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     INTRODUCTION 

 Circumsporozoite (CS) protein is an immunodominant 
antigen abundantly expressed on the sporozoite surface of 
all  Plasmodium  species studied to date. 1  Humans rendered 
immune by vaccination with radiation-attenuated malaria 
sporozoites develop antibodies and lymphocytes that recog-
nize this protein. 2  

 The protein has a typical domain organization among all 
known  Plasmodium  species, 3,  4  with a central region (CR) com-
posed of a tandem repeat sequence that comprises ~40% of 
the protein. The CR is flanked by conserved pre-repeat (5′NR) 
and post-repeat (3′NR) regions. 5  These flanking regions con-
tain short, highly conserved sequences denoted as Region I 
(RI) and RII regions, 3  that are the binding domains for gly-
cosaminoglycan heparin sulfate receptors, which are found on 
the surface of hepatocytes 6  and mosquito salivary glands. 7  The 
RI and RII domains appear to play important roles in parasite 
invasion to host cells, both in the mosquito and the vertebrate 
host. 7,  8  

 The CR of  Plasmodium vivax  CS protein has been shown 
to be dimorphic, characterized by tandem repeats of the 
nonapeptide GDRADGQPA in the VK210 sequence, 5  and 
ANGAGNQPG that corresponds to the VK247 variant 
sequence. 9  Both nonapeptides sequences are repeated ~20 
times in their corresponding proteins; however, there is exten-
sive polymorphism with regard to the number of repeats. 10  It 
has been shown that the prevalent phenotype of the  P. vivax  
parasite in the study sites of Colombia is VK247 (59.7%), 
whereas VK210 accounts for one-third of the cases 32.8%; the 
remaining 7.5% corresponds to mixed infection. 11  

 Although previous nucleotide sequence analyses of the 
flanking regions (3′NR and 5′NR) of  P. vivax  CS protein have 
shown high conservation of these regions, recent studies indi-
cated that isolates from Iran, Philippines, China, Brazil, and 
Korea contained previously undescribed point mutations 
and an insertion at the beginning of the 3′NR region. 10,  12–  14  
Most studies have reported only partial sequence data, 
thus limiting complete evaluation of the extent of genetic 

polymorphism found in the gene encoding  P. vivax  CS 
protein. Thus, there is a shortage of information on the poly-
morphism present in relevant immune epitopes, particu-
larly those localized in the flanking regions. We report here 
a detailed sequence analysis of the full  P. vivax  CS gene, 
designed to determine the potential for  P. vivax  gene polymor-
phism in such epitopes and their relevance for malaria vaccine 
development. 

   MATERIALS AND METHODS 

  Origin of blood samples.   Blood samples were collected 
from 24 subjects attending outpatient clinics in five malaria-
endemic areas of Colombia, where transmission of both 
 P. vivax  and  P. falciparum  is unstable. Sites selected for par-
asite collection were Quibdó (Chocó state), Buenaven tura 
(Valle del Cauca state), Guapi (Cauca state), and Tumaco 
(Nariño state), located along the Pacific Coastal; and Puerto 
Asís (Putumayo state), located beyond the Andes Mountains 
in the Amazonian region ( Figure 1 ). Written informed con-
sent was obtained from volunteers and blood samples were 
collected before therapy was initiated. Approximately 3 mL 
of whole blood were collected in EDTA-containing tubes 
from each individual confirmed to be  P. vivax  positive by 
thick smear. Additionally, 1 mL of blood was obtained from 
an  Aotus  monkey infected with the reference Sal I strain of  
P. vivax . 

    Parasite DNA extraction and polymerase chain reaction 
(PCR) amplification of  P. vivax  CS protein gene.   Parasite 
genomic DNA was extracted by the salting-out method. 15  The 
DNA samples were coded according to collection site as fol-
lows: (Chocó [Ch], Valle del Cauca [Vc], Cauca [Ca], Nariño 
[Nr], and Putumayo [Pt]) followed by two numerical digits 
indicating the order of patient arrival. The DNA samples were 
immediately stored at −20°C and processed by nested PCR to 
confirm the species-specificity of infection. 16  

 The CS gene was subsequently amplified by PCR using 
primers CS1 (5′-cagccaaaggctacaagtgtaaac-3′) and CS2 
(5′-gggcaagtatttatgtgcatgt-3′). The PCR was performed using 
the following mixture: 2 μL DNA, 0.125 mM primers, 2.5 U/μL 
of Platinum Taq DNA Polymerase High Fidelity (Invitrogen 
Inc., São Paulo, SP, Brazil), and 0.125 mM dNTPs (Invitrogen 
Corp., São Paulo, Brazil), for a final volume of 20 μL. Reaction 
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cycles comprised an initial denaturation for 5 min at 94°C, 
then 30 cycles of 1 min at 94°C; followed by cycles of 1 min at 
64°C and 1 min at 72°C; and a final 10 min extension step at 
72°C. Amplified products (»1,238 bp) were visualized by elec-
trophoresis on 1.2% agarose gels. 

   Cloning and sequencing.   The PCR products were cloned 
into the pGEMT Easy Vector (pGEM-T Easy Vector Systems, 
Promega Corp., Madison, WI) system according to the manu-
facturer’s instructions. Isolation of plasmid DNA was extracted 
at Minipreparation scale as described previously by Sambrook 
and others. 17  

 Screening for positive clones (~1.2 kb gene  P. vivax  CS pro-
tein) was performed by restriction enzyme  Eco RI and the 
digested products were separated on 1.5% agarose gel, stained 
with ethidium bromide, and visualized under UV   . Nucleotide 
sequences of recombinant clones were determined by the 
dideoxynucleotide chain termination method with Sequenase 
and the BigDye terminator sequence kit, version 3.1 (using 
an ABI PRISM 3100 Avant sequencer, Applied Biosystems, 
Foster City, CA). The M13F/M13R universal primers, CS1 and 
CS2 external primers, and  Pv F2 and  Pv R2 internal primers 
were used for sequencing. 18  

   Data analysis.   The DNA from the  P. vivax  Sal I strain, previ-
ously adapted to growth in  Aotus  monkeys, was produced and 
used as reference. All sequences of the 5′NR and 3′NR regions 
were compared with the reference sequence Sal I using Clustal 
W (European Bioinformatics Institute, Hinxton, Cambridge, 
UK   ), with corrections made by visualization. For analysis of 
the central region, comparisons were made using as references 
the VK247 databank sequences (M69059) reported previously 
for the  P. vivax  Papua New Guinea (PNG   ) strain phenotype, 
and the Sal I sequence (VK210). 

 Sequences were deposited in Genbank with accession 
nos. GU339059–GU339086. Basic genetic polymorphism 
parameters were estimated using the DNAsp program. 19  The 
Colombian alleles reported in this work were compared with 
14 complete sequences available in GenBank correspond-
ing to the worldwide distribution of  P. vivax . This sample of 
14 sequences will be further referred to as the global sample. 

 Evaluation of polymorphism in immunologically relevant 
protein regions (epitopes) for B-, T-CD4 + , and T-CD8 +  cells 
were compared by visual inspection of aligned sequences with 
sequences of the epitopes previously identified and reported 
by our group ( Table 1 ). 20–  22  

        RESULTS 

 Results of the nested PCR for  P. vivax  and  P. falciparum  
species indicated that all samples corresponded to simple  
P. vivax  infection. The CS genes were successfully amplified 
from parasite genomic DNA samples obtained from 24 sam-
ples of patients and one of  Aotus  monkeys. All PCR products 
corresponded to DNA fragments of ~1.2 Kb. 

 After cloning, all recombinant plasmids were subjected to 
enzymatic digestion that resulted in two fragments: the first, 
a 3.018 bp fragment corresponding to the plasmid vector; 
and a second fragment of ±1.182 bp corresponding to the CS 
gene. Digestion of recombinant plasmids from Puerto Asís 

  Figure  1.    Map of Colombia depicting the geographical sites 
where the 24 parasite isolates were collected: Quibdo (Chocó)  N  = 5; 
Buenaventura (Valle del Cauca)  N  = 5; Guapi (Cauca)  N  = 5; Tumaco 
(Nariño)  N  = 5; and Puerto Asís (Putumayo)  N  = 4.    

  Table  1 
  Specific amino acid sequence of dominant B- and T-cell epitopes of the  Plasmodium vivax  circumsporozoite (CS) protein  

Peptide Amino acid sequences Position Classification Reference

P6 HVGQSASRGRGLGENPDDEE 50–70 T-Helper  20 
P11 GDRADGQPA(VK210) 114–122
P15 GDRAAGQAA (VK210) 150–158
P25 VRRRVNAANKKPEDLTLNDL 246–266
P8 GDAKKKKDGKKAEPKNPREN 71–90 B-Cell  21 
P11 GDRADGQPA (VK210) 96–104
P24 CSVTCGVGVRVRRRVNAANK 332–351
P25 VRRRVNAANKKPEDLTLNDL ANGAGNQPG (VK247) 342–361
PV1 YLDKVRATV 301–309 T-CD8+  22 
PV3 SLGLVILLVL 365–374
PV5 TLNDLETDV 341–349
PV6 LLAVSSILL 6–4
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(Putumayo) presented CS fragments ranging from ±880 to 
1.182 bp. All CS fragments were subjected to automated DNA 
sequencing. 

 Sequencing data indicated that some parasite isolates pre-
sented with more than one CS allele. Three of four parasite 
isolates from Putumayo showed different sized fragments for 
the complete CS gene. The Pt04 sample presented two alleles 
both belonging to the phenotype VK247: Pt04.1 (1.134 bp) 
(GU339085) and Pt04.5 (840 bp) (GU339086); the Pt02 sam-
ple had the following alleles: Pt02.1 (1.164 bp) (GU339082) 
and Pt02.2 (840 bp) (GU339083); and finally Pt01 isolates 
showed two alleles: Pt01.3 (894 bp) (GU339080) and Pt01.7 
(1.137 bp) (GU339081), both phenotypes VK210. 

 Overall,  P. vivax  CS protein was highly conserved when 
only the non-repetitive regions of the gene were considered; 
the 5′NR (285 bp) and 3′NR (291 bp) regions together have 
only an estimated nucleotide diversity of 0.0021 for all avail-
able sequences; the 27 from Colombia as reported in this 
study and 14 from the global sample. The number of synony-
mous (0.00182) substitutions was higher than the number of 
non-synonymous substitutions (0.00224) as estimated by the 
Nei-Gojobori method implemented in DNAsp. The differ-
ences were not statistically significant; thus, in contrast with 
the  P. falciparum  CS, no evidence of balancing selection was 
found. 23,  24  

 Comparison of the 27 sequences corresponding to the flank-
ing 5′NR and 3′NR regions with the Sal I reference sequence 
(GU339059) displayed limited genetic polymorphism. The 
5′NR region (285 bp) has only two polymorphic sites with 
an estimated nucleotide diversity (π) of 0.001; 25/27 isolates 
showed two non-synonymous transitions in the first and sec-
ond positions of codon 38 AAC → GGC and resulted in an 
N → G substitution; only the Nr03 and Pt04.1 alleles 
(GU339072, GU339085) are conserved in this codon. This level 
of variation is comparable with the one observed in the global 
sample that has only three polymorphic sites and a π = 0.004. 
In the 3′NR no polymorphic sites were observed, whereas in 
the global sample, eight polymorphic sites were observed with 
a π = 0.005. Both, the Colombian isolates and the global sam-
ple, have extensive polymorphism in the form of insertions 
of 9, 16, and 28 aa in length. The phylogenetic relationships 
among 40  P. vivax  CS protein isolates are shown in  Figure 2 . 

  In the 3′NR region, a first group of five isolates: 
Ch02(GU339066), Ch05(GU339066), Ca02(GU339061), 
Ca04(GU339063), and Ca05(GU339064) had a 16 aa inser-
tion. A second group of eight isolates: Ch03(GU339067), 
Nr01(GU339070), Nr02(GU339071), Nr05(GU339074), 
Vc01(GU339075), Vc02(GU339076), Ca01(GU339060), and 
Ca03(GU339062) had a nine aa insertion; and in the third 
group of 12 isolates: Ch01(GU339065), Ch04(GU339068), 
Nr04(GU339073), Vc03(GU339077), Vc04(GU339078), 
Vc05(GU339079), Pt01.3(GU339080), Pt01.7(GU339081), 
Pt02.1(GU339082), Pt02.2(GU339083), Pt03(GU339084), and 
Pt04.5(GU339086) displayed an 18 aa insertion ( Figure 3 ). 

  In the CR fragment of the protein, the number of tandem 
nonapeptide repeats ranged between 8 and 20 among the dif-
ferent 27 alleles. Several synonymous and non-synonymous 
point mutations were found in the corresponding coding 
regions without any particular organization ( Table 2 ). Twenty-
five (92.6%) of the 27 isolates from the Pacific Coast and from 
Putumayo state presented with all CS alleles corresponding to 
the VK247 type, whereas the Nr03 and Pt04.1 isolates (7.4%) 

displayed alleles corresponding to the common VK210 type. 
The translated sequence of the VK247 genotype repeats was 
characterized by the nonapeptide EDGAGDQPG, followed 
by 4–18 tandem nonapeptide repeats of ANGA(G/D/K)

  Figure  2.    Neighbor-joining tree with a Jukes-Cantor distance. It 
includes 27 Colombia alleles and a few complete  Plasmodium vivax  
circumsporozoite (CS) protein sequences available in the literature. 
Clades support was estimated using Bootstrap with 500 pseudo-
replications shown as percentages.    



54 HERNÁNDEZ-MARTÍNEZ AND OTHERS

(N/D)QPG, and the terminal nonapeptide ANGAGGQAA. 
Conversely, on the other hand the Nr03(GU339072) and 
Pt04.1(GU339085) alleles had 20 nonapeptide repeats of 
G(D/N)(R/G)A(D/A/G)GQ(P/A)A ( Table 2 ). 

      Alignment of sequences coding for defined B, T-CD4 + , and 
T-CD8 +  epitopes, described previously, 20–  22  indicated complete 
sequence homology to P6, P8, and PV6 epitopes ( Figure 3 ). 
The central repeat region of the VK210 type found in isolates 
Pt04.1(GU339085) and Nr03(GU339072) showed homology 
to the P11 epitope. Only the P15 epitope presented polymor-
phism in the eighth position (A → P) in the isolate Nr03. 

 The remaining 25 sequences belonging to the VK247 
showed a high degree of homology with variant B-cell 
epitope ANGAGNQPG. Finally, the 3′NR region of all para-
site isolates showed homology in the following epitopes: P25 
(T-CD8 + ), P24, P25 (B-cell); PV1, PV5, and PV3 (T-CD8 + ) 
( Figure 3 ). 

   DISCUSSION 

 Our results confirm previous observations that, when 
only single point mutations are considered,  P. vivax  CS pro-
tein is highly conserved when compared with its homologous 
gene in  P. falciparum . Nevertheless, our results also confirm 
the existence of extensive polymorphism of the  P. vivax  CS 
gene in terms of the number of tandem repeats, particularly 
in the CR region. The study also confirmed the existence of 
both VK247 and VK210 CS repeat types in Colombia with a 

strong predominance of the VK247 type (92.6%), as described 
previously. 11  It is hard to explain the predominance of the 
VK247 allelic type in Colombia, because in the same regions 
anti-CS VK210 antibodies are more frequent (68–75%) than 
those to VK247 (11–20%). We had previously speculated that 
the VK210 allelic type is more immunogenic than VK247 
and that therefore the latter type would be inmunologically 
selected, however, we do not have formal evidence of this 
mechanism and studies conducted on  P. falciparum  CS poly-
morphism do not appear to confirm this immune selection 
hypothesis. 11,  25  A significant size polymorphism was observed 
for the entire gene that ranged from 840 to 1182 Kb, which 
depended mainly on the size variability of the CR region. 
Additionally, the 3′NR region displayed several insertions at 
the beginning of the sequence. 

 Size polymorphism was based on the 3′NR variability in 
number of insertions in the Colombian isolates (NKKAGDA, 
GAGGQAAGGNAANKKAGDAG, and GGNAGGNA), 
and in those preceding the CR region. This latter region is 
usually composed of 19–20 repeat of a nonapeptides G(D/N)
(R/G)A(D/A/G)GQ(P/A)A in the case of the VK210 type 
and ANGA(G/D/K)(N/D)QPG in the VK247; the latter iso-
lates showing variation with 8–20 repeats in this study. 

 In terms of analyses to determine the immunological poten-
tial of this protein for vaccine development, it is interesting 
that the 5′NR terminal region is well conserved across the 
isolates analyzed. The gene fragment analyzed here encoded 
the protein sequence corresponding to 1–95 aa that com-

  Figure  3.    Amino acid sequence alignment of  Plasmodium vivax  circumsporozoite (CS) amino- and carboxyl-flanking regions of Colombian 
and of the global sample Sal I reference sequence.    
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prises two T-helper epitopes, P6 (50–70 aa) and P8 (71–90 aa), 
plus a T-CD8 +  cell epitope (PV6, 6–14 aa), which may explain 
the good immunogenicity described for this fragment. 20–  22  
The non-synonymous substitutions in codon 38 leading to the 
amino acid mutation (N → G), had been reported previously 
in isolates from diverse regions of the world. 13,  26  Whether this 
substitution has an effect on immunity warrants further inves-
tigation; indeed, this epitope exhibits high immunogenicity, 
both during natural exposure to the parasite and in response 
to immunization with synthetic peptides. 20–  22  Our sequences 
from Colombia contrast to those sequences analyzed by 
Qari and others 14  who identified non-synonymous substitu-
tions that would affect the pre-repeat region, particularly the 
RI region, in parasites isolated from Brazil and New Guinea. 
Nevertheless, geographic differences are expected in a para-
site with such extensive distribution. 

 The post-repeat region of the Colombian isolates showed 
three types of insertions that have already been reported in five 
different geographically distant regions. The first insertion of 9 
aa present in eight isolates had previously been found in Papua 
New Guinea (M69059, M69060), Brazil (M69062, M69061), and 
Iran (AY632299, AY632294). A second insertion of 9 aa found 
in eight parasite isolates had also been seen in isolates from 
China (U08977, U08978, and U08979) and Korea (M206670, 
AJ297403, AF164605, AF164603, and AF164603). Finally, 
16 aa found in 12 of the Colombian isolates had also been 
reported for the P30 isolated (AY632258) in Iran. 10  The origin 
of the repeats could be the result of meiotic recombination that 
occurs during the diploid phase of the malaria life cycle. 9  

 Genetic mechanisms such as slipped-strand mispairing, 27  
recombination, and gene conversion can be inferred from 
the formation and separation of such mutations, 28  including 
expansion or reduction of repeat sequences. This is especially 
true in parasites of the  Plasmodium  genus, where the immune 
pressure of the vertebrate host can determine the order and 
characteristics of sequence repetition. 29  

 The homology observed between 5′NR- and 3′NR-specific 
regions coding for epitopes recognized by B- and T-lymphocytes 
(CD4 +  and CD8 + ) cells, both in Colombia and other distant 
geographical areas, is very encouraging for the design of a 
 P. vivax  malaria vaccine for global distribution. However, it 
is worth noting that the sequences deposited in the Genbank 
showed substitutions that would alter the sequence of some 
of the epitopes recognized by Colombian individuals. The 
G24 isolate (U09737) from Gabon presented a substitution in 
the epitope PV3 (P → L); the BZLB7–4 isolated (M69062) 
from Brazil presented a substitution in the P24 (T→A) and 
P25 epitopes (T →A); and Thay Nyu isolated (M34697) from 
Thailand presented a substitution in the epitope P15 (Q → P). 
The limited sequence variation found here for  P. vivax  is in 
contrast with the high level of non-synonymous mutations 
at the sequences encoding the Th2R and Th3R epitopes 
of the  P. falciparum  CS in African isolates considered to 
be the result of host immune selection, 30,  31  However, it 
appears that polymorphism, at least in gene sequences cod-
ing for T-cell epitopes are unlikely to be selected by immune 
pressure in the human host. 25  The great sequence conserva-
tion of this region appears to be similar to that observed for 

  Table  2 
  Structural organization of the amino acid sequence in the circumsporozoite (CR) of Colombian alleles  

Strains

Central repetitive regions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

PNG* 1 2 2 4 2 4 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5
Vc01 6 2 2 2 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 –
Vc02 6 2 2 2 2 2 2 4 3 2 2 4 4 2 4 2 2 2 2 5 –
Vc03 6 2 2 2 2 2 2 4 3 2 2 2 4 2 2 2 2 5 – – –
Vc04 6 2 2 2 2 2 2 3 4 2 2 4 4 2 4 2 2 5 – – –
Vc05 6 2 2 2 2 2 2 4 2 2 2 4 4 2 2 2 2 5 – – –
Ch01 6 2 2 2 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 –
Ch02 6 2 2 2 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 –
Ch03 6 2 2 2 2 2 2 2 3 3 2 2 4 4 2 4 2 2 2 2 5
Ch04 6 2 2 2 2 2 2 4 3 2 2 4 4 2 4 2 2 2 2 5 –
Ch05 6 2 2 2 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 –
Ca01 6 2 2 2 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 –
Ca02 6 2 2 2 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 –
Ca03 6 2 2 2 2 2 2 3 3 2 2 4 4 2 4 2 2 2 2 5 –
Ca04 6 2 2 2 2 2 2 4 3 2 2 4 4 2 4 2 2 2 2 5 –
Ca05 6 2 2 2 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 –
Nr01 6 2 2 2 2 2 2 4 3 2 2 4 4 2 4 2 2 7 2 5 –
Nr02 6 2 2 2 2 2 2 4 4 2 2 4 4 2 4 2 2 2 2 5 –
Nr04 6 2 2 2 2 2 2 4 8 2 2 2 4 2 4 2 2 5 – – –
Nr05 6 2 2 2 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 –
Pt01.3 6 2 2 2 2 2 2 5 – – – – – – – – – – – – –
Pt01.7 6 2 2 2 2 3 2 2 2 4 2 4 2 2 2 2 5 – – – –
Pt02.1 6 2 2 2 2 2 2 4 2 2 4 2 4 2 2 2 2 5 – – –
Pt02.2 6 2 2 2 2 2 2 5 – – – – – – – – – – – – –
Pt03 6 2 2 2 4 2 4 2 2 2 2 2 4 2 2 2 2 5 – – –
Pt04.5 1 2 2 2 2 5 – – – – – – – – – – – – – – –
Sal I † 9 9 9 9 10 9 9 9 9 10 10 9 10 9 10 9 10 10 11 11
Nr03 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 12
Pt04.1 9 9 9 10 10 9 9 9 9 10 10 9 10 9 10 9 10 10 11 11

  1‡ = EDGAGNQPG 3 = ANGADDQPG  5 = ANGAGGQAA  7 = ANGAGGQPG   9 = GDRADGQPA  11 = GDRAAGQAA  
  2 = ANGAGNQPG  4 = ANGAGDQPG  6 = EDGAGDQPG   8 = ANGADNQPG  10 = GDRAAGQPA  12 = GNGAGGQAA  
  †   Comparison of central repeats of VK210-type Colombian alleles with Sal I reference sequence.  
  ‡   Numbers correspond to repeat type sequence located in repeat position 1–21.  
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 P. falciparum  isolates from Southeast Asia and Brazil, 32  and 
together with the great immunogenicity and the presence of 
functional domains encourage its further development as vac-
cine subunit ( Table 1 ). 20–  22  

 Overall, it is clear that additional comprehensive studies 
will be required to determine the extent of polymorphism 
in these and other geographical regions and its immunologi-
cal impact, if any. Indeed, the influence of parasite polymor-
phism in the immune response has to be analyzed carefully 
as the epitopes are defined on the basis of recognition by 
sera and cells from individuals with diverse major histocom-
patibility complex (MHC) haplotypes. Therefore, given the 
diversity of class I and class II haplotypes in any given popu-
lation, the epitopes recognized in different populations may 
differ on the basis of the frequency of the MHC haplotypes in 
endemic areas. 

 At this point, it is also worth noting that regardless of the 
growing interest in  P. vivax , there have been only 14 complete 
sequences reported in the literature. Although it is understand-
able that genetic studies on antigens focus mostly on genes of 
interest, the malaria research community should consider com-
prehensive investigations to better understand the polymor-
phism of potential vaccine candidates. Overall, detailed studies 
on both the polymorphism of this antigen and the identifica-
tion of relevant epitopes recognized by individuals from the 
same endemic areas are required to advance the evaluation of 
CS as a potential component of an effective malaria vaccine. 

 Received December 23, 2009. Accepted for publication April 5, 2010. 
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