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Alteration of growth factors and neuronal death in diabetic
retinopathy: what we have learned so far
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Purpose: Diabetic retinopathy (DR) is a leading cause of blindness in American adults. Over the years, DR has been
perceived as a vascular disease characterized by vascular permeability, macular edema, and neovascularization that can
lead to blindness. Relatively new research on neurodegeneration is expanding our views of the pathogenesis of DR.
Evidence has begun to point to the fact that even before vascular complications begin to manifest, neuronal cell death and
dysfunction have already begun. Based on the literature and our own studies, we address whether neuronal death is
associated with loss of neurotrophic support due to less production of a given growth factor or due to impairment of its
signaling events regardless of the level of the growth factor itself.

Methods: In this article we aimed to review the literature that looks at the neuronal side of DR and whether retinal neurons
are adversely affected due to the lack of neurotrophic levels or activity. In particular, we examine the research looking at
insulin, insulin-like growth factor, vascular endothelial growth factor, pigment epithelium-derived growth factor, brain-
derived neurotrophic factor, and nerve growth factor.

Results: Research shows that insulin has neurotrophic properties and that the loss of its pro-survival pathways may have
arole in diabetic retinopathy. There is also evidence to suggest that exogenously administered insulin may have a role in
the treatment of DR. Insulin-like growth factor has been shown to have a role in retinal neurogenesis and there is early
evidence that it may also have neuroprotective effects. While there is evidence of neuroprotective effects of vascular
endothelial growth factor, paradoxically, there is also an increased amount of apoptotic activity in retinal neurons despite
an increased level of VEGF in the diabetic eye. Further research is necessary to elucidate the exact mechanisms involved.
Pigment epithelium derived growth factor has retinal neuroprotective effects and shows evidence that it may be an avenue
for future therapeutic use in DR. Brain-derived growth factor has been shown to have neuroprotective effects in the retina
and there is also some evidence in diabetic rats that it may have some therapeutic potential in treating DR. Nerve growth
factor has also been shown to have neuroprotective effects and research has begun to elucidate some of the pathways and
mechanisms through which these effects occur.

Conclusions: Research has shown that there is some degree of neuronal death involved in DR. It is also evident that there
are many growth factors involved in this process. Some of these growth factors have shown some potential as future
therapeutic targets in DR. These findings should encourage further investigation into the mechanism of these growth
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factors, their potential for therapy, and the possibility of a new horizon in the clinical care of DR.

Diabetic retinopathy (DR) is the most prevalent diabetic
eye disease in the USA. It is the leading cause of blindness in
the working age population, affecting 5.3 million adults and
causing an estimated 12,000-24,000 new cases of blindness
each year [1]. In patients with type I diabetes, 25%—50% show
signs of retinopathy after 10-15 years, 75%-95% after 15
years, and 100% after 30 years. Similarly, type II diabetics
show higher incidences of diabetic retinopathy with increased
duration of disease. Nonproliferative diabetic retinopathy
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(NPDR) is seen in 23% of type II diabetics after 11-13 years.
This number increases to 41% with NPDR after 14—16 years
and to 60% after 16 years [2].

Pathogenesis: While the underlying metabolic pathways
of DR are not completely understood, chronic hyperglycemia
is thought to be the ultimate cause of the disease [3]. DR
results, at least in part, from early damage to the small blood
vessels in the retina. To compensate for impaired circulation
and ischemia in the retina due to these damaged vessels,
neovascularization may occur on the surface of the retina [4].
These newly formed blood vessels as well as the existing
damaged capillaries tend to have increased permeability,
leading to accumulation of fluid in the macula and decreased
visual acuity. Much of the research effort related to DR has
been focused on vascular changes, but it is becoming apparent
that other degenerative changes beyond the retinal vasculature
are occurring that involve the neural retina. These
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neurodegenerative changes include increased apoptosis of
ganglion cells, glial cell reactivity, microglial activation, and
altered glutamate metabolism. In 1962, Bloodworth [5]
proposed that diabetic retinopathy was not just a disease of
the vasculature but was a multifactorial disease involving the
neurons and glia of the retina. In agreement, neuronal cell
apoptosis [6] and glial dysfunction [7] have been reported in
the retinas of diabetic patients.

Neurodegeneration could explain some of the functional
visual deficits that begin soon after the onset of diabetes. The
electroretinogram is a measure of electrophysiological
activity in the retina that measures changes in field potentials
elicited by the entire population of retinal neurons. The
amplitude of oscillatory potentials as well as deficits in
perceptive resolution, such as the ability to discriminate
contrast and night vision, were reduced in juvenile individuals
with type I diabetes for 5 years or less, before vascular
retinopathy had developed [8]. Other studies have
demonstrated in diabetic patients and diabetic rats and mice
that diabetes induces early and significant increases in
apoptotic death of neurons within the inner retina, further
supporting the idea of neurodegeneration in DR [5,6,9-16].
Together these data support the notion that diabetes
compromises neuronal survival and function in the retina and
causes early impairments in vision that precede the detectable
vascular lesions associated with DR. Studies examining the
process of neurodegeneration have provided multiple
potential mechanisms. Metabolic factors that lead to this
neuronal cell death have been suggested to include loss of
insulin-mediated trophic support [6,17,18] or injury due to
accumulation of excess hexosamines [19], tumor necrosis
factor-o [20,21], or glutamate (for review see [22]). Mounting
evidence also suggests that diabetes-induced oxidative stress
contributes to the pathogenesis of neuronal degeneration. Data
show that treatments targeting formation of reactive oxygen
species and peroxynitrite exert neuroprotective effects in vitro
and in vivo [13-16,21,23].

Release of growth factors: Following acute retinal injury
or chronic neuronal stress in diabetes, glial cells, including
microglial and macroglial cells (astrocytes and Miiller), are
activated to protect and repair retinal neurons [24]. Glial
activation results in release of growth factors, including some
that promote survival and some that promote death of neuronal
cells [25,26]. Vascular endothelial growth factor (VEGF)
[27], pigment epithelium-derived growth factor (PEDF) [28],
transforming growth factor-B (TGFB) [29], brain-derived
neurotrophic factor (BDNF), and nerve growth factor (NGF)
[15] are among the trophic factors released by the Muiller cells.
In the following sections we will look more closely at insulin,
insulin-like growth factor (IGF), VEGF, PEDF, BDNF, and
NGF and their relationship to both neurodegeneration and DR.
More specifically we will look at whether neuronal death is
associated with loss of neurotrophic support due to less
production of a given growth factor or due to impairment of
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its signaling events regardless of the level of the growth factor
itself.

Insulin: 1t is widely accepted that one of the most
significant roles of insulin is to stimulate glucose uptake from
the blood by peripheral tissues, leading to a reduction of
glucose levels in the circulation. The research done in the
Diabetes Control and Complications Trial (DCCT) showed
that exogenous insulin administration leading to tight
glycemic control resulted in decreased incidence and
progression of diabetic retinopathy [3,30-32]. More recently,
investigators began to examine whether the role of insulin
went beyond its effects on blood glucose levels alone. In 1998,
Barber et al. [6] found that exogenous insulin given
systemically reduced the number of neuronal apoptotic cells
in the retina, which suggested a neurotrophic action of insulin.
That notion was supported by previous reports showing
neurotrophic properties of insulin within the central nervous
system independent of blood glucose levels [33,34] and in
retinal ganglion cell (RGC) cultures [35]. From there, interest
has grown and studies have looked more closely at the action
and mechanism of insulin and its receptors in the retina.

While limited research has been performed on vitreous
insulin levels, there has been more substantial research into
the effects of insulin as a neurotrophic agent. In 2001, Barber
et al. demonstrated anti-apoptotic effects of insulin on
neonatal rat retinal neurons via activation of the
phosphotidylinositol 3 kinase/AKT PI 3-kinase/Akt pathway
and inhibition of caspase-3 [17]. Further research
demonstrated neurotrophic effects of insulin via other
pathways [36,37], and results showed that the retina expresses
an equal amount of insulin receptor protein with similar kinase
activity as the brain and the liver [37]. In their research Reiter
et al. showed that diabetes reduces basal insulin receptor
kinase activity and reduces insulin receptor substrate-1/2-
associated PI3-kinase/Akt activation in the short-term (4
weeks), with the additional reduction of constitutive insulin
receptor autophosphorylation and insulin receptor substrate-2
expression in the long-term (12 weeks) [37]. In the same study
it was also shown that both systemic and intravitreal insulin
administration restored deficient insulin receptor signaling
[37]. This suggests that the loss of the prosurvival insulin-
signaling pathway may play a role in diabetic retinopathy. It
also points to the possibility that exogenous insulin may have
arole in treatment of diabetic retinopathy via its neurotrophic
actions. More recent studies show other potential mechanisms
by which insulin affects DR, including the regulation of a-
and vy-crystallins, factors potentially involved in the
inflammatory process in diabetic retinopathy [38]. Due to the
potentially hypoglycemic effects of large amounts of systemic
insulin required to affect the retina, slow release local delivery
of insulin using subconjunctivally implanted hydrogels in rats
has proven safe and well tolerated [39]. Further investigation
examining both the safety and the efficacy of locally
administered insulin in humans would be helpful.
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Insulin-like growth factor: The role of IGF on diabetic
retinopathy has been difficult to assess. While its angiogenic
effects and its role in neovascularization in DR have been well
documented, its role on retinal neurons has not been fully
elucidated (reviewed in [40,41]). IGF presents in two forms:
IGF-I and IGF-II, with most of the insulin-like effects coming
from IGF-I. There are receptors for each IGF homolog,
appropriately named IGF-I receptor (IGF-IR) and IGF-II
receptor (IGF-IIR), which are found throughout the
neuroretinal layers, retinal pigment epithelial, and retinal
capillary endothelial cells [42]. Multiple studies have shown
that the levels of IGF-1, IGF-II, and insulin-like growth factor
binding proteins (IGFBPs) are elevated in the vitreous of
patients with PDR [43-45].

The postulated neuroprotective action of IGF is supported
by previous studies showing its role in retinal neurogenesis
(reviewed [46-48]). There is also evidence of a
neuroprotective effect of IGF in retinal ganglion [49,50] and
amacrine cells [17]. One study demonstrated the
neuroprotective effects of early treatment with systemic IGF-
I in diabetic rats [51]. Further studies into the neuroprotective
effects of IGF are warranted for helping us better understand
whether IGF has a place as a therapeutic target in DR.

Vascular endothelial growth factor and neuroprotection:
The VEGF family incorporates five structurally related
ligands (A-D and placenta growth factor [PIGF]) that bind
differentially to three receptor tyrosine kinases (VEGF
receptor-1, 2, and 3). VEGF-A (also referred to as VEGF) is
the founding member and the most characterized member of
the VEGF family for its angiogenic and permeability effects.
In contrast, VEGF-B is less characterized and its biologic
function as a survival factor remains debatable [52,53].
Previous studies showed that VEGF-A binds to VEGFR-1 and
2, while VEGF-B binds mainly to VEGFR-1, which may
explain the properties of each regarding vascular
permeability, angiogenesis, and survival [54,55]. In the adult
retina, VEGF-A has been shown to be produced by retinal
pigment epithelium (RPE), endothelial cells, pericytes,
astrocytes [56], Miiller glial cells, amacrine, and ganglion
cells [57]. VEGF-B was found to be expressed in the lens,
sclera, retina, iris, and vitreous fluid of the nondiabetic eye
[58].

Over the last decade, evidence has been accumulating that
VEGF plays a nonvascular and neuroprotective role in adult
normal retinas [59]. D’Amore’s group showed that VEGF-A
neutralization does not affect normal retinal vasculature but it
can cause a neuroretinal cell apoptosis and loss of retinal
function [60]. The latter group also showed that the VEGFR-2
receptor is expressed in retinal neuronal tissue (ganglion cell
layer [GCL] and inner nuclear layer [INL]), that VEGF is a
direct survival factor for photoreceptors, and that VEGF plays
a role in Miiller cell survival through an autocrine-signaling
pathway in nondiabetic models [60]. Studies also have shown
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that treatment with VEGF-B protects RGC in various models
of neurotoxicity [53] as well as retinal vasculature [61]. The
neuroprotective effect of VEGF-B was attributed to inhibition
of pro-apoptotic proteins, including p53 and members of the
caspase family, via the activation of VEGFR-1. These studies
suggest that VEGF-B is the first member of the VEGF family
that has a potent anti-apoptotic effect, while lacking a general
angiogenic activity. Of note, there is no evidence for the
neuroprotective effects of VEGF in diabetic human or animal
studies.

Paradoxically, while there is an abundance of VEGF-A
in the diabetic retina, there is still accelerated vascular and
neuronal apoptosis in experimental and clinical samples. A
possible explanation might be drawn from our previous
studies showing that excessive levels of peroxynitrite
produced during diabetes can inhibit the VEGF-mediated
survival signal via tyrosine nitration and subsequent inhibition
of key survival proteins, the p85 regulatory PI3-kinase in
retinal cells [62,63]. The results also indicate that although the
oxidative and pro-inflammatory diabetic milieu stimulates
VEGEF levels, it can also switch its signal from survival to the
apoptotic pathways. Further studies are warranted to examine
the role of peroxynitrite in inhibiting VEGF’s survival signal
in neuronal retinal cells. Another possible explanation for this
paradox in diabetic patients is that levels of VEGF-A are
increased at the expense of the survival factor VEGF-B,
suggesting that VEGF splicing was switched from an anti-
angiogenic to a pro-angiogenic environment [58].

Due to the detrimental vascular effects of VEGF in DR,
the off-label use of anti-VEGF therapies alone or in
combination with laser photocoagulation showed short-term
beneficial effects (reviewed in [64]). Current anti-VEGF
agents include pegaptanib, ranibizumab, and bevacizumab.
Ranibizumab and bevacizumab are humanized monoclonal
antibodies that block all VEGF isoforms, while pegaptanib,
an aptamer, only blocks the VEGF-A isoform [65]. So far,
clinical trials using anti-VEGF treatment focused only on
studying the systemic side effects, such as cardiovascular,
hypertension, proteinuria, or bleeding [64,66-69] but not the
incidence of retinal neurodegeneration, such as retinal atrophy
or thinning, or RPE degeneration. Therefore, there is a great
need for more studies to fill the scientific gap of the long-term
effects of anti-VEGF therapy, especially in diabetic
populations.

Pigment epithelial derived factor: PEDF is a
neurotrophic factor that occurs naturally in the eye and is
expressed in multiple retinal cells, including retinal pigment
epithelial cells [70], glial cells, vascular endothelial cells,
Muiller cells, and neurons [71]. PEDF was originally identified
based on its ability to induce differentiation of retinoblastoma
cells but has subsequently been recognized as a neurotrophic
and angiostatic growth factor [70,72,73]. Studies showing
decreased levels of PEDF in ocular fluids and vitrectomy
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specimens from patients with diabetic retinopathy suggest that
the loss of PEDF contributes to diabetes-induced neuroglial
cell toxicity [70,71]. In the same patients there was an inverse
correlation between elevated VEGF expression and decreased
levels of PEDF, suggesting that a shift in the balance between
levels of PEDF and VEGF may contribute to the development
of retinal neovascular disease [70]. Recent studies with
cultured cells indicate that hypoxia and VEGF downregulate
levels of PEDF by increasing the activity of matrix
metalloproteinase enzymes, which degrade and inactivate
PEDF [74]. Moreover, it has been shown that PEDF can also
reduce oxidative stress by suppressing reduced form of
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase-mediated generation of reactive oxygen species [75,
76].

PEDF can influence both cell differentiation and survival
of neurons in the brain, eye, and spinal cord (reviewed in
[70]). PEDF has retinal neuroprotective effects where it can
prevent ischemic damage to photoreceptors and dopaminergic
neurons [70,77]. Furthermore, pretreatment of retinal
photoreceptor cultures with PEDF significantly increased cell
survival in vivo [78,79] and in vitro [80] models of oxidative
stress and light damage. These promising results suggest that
enhancing the expression and function of this protein can be
a therapeutic target in DR. The neuroprotective role of PEDF,
however, has not been examined in models of diabetes, a
disappointment that should encourage further studies on the
role of PEDF.

Neurotrophins: The neurotrophins (NTs) are structural
families of secreted proteins that have potent effects on
neuronal differentiation, survival, neurite outgrowth, synaptic
formation, and plasticity [81,82]. Neurotrophins are initially
synthesized in a proform that is cleaved by Ca**-dependent
serine endoprotease belonging to the subtilisin-like proprotein
convertase (SPC) family including furin [83] and plasmine
[84], to release the mature NT form. The neurotrophins are
the preferred ligands for tropomysine like kinase (Trks)
receptors, while they can only activate P75 neurotrophin
receptor (p75N™®) in low-affinity-binding configurations [85,
86]. Signals emanating from Trks support neuronal survival,
growth, and synaptic strengthening, while those emanating
from p75N™® induce neuronal apoptosis, attenuate neurite
outgrowth, and weaken synaptic signaling [85,86].

Nerve growth factor: NGF is the first discovered and best
characterized member of the growth factor family [87]. NGF
is not only an important regulator of retinal development but
also plays a key role in regeneration of neural circuits in the
visual system in retinal degenerative diseases [88]. The
relevance of NGF to diabetic retinopathy was first
demonstrated by the study of Hammes et al. [10]. They
showed that the treatment of diabetic rats with NGF prevented
both early apoptosis of neuronal death in RGC and Miiller
cells as well as the development of pericyte loss and acellular
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occluded capillaries [10]. These results suggested that
diabetes might reduce the level of the main neurotrophic factor
NGF, thus causing the complication. However, several reports
documented paradoxical increases in NGF levels in the serum
of patients with insulin-dependent diabetes mellitus [89,90]
and in the serum and tears of patients with diabetic neuropathy
and retinopathy [89,91-94]. The increases of NGF levels
positively correlated with the diabetic retinopathy stage and
other diabetes mellitus (DM) parameters [91].

NGF is synthesized and secreted by glia or microglia
[95] as a precursor (proNGF). It is then proteolytically cleaved
intracellularly by furin and extracellulary by matrix
metalloproteinase-7, generating the mature form (NGF) [96].
Until recently our knowledge about the release of
neurotrophins in diabetic tissue had been limited to
techniques, such as enzyme-linked immunosorbent assays
(ELISA) and quantitative measurement of mRNA expression,
that could not differentiate proNGF from mature NGF. While
mature NGF mediates neuronal cell survival through binding
TrkA and p75 ™ receptors [88], proNGF can promote
neuronal apoptosis because of its high affinity to p75N® [97].
Under oxidative stress and inflammatory conditions, the
activity of proteases is altered, which can result in
accumulation of proNGF in injured neuronal and vascular
tissues [98]. However, the homeostasis of NGF and proNGF
levels within the diabetic eye remained elusive. Our recent
studies demonstrated significant and progressive increases in
levels of proNGF at the expense of NGF in human samples
from diabetic patients, PDR patients, and experimental
diabetes [15]. Our studies demonstrated also that Miiller cells
are the major source of proNGF synthesis in response to high
glucose or peroxynitrite [16]. Thus, peroxynitrite activates
Miiller cells to secrete proNGF and then impairs its maturation
by inhibiting matrix metalloproteinase-7, leading to
accumulation of proNGF and reduction of mature NGF. As
expected, the lack of neurotrophic support was associated with
retinal neurodegeneration and in particular RGC cells. To add
another level of complexity, the diabetic and pro-oxidative
milieu not only can affect the homeostasis of the NGF but can
also alter the expression and function of its receptors—the
survival TrkA receptor and the neurotrophin p75NT® receptor.
Although TrkA expression is not altered, the phosphorylation
of the receptor and hence its activity is impaired via tyrosine
nitration in experimental [16] and clinical retina samples
[13,15]. On the other hand, diabetes causes significant
upregulation of retinal p75"™ expression in clinical and
experimental diabetes [13,15,16]. Our recent studies further
elaborated on the critical role of p75N™ in mediating RGC
death via activation of the pro-apoptotic p38 mitogen-
activated protein kinase (p38MAPK) pathway, resulting in
retinal neurodegeneration in clinical and experimental
diabetes [13,15,16]. The later study indicated that
upregulation of p75N™® can play a key role in glial activation
and release of proNGF under diabetic conditions. Further
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TABLE 1. SUMMARY OF REPORTS THAT EXAMINED GROWTH FACTORS IN RELATION TO VARIOUS NEURONAL CELLS UNDER DIABETIC CONDITION.

GF Model Summary Cell type References

Insulin STZ Insulin provides trophic support for retinal neurons via PI 3-kinase/Akt- Neuronal/RGC [6,17,37]
dependent pathway.

IGF-1 STZ Systemic IGF-I reduced neuroretinal cell death. Photoreceptors [51]

VEGF STZ Elevated VEGF causes vascular dysfunction, which was associated with Neuronal [21,102]
neuronal death.

PEDF STZ PEDF prevented neuronal derangements and restored electroretinal gram Neuronal [103]
function.

BDNF STZ BDNF provides trophic support for retinal neurons and amacrine cells. Neuronal/amacrine [100,101]

NGF Human/STZ/ Restoring NGF level and signal prevented retinal neuronal/RGC death. Neuronal/RGC [10,13,15,16,91]
culture

Abbreviations: STZ represents streptozocin, IGF represents insulin-like growth factor, VEGF represents vascular endothelial

growth factor, PEDF represents pigment epithelium-derived growth factor, BDNF represents brain-derived neurotrophic factor,

NGF represents nerve growth factor, RGC represents retinal ganglion cell.

studies are in progress to better understand the role of
p75N™R in retinal neuroglial inflammation and to characterize
the underlying signaling pathway in hopes of identifying
potential therapeutic targets for diabetic retinopathy.

Brain-derived neurotrophic factor: BDNF is expressed
in several retinal cells, including RGC and Miiller glia in the
retina, and has been previously reported to prevent RGC and
amacrine cell death [99]. Although many studies have
described the important roles of BDNF in the physiology and
pathophysiology of the retina, few studies have examined the
changes of BDNF levels or activity in models of diabetic
retinopathy. One study demonstrated significant reduction
(approximately 50%) of the mRNA and protein expression
level of BDNF in diabetic rat retina that were positively
correlated with degeneration of dopaminergic amacrine cells
accompanied by a reduction in BDNF levels [100]. Similar
reduction of BDNF levels were observed using diabetic mice
that were associated with impaired visual function [101].
Furthermore, the first study also demonstrated the therapeutic
potential of BDNF using multiple intraocular injections for
treating neurodegeneration in the diabetic rat retina [100].

In summary, we reviewed the literature that looks at the
neuroglial activation side of DR and the subsequent release of
growth factors. More specifically we looked at whether
diabetes adversely affects retinal neurons due to lack of
neurotrophic levels, such as in the case of insulin, PEDF, and
BDNF, and/or due to lack of activity, such as in the case of
VEGF and NGF. To date, a limited number of studies have
assessed the expression of growth factors and how they can
affect various retinal neurons in response to experimental
diabetes (Table 1). Among research dealing with retinal
neurons, RGCs are the most studied, and several studies did
not specify the type of retinal neurons and instead looked
simply at neuronal versus vascular effects. Such findings call
for further investigation into retinal neurodegeneration and
the alteration of growth factors, their potential for therapy, and
the possibility of a new horizon in the clinical care of DR.
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