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Abstract

Experimental studies of protein folding processes are frequently hampered by the fact that only 

low resolution structural data can be obtained with sufficient temporal resolution. Molecular 

dynamics simulations offer a complementary approach, providing extremely high resolution 

spatial and temporal data on folding processes. The effectiveness of such simulations is currently 

hampered by continuing questions regarding the ability of molecular dynamics force fields to 

reproduce the true potential energy surfaces of proteins, and ongoing difficulties with obtaining 

sufficient sampling to meaningfully comment on folding mechanisms. We review recent progress 

in the simulation of three common model systems for protein folding, and discuss how recent 

advances in technology and theory are allowing protein folding simulations to address their current 

shortcomings.

Introduction

In recent years molecular dynamics (MD) simulations, originally developed for numerical 

simulation of simple model systems in statistical mechanics (1), have developed into a 

powerful tool for studying the structural and dynamic properties of complex biomolecules 

(see, e.g., (2)) thanks to advances in computing power and refinements of the underlying 

models. MD simulations of biomolecules typically treat the molecule of interest and 

surrounding solvent as classical particles interacting through an empirically derived potential 

energy function (the “force field”). The system’s dynamics propagate through time via 

numerical integration of Hamilton’s equations of motion, typically discretized into steps on 

the order of femtoseconds in length. The information offered by such simulations is no less 

than an atomic-resolution model of conformational equilibria and structural transitions in the 

system of interest, providing a wealth of information to interpret, complement, and design 

experiments.

One of the most challenging applications of molecular dynamics is the simulation of 

protein folding processes. Such simulations generally must be very long (on the order of 

many microseconds) to stand a good chance of observing a single folding event, and the 

force field being used must correctly describe the relative energies of a wide array of 
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unfolded or misfolded conformations that occur during the folding process. The benefits 

of such simulations are considerable, as they provide detailed information on the nature 
and relationships of structures that occur during protein folding processes, and identify key 

intermediates and barriers to folding. It should be noted that using molecular dynamics 

simulations to observe entire folding events from unfolded conformations is only one of 

a wide variety of ways in which molecular modeling calculations are applied to identify 

native states of proteins and mechanisms through which they fold. Other examples include 

predicting the folded structure of a given peptide from its primary sequence (e.g., (3, 4)) or 

using Monte Carlo simulations to follow an approximation of a dynamically realistic folding 

pathway (e.g., (5, 6)). While other methods offer more computationally efficient ways to 

identify the native state of a protein, or even likely intermediate states, only atomistic MD 

simulations of the folding process provide detailed information about transitions between 

structures that is key to understanding how the folding of a protein actually proceeds. In 

the present article we use the phrase “folding simulations” to refer exclusively to atomistic 

molecular dynamics simulations of all or part of the folding process of a protein, in the 

absence of biasing potentials targeting the folded state. We begin by providing the reader 

with a brief overview of the recent progress of folding simulations, focusing on a few 

well-studied model systems. We then discuss the two linked challenges faced by folding 

simulations, namely continuing to improve the accuracy of representation of proteins in 

all-atom MD simulations while at the same time improving sampling, and review recent 

efforts to overcome them.

Long-timescale molecular dynamics simulations of protein folding

Folding simulations pose harsh challenges for molecular dynamics, due to the computational 

effort involved and the demands for accuracy placed on the force field. Despite these 

challenges, folding simulations have an established, and growing, track record not only of 

successfully folding proteins, but of providing quantitative agreement with experimental 

data and detailed predictions which can be used to test simulated folding behaviors. In this 

section we review three frequently targeted model systems which, taken together, illustrate 

the current state of successes and failures encountered in folding simulations: the artificial 

Trpcage peptide, the chicken villin headpiece subdomain, and the human Pin1 WW domain.

The Trpcage miniprotein (7) (see Fig. 1a) folds in approximately 4 µs, and contains a 

total of 20 residues. Several early implicit solvent simulations of Trpcage succeeded in 

folding the protein from a denatured state, and provided realistic estimates of the time 

required for folding (8–11). Extensive simulations over the following years provided free 

energy landscapes for folding (using simple order parameters) (12) and even a stability 

diagram under a variety of thermodynamic conditions (13). Replica exchange simulations 

revealed an important role for buried water molecules in stabilizing the folded structure 

(14). Juraszek and Bolhuis employed transition path sampling to study the mechanism of 

folding/unfolding transitions in Trpcage, finding that the dominant folding pathway involves 

formation of secondary structure elements only after tertiary contacts are anchored. Their 

results showed that this pathway coexists with one in which helix formation occurs first 

(15). Thus, simulations of Trpcage have shown that it is possible to fold a protein from a 

fully denatured state using unbiased MD simulations. Trpcage simulations highlighted also 
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the importance of water in obtaining a realistic description of Trpcage folding, and provided 

detailed information on the type of heterogeneous folding mechanism followed by a protein. 

At the same time, a few challenges still remain: predictions such as the folding pathway 

partitioning of Juraszek and Bolhuis have not, to our knowledge, been experimentally 

verified; meanwhile, it has been observed that several thermodynamic inadequacies occur in 

modern force fields’ descriptions of Trpcage. OPLS/AA, for example, incorrectly stabilizes 

non-native states relative to the native state (16), and AMBER variants have consistently 

yielded melting temperatures more than 100 K above the experimentally determined value 

(13).

Computational studies of protein folding often target small portions of natural proteins 

which have been found to fold rapidly. One example of such a system is the villin headpiece 

subdomain, a 35-residue three-helix bundle (17) (see Fig. 1b). Wild type villin folds at a rate 

between (4.3 µs)−1 (18) and (7.4 µs)−1 (19). The replacement of two lysine residues with 

norleucine was shown to yield a mutant folding (on average) in less than one microsecond 

(20). The folding of villin has been subjected to a wide variety of experiments providing 

data on the kinetics and thermodynamics of folding (18, 21, 22), and contributions from 

specific contacts to the stability of the transition state (19). Due to its small size and 

rapid folding, villin was targeted in what was, to our knowledge, the first serious effort 

to completely fold a protein through atomistic molecular dynamics simulations in explicit 

solvent (23). While that initial attempt produced only a one microsecond trajectory, and 

did not reach the native state, a number of subsequent efforts succeeded in reaching the 

native state from an initially unfolded structure for either or both of the wild type and 

norleucine mutant proteins, over timescales consistent with experiment (e.g., (6, 24–30)). An 

early generation of hypotheses regarding villin folding from molecular dynamics simulations 

were tested through measurement of folding rates of proposed mutants and found to be 

incorrect (18). More recently, simulations from different groups have lead to several distinct 

proposals regarding villin folding, (6, 28–30) which now await further testing. One example 

(from (30)) is shown in Fig. 2: from an initially disordered structure, the protein undergoes 

hydrophobic collapse and forms a pre-folded conformation with correct secondary structure 

but incorrect positioning of helix I. The rate limiting step (corresponding to a single long 

relaxation time observed in experiments) is the partial dissociation of the secondary structure 

elements from each other, which then re-associate to form the folded structure. Consistently, 

recent solid state NMR experiments have shown the existance of a long-lived intermediate 

state with native secondary structure but disordered tertiary structure (31). Validation of the 

predictions of any of the currently proposed models would provide an atomistically-detailed 

view of exemplary villin folding pathways (although such a picture would certainly not be 

complete due to the vast structural heterogeneity expected during folding (29, 32)). At the 

same time, careful examination of any folding models which do not withstand experimental 

scrutiny should provide data which can be used to refine protein force fields to aid in future 

folding attempts.

Where the villin headpiece subdomain serves as an excellent model system for the folding 

of small α-helical proteins, the WW domain of human Pin1 (henceforth WW domain) 

has recently become a similar system for simulations of small β-sheet proteins. The WW 

domain consists of a three-stranded antiparallel β-sheet with the strands connected by tight 
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hydrogen-bonded loops (33) (see Fig. 1c). Analysis of the folding properties of a wide 

variety of mutants (particularly in the loops) has shown that formation of the first turn 

(between strands I and II) is the rate limiting step in folding (33, 34), and that stabilizing 

mutations can shift the WW domain from two-state folding to incipient down-hill (i.e., very 

low barrier) folding. The present experimental evidence provides information on the specific 

structural change occurring during the rate limiting step, but does not currently reveal other 

aspects of the pathways followed during WW domain folding. Most crucially, the order of 

hydrophobic collapse, formation of turn two, and generation of the native β-sheet hydrogen 

bonding network relative to formation of loop one remains unknown. Initial attempts to 

study these aspects of WW domain folding generally used coarse grained models due to the 

slow (>50 µs) folding of the wild type protein, and provided a variety of mutually exclusive 

predictions regarding the order of formation of different structural elements during folding 

(35–37).

Recently, the discovery of WW domain mutants that fold in less than 15 µs prompted 

attempts to fold the WW domain through all-atom explicit solvent folding simulations (38). 

The initial simulations failed to reach the native state and instead became trapped in helical 

intermediates, which were shown through subsequent free energy calculations to be, in fact, 

lower in free energy than the native state in the applied force field (39). More recently, a 

large array of distributed implicit-solvent folding simulations using a different force field 

provided a small number of folding trajectories; these trajectories suggested the presence 

of a large amount of kinetic and mechanistic heterogeneity, showing that the questions 

regarding WW domain folding noted above may in fact be unanswerable (40). On the 

other hand, the general structural heterogeneity of even the “folded” conformations from 

that study, and relatively poor agreement with the experimental structure, may indicate the 

presence of similar (albeit less severe) force field inaccuracies to those noted in (39).

Challenges in protein folding simulations

As a group, folding simulations (and indeed, MD simulations in general) have throughout 

their history been faced with two mutually antagonistic challenges. Simulations must be 

as long as possible in order to obtain reasonable statistics, due to the long correlation 

times inherent in MD trajectories and the fact that even a single protein folding trajectory 

requires immense amounts of computing effort. Furthermore, as many such trajectories as 

possible must be obtained to provide a complete picture of the folding process (40). At 

the same time, as illustrated by the various points of disagreement still present between 

simulation and experiment, the accuracy of modern MD force fields in describing long term 

structural dynamics of proteins remains imperfect, and thus either additional refinements 

of parameters for force fields, or the use of new developments such as computationally 

tractable polarizable force fields (e.g., (41, 42)) will be required in many cases for accurate 

folding simulations.

Timescales and data analysis

In order to address the sampling problem, a number of innovative approaches have been 

applied to produce recent folding simulations, with varying degrees of generality. At the 
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simplest level, both advances in the processing power available in a given computing node, 

and the continuing expansion of the availability of supercomputing time to researchers, have 

enabled folding simulations through general purpose computing resources (e.g., (30)). The 

expansion of such resources is particularly powerful in tandem with recent efforts to improve 

the performance of MD programs (38, 43, 44), and should continue to provide increasing 

sampling capabilities to a broad base of researchers.

Several of the most notable simulations of protein folding have instead involved the 

Folding@Home network (45), a unique distributed computing resource consisting of over 

300,000 CPUs donated by users around the world. The Folding@Home architecture, with 

its massive parallelism, but low density, is particularly well suited to the simultaneous 

evaluation of large numbers of trajectories, and typical Folding@Home simulations consist 

of hundreds or thousands of relatively short trajectories (a small fraction of which fold) 

rather than 1–10 full length trajectories (9, 25, 40).

Another solution to the sampling problem in molecular dynamics folding simulations is 

the use of special-purpose hardware designed specifically for MD simulations. The most 

prominant recent example is the Anton platform, a complete special-purpose supercomputer 

containing sets of application-specific integrated circuits (ASICs) which perform the various 

tasks required in an MD simulation (46).

While the performance of special-purpose hardware can vastly exceed that provided by 

general-purpose clusters, such hardware requires substantial resources to develop, and does 

not benefit from the constant, consumer driven advances that occur with ordinary clusters. 

The recent development of general-purpose graphics processing units (GPGPUs) offers 

the possibility of per-node performance orders of magnitude better than that of general 

purpose computers (47), while at the same time using consumer hardware that will be 

improved due to market demands for better workstation and gaming graphics. Because 

GPUs rely on parallel processing of a large array of data using identical procedures to 

obtain optimal performance, molecular dynamics simulations (involving identical floating-

point calculations on a large array of atoms) can be mapped well to the GPU architecture 

(47). While GPU computing was previously employed in a limited manner for molecular 

modeling applications (48), the recent advent of a general purpose programming interface 

for GPUs that does not require extensive low-level effort on the part of the programmer 

has lead to an explosion of GPU implementations of molecular dynamics simulations 

(e.g., (49–52)). Such implementations quote accelerations between 10- and 1000-fold over 

CPU-only implementations, depending on the exact algorithm and target application under 

consideration, and definition of an “equivalent” CPU-only competitor.

The performance offered by GPGPU-accelerated molecular dynamics simulations does not 

at present match that of the Anton platform, but as noted previously the performance of 

GPGPUs is expected to improve over time simply as a function of consumer-driven demand, 

and thus they may become an increasingly attractive option for long timescale molecular 

dynamics simulations in the near future. One of the principal challenges associated with 

applying GPGPUs to molecular dynamics simulations is that network latency between 

multiple nodes becomes increasingly problematic as the individual nodes become faster 
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(53); these challenges are less relevant in the case of protein folding simulations, where one 

would be best served by running dozens of simulations of small systems in parallel, each on 

a single GPU-equipped node.

Whether one obtains a few long folding trajectories or a large array of short folding 

simulations, eventually it becomes necessary to synthesize the data into as reliable as 

possible a picture of the folding process of the protein of interest. This, in turn, means 

that one wishes to understand what general features are present and how they evolve 

as the protein forms more and more of its native contacts, identify frequently occupied 

conformations or misfolded traps, and characterize transitions between those conformations. 

Such analysis is nontrivial given the large amounts of data present in folding trajectories, 

and requires specialized methods. One of the most common tools for visualization and 

analysis of protein folding pathways is the projection of the trajectory onto a low (frequently 

2) dimensional surface, both to track the progress of trajectories and allow free energy 

calculations (the latter generally via replica exchange simulations (54)). Such analysis was 

applied successfully, for example, to S. aureus protein A using the Cα root mean squared 

deviation (Cα-RMSD) and Q (the fraction of native contacts formed) as reaction coordinates 

(55), and to villin headpiece using the RMSDs of two fragments to the native state as 

reaction coordinates (26, 27). Inspection of the projected villin free energy landscape (in 

implicit solvent) revealed a single main pathway to folding with a clearly defined barrier 

separating the folded and unfolded states, as well as an off-pathway trap conformation 

with no reasonably accessible direct path to the native state (27). Compatible results were 

observed by tracking the progress of several folding trajectories through the same projected 

coordinate space (26).

The utility of the reduced coordinate approach is completely reliant upon the ability 

of the chosen coordinates to separate the relevant occupied conformations (and their 

transition states). An example of the failure of such an approach is shown in Fig. 3a. 

The “opening” transition presumed in (30) to be the rate-limiting step in villin folding 

(see above) involves backtracking over completely unrelated portions of conformational 

space in the 2-D projection; furthermore, conformations on either side of the transition 

state are superimposed on each other. Such difficulties may be circumvented by using 

trajectory-driven methods to identify the projection space, such as principal component 

analysis (56, 57) or non-metric data scaling (58). Application of the latter to villin headpiece 

folding is shown in Fig. 3b, providing improved separation of the transition state ensemble 

and structures to either side of it.

Another frequently used method in the analysis of protein folding trajectories is 

conformational clustering (e.g., (59, 60)), in which configurations occurring during a folding 

trajectory (or set of trajectories) are binned into related groups (clusters) based on a 

metric such as pairwise RMSDs between them, or the rate of interconversion between 

conformations (for comparison see (61)). Clustering analysis immediately highlights 

frequently occupied conformations, and tracking the cluster identity of the protein 

throughout a trajectory can provide a useful birds-eye view of the path followed during 

the simulation. Clustering can also be applied in several types of quantitative analysis which 

aid in the understanding of protein folding trajectories, particularly when information from 
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a large array of simulations must be combined. In such cases it has proven useful to cluster 

the conformations present and then use the statistics obtained on their interconversion to 

develop a Markov state model, allowing evaluation of a variety of properties such as mean 

folding times dependent upon events far longer than the simulations used in constructing 

the model (25, 62, 63). The primary weakness of such models is, of course, that they are 

still vulnerable to undersampling in that any transitions or conformations which were not 

observed in the parameterization simulations, but are actually present, will not be accounted 

for.

The number of transitions observed between clustered conformations can also be used in 

the construction of a cut-based free energy profile (64, 65), in which clusters are partitioned 

into two disjoint sets in a way that minimizes the partition function of the barrier between 

the sets; such partitions are calculated along a reaction coordinate such as the fraction of 

the overall sampling weight that is in the same set as some arbitrary node (for example, 

the native state of a protein). Applied to folding simulations, such a profile allows the 

identification of the transition state ensemble (66, 67) for transitions of interest noted during 

the folding process. Crucially, the cut-based approach does not require a priori assignment of 

reaction coordinate(s), but equilibrium sampling of the conformational transitions of interest 

(which is currently difficult to obtain for most folding model systems) is needed. Once 

key conformations have been identified (e.g., through clustering analysis), the transitions 

between them may also be investigated in more detail through application of methods such 

as transition path sampling (15) and subsequent analysis to optimize the definition of a 

reaction coordinate and transition state ensemble for a given transition (68).

Force field development

Molecular dynamics simulations utilize force fields to describe the potential energy of 

atomic systems as a function of their spatial arrangement. The functional form of classical 

force fields is divided into two sets of terms: bonded, also called internal, and nonbonded 

contributions. Bonded contributions include bond, angle and dihedral terms that represent 

interactions between covalently bonded atoms using harmonic potentials. The harmonic 

potentials are a coarse but rapidly computed approximation of Morse potentials describing 

bonded interactions. Perhaps the greatest disadvantage of the harmonic approximation is 

its inability to permit bonds between atoms to change, allowing descriptions of chemical 

reactions; however, the harmonic potential does permit all-atom simulations three to 

four orders of magnitude faster than methods allowing changes in electronic structure. 

Nonbonded terms include pair-wise Coulombic potentials describing electrostatics, and 

the Lennard-Jones (LJ) 6–12 potential that represents attractive van der Waals dispersion 

interactions and core-core repulsion between atom pairs.

Of the classical force fields, the most frequently used in all-atom MD simulations of 

protein folding are AMBER (69) and CHARMM (70). The bonded terms of AMBER and 

CHARMM are relatively similar (as are the equivalent terms in most other classical force 

fields); both utilize harmonic approximations for bonded interactions, parameterized through 

a combination of high-level quantum mechanical calculations and spectroscopic data on 

model compounds. However, fundamental differences exist in how their nonbonded terms, 
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and particularly their atomic charges, are empirically parameterized. In the CHARMM 

family of force fields, an atom’s charge is determined by fitting the effective interaction 

of polar groups with a TIP3P water molecule to quantum mechanical data, whereas atomic 

charges in recent AMBER force fields are determined by optimizing the reproduction of 

the electrostatic potential around the molecule of interest, subject to restraints to remove the 

possibility of physically absurd charge distributions (71). Both force fields suffer from a lack 

of polarizability, relying upon static atomic charges to model electrostatic contributions to 

protein dynamics which are often intrinsically coupled to a protein’s internal and external 

electrostatic field.

Molecular modeling force fields have been under development for decades, and modern 

force fields consistently yield values for properties such as free energies of hydration 

for model compounds within 1–2 kcal/mol of experimental values (72, 73), and provide 

sub-Å Cα-RMSDs to known structures in simulations of folded proteins (74). Despite the 

generally excellent agreement between experimental and calculated properties for small 

model systems and folded proteins, some shortcomings are known to remain, such as 

the tendency of modern pairwise additive force fields to overestimate the strength of 

solute-solute interactions (75). In addition, several recent studies have shown inaccuracies 

related to the thermodynamic equilibria between different protein secondary structures, 

including both direct attempts to fold proteins through MD simulations (39) and more 

general studies of the accuracy with which MD force fields represent proteins (76, 77). 

As simulations long enough to allow large scale structural transitions such as secondary 

structure rearrangements only recently became commonplace, for most of their history 

molecular dynamics force fields have only needed to provide a realistic description of 

a protein within the neighborhood of a known starting state. With modern computing 

capabilities, however, another round of modifications and improvements to molecular 

modeling force fields is clearly required to maintain an accurate description of the simulated 

systems.

Currently existing classical force fields have undergone many rounds of iterative 

improvement in which parameters were tuned to provide better agreement with experimental 

or quantum mechanical data. Over the past few years new sets of corrections for backbone 

parameters have been applied both to the AMBER (78) and CHARMM (79) families of 

force fields in order to bring the potential energy surface around protein backbone torsions 

into better agreement with quantum mechanical data. The changes made to CHARMM 

were particularly far-reaching: a new cross term (CMAP) was added to the force field, 

involving addition of a correction based on the ϕ and ψ angles of a given amino acid to 

bring their energetic contribution into direct agreement with two-dimensional maps of the 

potential energy surface obtained from high-level quantum mechanical calculations. While 

the recent backbone corrections would be expected to substantially improve the secondary 

structure propensities of force fields, problems with the treatment of both small model 

systems (77) and folding proteins (39) were observed (using AMBER and CHARMM force 

fields, respectively) even with the corrections in place. In addition, even where further 

corrections were applied to the backbone dihedrals of AMBER family force fields in order 

to correct their α helical propensity, both the entropy and enthalpy of helix formation were 
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found to be underestimated (such that the errors canceled out at the temperature at which 

parameterization was performed) (77).

While a number of recent efforts to improve protein force fields have focused on the 

parameters for bonded terms, secondary structure elements (particularly β sheets) are 

inherently non-local, relying in large part on the behavior of hydrogen bonding. The most 

commonly used force fields in modern molecular dynamics simulations treat hydrogen 

bonding simply as an interaction between point charges, but hydrogen bonding in fact has 

a strong directional dependence that is apparent both from quantum mechanical calculations 

on model compounds and in crystal structures of proteins (80, 81). Molecular modeling 

force fields incorporating directional hydrogen bonding have frequently shown improved 

accuracy (80, 82, 83). Analysis of the hydrogen bonding geometries present in recent 

folding simulations of the WW domain using CHARMM22/CMAP (see Fig. 4) showed that 

while the (erroneously favored) α helical structures possessed a distribution of hydrogen 

bonding geometries matching those from quantum mechanical calculations, the simulated 

crystal-like β sheet structure overpopulated linear hydrogen bonding geometries, reflecting 

an artificial energetic frustration introduced by the simplistic representation of hydrogen 

bonding. Likewise, the errors in ΔU and ΔS observed by Best and Hummer during α helix 

formation are consistent with a lack of proper hydrogen bonding treatment: directional 

hydrogen bonds would be stronger but lead to a more negative ΔS during helix formation 

due to the imposed orientation (77). Atomic polarizability, which is neglected in classical 

force fields, has also been shown to play a significant role in the energetics of α helix 

formation (84).

Thus, while tuning of bonded parameters continues to be a valuable tool in refining 

molecular dynamics force fields, more dramatic changes are likely necessary to correct 

problems currently hampering molecular dynamics simulations of folding. Hydrogen 

bonding orientation may be included through the addition of explicit hydrogen bonding 

terms (82) or “lone pair” charge sites maintained at a specific geometry relative to atomic 

centers (85). Treatment of atomic polarizability is more challenging; several solutions exist 

in recently developed force fields, including the replacement of point charges with partially 

polarizable multipole expansions (86), models allowing charge to flow between atoms in 

response to the electric field (87, 88), and Drude oscillator models in which the charge of 

specific heavy atoms is partially placed on a very light independent particle coupled to the 

parent atom by a strong spring (89, 90). In light of the recent simulation results discussed 

above, it appears likely that the use of some polarizable force field also incorporating 

explicit hydrogen bonding or off-site lone pairs is essential for protein folding in MD 

simulations.

While it is easy to become focused on refinements to solute parameters, the protein-protein 

interactions in folding simulations occur neither in a metaphorical nor a literal vacuum, but 

instead exist in competition with protein-water and water-water interactions. The treatment 

of water, either implicit or explicit, and the interactions of the protein with water are thus 

extremely important to obtaining proper conformational equilibria during such simulations. 

Despite the added computational expense, we strongly advocate the use of explicit solvent 

models in protein folding simulations, as implicit solvent models have been shown to 
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be unable to reproduce the relative free energies for folding intermediates obtained using 

explicit solvent (12, 91), and by their nature cannot capture details such as buried waters 

which are known to be important even in the case of such simple proteins as Trpcage 

(14). A recent survey of the thermodynamics of hydration for model compounds related to 

amino acids suggested that the properties considered (ΔG, ΔH, TΔS, and ΔCp) are much 

more dependent on the choice of water force field than on the protein force field (92). 

Molecular dynamics water models are generally parameterized primarily to reproduce bulk 

water properties; unfortunately, the accuracy of representation of water properties in such 

a model is not well correlated with its accuracy in combination with even simple solutes 

(92). The issue of water model choice is complicated by the fact that protein force fields are 

generally parameterized and tested using a specific model (most commonly, for the current 

generation of classical force fields, TIP3P (93)), and thus one cannot simply switch to a 

new water model even if it has been shown to have superior properties. At present a new 

generation of water models is under active development for use with polarizable force fields 

(e.g., (90, 94, 95)); optimal performance of the associated polarizable protein force fields 

may also require simultaneous refinement of solvent and solute parameters.

Outlook

Molecular dynamics simulations of protein folding can be a tremendously useful tool, 

providing otherwise inaccessible data that aid the interpretation and testing of protein 

folding mechanisms. Such simulations face serious challenges, both from the sheer amount 

of sampling required to adequately model protein folding and the fidelity with which 

empirical force fields must represent the true free energy surface on which a protein folds. 

Both challenges can be met, the former through new technologies to improve sampling and 

improved analysis methods to make more constructive use of the obtained data, and the 

latter through the use of new force fields explicitly incorporating hydrogen bonding and 

atomic polarizability. Even for the simple systems reviewed in the present article, much 

work remains to be done in terms of experimental validation of recent predictions made 

by MD simulations. In addition, even as new force fields are being developed, it may be 

possible to expand to the study of slightly larger and more complicated proteins such as the 

λ-repressor (Fig. 1d), a five-helix bundle with variants folding in 2–15 µs (96), so long as 

judicious choices are made to target well-studied proteins with secondary structure elements 

that are expected to be treated as accurately as possible by existing force fields.
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Figure 1. 
Cartoon representations of proteins discussed in this review. Secondary structures are 

assigned using STRIDE (97): α helix (purple), β sheet (yellow), turn (cyan), coil (white), or 

310 helix (blue). a) Trpcage (PDB code 1L2Y). b) Villin (PDB code 1YRI). c) WW domain 

(PDB code 2F21). d) λ repressor (PDB code 1LMB). Secondary structure elements for villin 

and the WW domain are labeled matching discussion in the text.
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Figure 2. 
Representative snapshots of the trajectory followed by villin headpiece from the pre-folded 

intermediate to the native state, with labels corresponding to the discussion in the text. 

Protein coloring runs blue to red from N terminus to C terminus; the crystal structure is 

shown as a transparent gray cartoon for comparison. Reprinted from Biophysical Journal 

97; Lydia Freddolino and Klaus Schulten; Common structural transitions in explicit-solvent 

simulations of villin headpiece folding; 2338–2347; Copyright 2009, with permission from 

Elsevier.
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Figure 3. 
Projections of a villin folding trajectory (corresponding to WT-FOLD1 in Fig. 2) onto 

two-dimensional surfaces. a) Projection onto Q/Cα-RMSD space; Q represents the fraction 

of native contacts formed, and is defined as in (98). b) Embedding of the trajectory into a 

two-dimensional space chosen via nMDS (58) based on the dihedral angles of the protein. In 

both cases frames prior to the intial hydrophobic collapse are omitted for clarity; the earlier 

frames are very low Q, high Cα-RMSD, and are scattered randomly in nMDS space. Two 

arrows are drawn showing the path taken between the 5315 ns, 5384 ns, and 5458 ns time 

points (c.f. Fig. 2); this path corresponds to the crossing of the putative free energy barrier 

identified in (30).
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Figure 4. 
Directionality of hydrogen bonding in folding simulations. a) Illustration of the hydrogen-

acceptor-acceptor antecedent angle Ψ in a protein backbone hydrogen bond. b) Normalized 

histogram of Ψ angles present in MD simulations of a misfolded helical state (Helix) or 

the native state (Sheet) of the WW domain (39). A survey of the PDB indicated that both 

should peak between 155 and 160 degrees (80). Part (b) reprinted from supplementary 

material of Biophysical Journal 96; Lydia Freddolino, Sanghyun Park, Benoît Roux, and 

Klaus Schulten; Force field bias in protein folding simulations; 3772–3780; Copyright 2009, 

with permission from Elsevier.
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