rate and hence any differences in

power are random), the kernel-machine-based SNP-set

analysis has greater power than individual-SNP analysis.

Empirical Power Based on Randomly Sampled Genes

To summarize our results, we divide the 20,000 simula-

tions into three groups on the basis of p, the number of
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Figure 1. Empirical Power for SNP Sets Based on ASAH1 and LD Plot for the 86 SNPs in the ASAH1 Gene Based on the CEU Sample
from the International HapMap Project
The typed SNPs are denoted with a triangle, and the bottom panel shows the LD structure of the SNPs in the ASAH1 gene.
typed SNPs within the SNP set. Essentially, we computed

power after binning the 20,000 simulations on the basis

of the SNP-set size and then the median R2 between the

causal SNP and the typed SNPs. More specifically, we split

the simulations into groups in which p % 10, in which

10< p % 20, and in which 20< p. Then we further divided

each of the three groups into subgroups by sorting the

simulated SNP sets on the basis of the median R2 between

the causal SNP and the typed SNPs and then splitting the

group into 50 evenly sized subgroups. Within each sub-

group, we estimated the power as the proportion of

p values less than a ¼ 0.05. For each of the groups, we

plot the kernel-density smoothed power against the

median R2 for the subgroups in Figure 3. We need to divide

the SNP sets on the basis of the number of SNPs because
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distantly located SNPs are uncorrelated, such that the

median R2 decreases with increased numbers of typed

SNPs.

The plots verify the earlier result that we found: the

power increases as a function of the median R2 between

the causal SNP and the typed SNPs. If the causal SNP is

uncorrelated with most typed SNPs, then we have little

power to detect the SNP-set effect, but if there is any power,

then the kernel-machine-based SNP-set analysis method

again tends to have higher power than individual-SNP

analysis. Both the overall power and the relative power

of our approach to individual-SNP analysis increases as

the number of typed SNPs increases. This again indicates

that our approach may be a better alternative to indi-

vidual-SNP analysis.
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Figure 2. Empirical Power for SNP Sets Based
on ASAH1
The SNPs on the x axis are sorted by median R2

with the 14 typed SNPs, which are shown in
the bottom plot.
Multi-SNP Test Comparison Results

The results comparing the power and type I error rates of

the logistic kernel-machine test and the Wessel and Schork

approach are presented in Figure 4. As expected, if the

number of independent causal SNPs is increased, the

power for both approaches increases. Across the first four

models, which compare the empirical power under prac-

tical settings based on the ASAH1 gene, the logistic

kernel-machine test tends to have higher power than

both the Wessel and Schork method, with a gain of approx-

imately 12%–18%, and the approach of Mukhopadhyay

et al., which improves little over the type I error rate. Under

model 5, which assumes common MAF and no LD among

typed SNPs within a gene and two causal SNPs that are gen-

otyped, the logistic kernel-machine test and Mukhopad-

hyay et al.’s approach perform similarly, and both have

considerably higher power than the Wessel and Schork

method. Overall, these results suggest that the logistic

kernel-machine test has optimal power relative to other

multi-SNP tests across different patterns of LD. More inter-

esting are the simulations comparing the type I error rate.

When the demographic and environmental covariates

were simulated independently of the genotype informa-

tion, the size for all three tests is correct. However, when

we set correlation between the covariates, which is associ-

ated with the outcome and the genotypes as being modest

(0.065), failing to account for the covariates when using

the Wessel and Schork and Mukhopadhyay et al. methods

might possibly lead to an apparently inflated type I error
The American Journal of H
rate of 25% and 10%, respectively. This

illustrates the importance of evaluating

the significance of SNP sets in the presence

of possible confounders.

Additional power simulations based on

the ASAH1 gene, in which as many as four

causal SNPs were used, did not yield qualita-

tively different results, in that the logistic

kernel-machine test tended to have higher

power. Because this is unlikely to be a real-

istic situation, given the rarity of risk-associ-

ated common variants and the relatively

small regions, these results are omitted.

We note that Mukhopadhyay et al.’s

approach has power similar to that of the

logistic kernel-machine test under model 5.

This is a setting that favors their approach.

In particular, the method of Mukhopadhyay

et al. is based on an ANOVA model that

assumes that the effects of the modeled

SNPs are constant and that the residual
correlation among kernel-similarity scores is the same across

all different pairs of cases or controls considered. Conse-

quently, the method of Mukhopadhyay et al. will have

excellent power when these modeling assumptions hold

but may lose power when such assumptions are violated,

such as under models 1–4. The logistic kernel-machine test

does not make the same assumptions as the method of

Mukhopadhyay et al.; for example, the effect sizes of

the modeled SNPs and MAFs are allowed to vary in our

approach.

Given that the power of the logistic kernel machine

tends to be comparable or higher, and given the difficulties

posed by failure to adjust for demographic and environ-

mental covariates and the additional computation cost

incurred by permutation, the logistic kernel-machine test

appears to be an attractive approach for testing the signif-

icance of SNP sets.

CGEMS Breast Cancer Data Analysis Results

The results of our reanalysis may be found in Table 3.

Using our approach and the linear kernel, we see that the

SNP set formed of genetic variants close to the FGFR2

gene is now the most highly ranked SNP set, with a p value

equal to 7.69 3 10�7 and an FDR q-value equal to 0.01.

At that signficance level, it also reaches genome-wide

significance if we apply a Bonferroni correction (a ¼
0.05/17, 774 ¼ 2.8 3 10�6) or if we control the FDR.

With the use of a Bonferroni correction, FGFR2 again rea-

ches genome-wide significance if we use the IBS kernel,
uman Genetics 86, 929–942, June 11, 2010 937



Figure 3. Smoothed Empirical Power
Curves as a Function of Median R2

between the Causal SNP and the Typed
SNP for SNP Sets Based on a Range of
Genes
and if we control the FDR at 5%, it reaches significance

with the weighted IBS kernel as well.
Discussion

In this article, we propose logistic kernel-machine-based

SNP-set analysis as an approach for the analysis of case-

control GWAS. Our approach employs prior biological

knowledge to group multiple SNPs that are located near
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genomic features into SNP sets and

then tested as a single unit. Specifi-

cally, we choose to model the SNPs in

the SNP set by using a flexible, semi-

parametric modeling framework that

is based on kernel machines, and we

choose to test the effects of the SNP

set via a powerful variance-compo-

nents test. We illustrate our approach

by using both data simulated from

the International HapMap Project40

and data from the CGEMS breast

cancer GWAS of Hunter et al.,1 and

we show that our approach is an

attractive alternative or auxiliary

approach to individual-SNP analysis.

The logic behind our analysis

strategy is that we can borrow infor-

mation between different SNPs to

improve the power to detect true

effects. Thus, the choice of grouping

can influence the power of our

approach. We focused on grouping

SNPs on the basis of their proximity

to a known gene and noted that this

allowed us to reduce multiple com-

parisons and to harness local LD

structure in order to improve the

power for capturing untyped SNPs.

Using genes as the genomic features

of interest allows us to map approxi-

mately 310K SNPs to 18K SNP sets.

However, it may be that the causal

SNP lies far from a known gene, in

which case groupings based on genes

(and, by extension, pathways) will

fail to capture the effect of interest.

To augment coverage of gene-desert

regions, we can group SNPs on the

basis of additional genomic features,
such as evolutionarily conserved regions. Such groupings

again allow us to harness local correlation. The moving-

window approach will be useful for capturing all geno-

typed SNPs, but direct interpretation of SNP-set analysis

results are more difficult, though this may not be impor-

tant. Groupings via haplotype blocks are attractive because

they make explicit use of the LD information. Use of

haplotype blocks will allow for comprehensive coverage

of the entire genome and will remove the need to explicitly

predefine genomic features of interest.
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Figure 4. Comparison of the Power and Type I Error of the
Logistic Kernel-Machine Test, the Wessel and Schork Method,
and Mukhopadhyay et al.’s Approach
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Power and size estimates are based on 500 and 1000 simulations,
respectively. The blue line shows the expected type I error rate.

Table 3. Top Results from the Logistic Kernel-Machine-Based
SNP-Set Analysis of the CGEMS Breast Cancer Study Data

Linear IBS Weighted IBS

Gene p Value q-Value p Value q-Value p Value q-Value

FGFR2 7.69 3 10�7 0.01 2.53 3 10�6 0.03 1.35 3 10�5 0.05

CNGA3 5.59 3 10�6 0.05 4.65 3 10�6 0.03 3.25 3 10�6 0.02

TBK1 1.30 3 10�5 0.07 3.28 3 10�6 0.03 5.48 3 10�6 0.02

VWA3B 1.53 3 10�5 0.07 7.84 3 10�6 0.03 3.99 3 10�6 0.02

PTCD3 5.50 3 10�5 0.20 9.02 3 10�6 0.03 3.78 3 10�6 0.02

XPOT 6.60 3 10�5 0.20 3.48 3 10�5 0.09 4.91 3 10�5 0.11

VAPB 9.79 3 10�5 0.22 4.51 3 10�5 0.10 8.11 3 10�5 0.14

SHC3 1.01 3 10�4 0.22 3.77 3 10�4 0.34 1.61 3 10�3 0.46

SFTPB 1.78 3 10�4 0.31 1.38 3 10�4 0.27 7.62 3 10�5 0.14

SPATA7 1.90 3 10�4 0.31 1.76 3 10�4 0.28 1.39 3 10�4 0.22
Beyond harnessing local LD structure to boost power,

another important feature of our approach is the ability

to model the joint effect of multiple, independent, causal

signals as well as possible epistatic effects. Practically, how-

ever, finding a SNP-set formation strategy that optimizes

for this can be difficult. Using a gene or moving-window

strategy can certainly capture multi-SNP and epistatic

effects among SNPs that are located close to one another

on the genome, but identification of such signals among

SNPs that are distantly placed will not be possible. A poten-

tial strategy is to use existing prior biological knowledge. In

particular, if multiple SNPs are expected to affect the

disease risk, it is not unreasonable to expect them to lie

within genes in the same pathway or in genes with similar

function; hence, forming SNP sets on the basis of pathways

can potentially capture such effects. Unfortunately, a

systematic approach for identifying such grouping struc-

tures at the genome-wide level is not obvious. To avoid

bias in our testing procedure, any grouping strategy must

be made without consideration of the case-control status

of the subjects in the data set. Thus, groupings must be

made with the use of information from external sources,

prior studies, or unsupervised statistical methods. As

such, SNP-set formation strategies will improve with

advances in our knowledge of the genome and genomic

structures.

Although we focused our power simulations on the

linear kernel, our simulation results nevertheless suggest

that our approach is as powerful as individual-SNP analysis

and that our approach can often have improved power

over both the individual-SNP analysis strategy and other

multi-SNP testing methods. In particular, we are able to

show that when the causal SNP is correlated with multiple

typed SNPs, our approach has higher power than indi-

vidual-SNP analysis. In settings where the causal SNP is

not correlated with multiple typed SNPs, simulations

show that neither individual-SNP analysis nor our
The Ame
approach will be able to detect an effect. Recall that,

here, the term individual-SNP analysis refers to correcting

the smallest individual p value for the SNPs in the SNP

set for multiple comparisons and using the adjusted

p value as the p value for the entire SNP set. The minimum

uncorrected p value for a SNP set may be smaller than the p

value from the logistic kernel-machine test but would lead

to a significantly inflated type I error rate. Under several

settings, we found that the kernel-machine test tended to

have improved power over competing multi-SNP tests

while naturally allowing for covariate adjustment to

protect the type I error rate when confounders are present.

We noted earlier that the linear kernel corresponds to

the usual simple logistic model whereas the IBS and

weighted IBS are kernels tailored specifically to genetic

data and the quadratic kernel is potentially useful for

modeling epistatic effects. In fact, when epistatic effects

are present, the IBS kernel can allow for dramatically

improved power over the linear kernel. The ability to allow

for complex relationships between the SNPs by specifying

just a single distance metric is an attractive feature of our

approach. In practice, however, one needs to choose

a kernel a priori. Although our simulations demonstrated

that the size of our test is correct irrespective of the kernel

used, the power will be influenced by the choice of kernel.

The best way of choosing a kernel to use is unclear, because

methods using the data to be tested are likely to overfit and

simulations may reflect the process under which the data

were simulated. Our experience in simulations and real-

data applications suggests using the linear kernel for

testing SNP sets in which no epistatic effects are antici-

pated (such SNP sets based on short regions) and using

the IBS kernel otherwise. Our experience is that there is a

small loss in power for use of the IBS kernel when the

true effect is linear but that there is potentially a consider-

able loss in power when the true effect is complex and/or

epistatic and the linear kernel is applied. Future research
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is necessary to study the power obtained when using other

types of kernels.

Our numerical results lead us to recommend our kernel-

machine approach for performing multi-SNP analysis

across a range of realistic settings. We have shown that it

has more power compared to existing popular approaches.

It also has the ability to adjust for covariates. This is partic-

ularly attractive because one usually needs to control for

possible population stratification and additional con-

founders in association studies. As noted by Mukhopad-

hyay et al.,24 the performance of individual multi-SNP tests

can depend on a range of factors, including the number of

causal SNPs, effect size, and LD structure. Future research is

needed for more comprehensive comparisons; e.g., in

other settings and with other multi-SNP methods.

For a SNP set that is significantly associated with disease

susceptibility, it is of great interest to subsequently perform

fine mapping and identify the individual causal variants.

One strategy that can be used is to apply a variable-selec-

tion procedure to select the ‘‘most important’’ SNPs. For

instance, one could use a LASSO penalized logistic regres-

sion44 to regress the case-control status on the 14 SNPs in

the ASAH1 SNP set. LASSO penalized logistic regression

will cause some of the regression coefficients to be esti-

mated as exactly zero, dropping the corresponding vari-

ables from the model. Such a strategy has been used by

others.45–47 However, existing variable-selection literature

does not allow for selection of features within the logistic

kernel-machine regression framework in the presence of

SNP-SNP interactions. The optimal strategy for quantifying

the contributions of individual SNPs remains an area of

considerable interest.

In addition to being able to account for complex SNP

effects and to adjust for covariates, the key advantage of

the logistic kernel-machine test is the ability to adaptively

estimate the degrees of freedom. As discussed earlier, when

the genotyped SNPs are highly correlated, the degrees of

freedom of the test remain approximately constant. As a

result, the strength of our method can increase as progress

in genotyping technology allows for denser screens.
Appendix A

Approximating the Null Distribution of the Score

Statistic for the Logistic Kernel-Machine Test

The score statistic Q defined by Equation 3 tests the null

hypothesis that H0:t ¼ 0 and is based on the variance-

components tests developed by Zhang and Lin25 and

Lin48 and adapted by Liu et al.12 Note that this is a

boundary case, so the null distribution for Q follows a

complex mixture of c2. This can be approximated via

the Satterthwaite method49 as a scaled chi-square distribu-

tion, kc2
n, in which the scale parameter, k, and the degrees

of freedom, n, are calculated via moment matching.

Specifically, for D0 ¼ diagðbp0i
ð1� bp0i

ÞÞ and P0 ¼ D0 –

D0X(X0D0X)–1X0D0, we define mQ ¼ tr(P0K)/2, Itt ¼
940 The American Journal of Human Genetics 86, 929–942, June 11,
tr(KP0KP0)/2, Its ¼ tr(P0KP0)/2, Iss ¼ tr(P0P
0
0)/2, and

~Itt ¼ Itt � I2
ts=Iss. Then k can be estimated as

k ¼ ~Itt=ð2mQÞ and we can calculate the p value for signifi-

cance by comparing Q/k to a chi-square distribution of n

degrees of freedom, c2
n, in which n ¼ 2m2

Q=
~Itt. The original

derivation of our score test can be found in Lin,48 in

which the link function in Equation 2 of Lin is assumed

to be the logit and the design matrix (Z) is set to be K1/2.

Our score statistic, Q, in Equation 4 is identical to the

first term of the score statistic, U, from Equation 8 of Lin

(as _D ¼ 1 and D–1W ¼ D because the logit link is a

canonical link).
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Web Resources

The URLs for data presented herein are as follows:

HAPGEN program, http://www.stats.ox.ac.uk/marchini/software/

gwas/gwas.html

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

R-functions for the logistic SNP-set kernel-machine association

test, http://www.bios.unc.edu/~mwu/software/
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